Potential Utilization of Rice Waste in the Construction Sector: A Multi-Criteria Decision Analysis Approach

Effective management of agricultural waste is an important contribution to environmental sustainability and economic development, especially considering the significant volume of agricultural residues produced worldwide. Rice is a widely cultivated crop in Colombia, and its high production results i...

Full description

Autores:
Daniel Henao
Luz Adriana Sanchez-Echeverri
Nelson Javier Tovar-Perilla
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5912
Acceso en línea:
https:// doi.org/10.3390/resources13100139
https://hdl.handle.net/20.500.12313/5912
https://www.mdpi.com/2079-9276/13/10/139
Palabra clave:
Residuos de arroz - Sector de la construcción
Rice waste valorization
Analytic hierarchy process (AHP)
Sustainable construction
Rights
openAccess
License
© 2024 by the authors
id UNIBAGUE2_10d02032b286c976a482a1e0c7878b9f
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5912
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Potential Utilization of Rice Waste in the Construction Sector: A Multi-Criteria Decision Analysis Approach
title Potential Utilization of Rice Waste in the Construction Sector: A Multi-Criteria Decision Analysis Approach
spellingShingle Potential Utilization of Rice Waste in the Construction Sector: A Multi-Criteria Decision Analysis Approach
Residuos de arroz - Sector de la construcción
Rice waste valorization
Analytic hierarchy process (AHP)
Sustainable construction
title_short Potential Utilization of Rice Waste in the Construction Sector: A Multi-Criteria Decision Analysis Approach
title_full Potential Utilization of Rice Waste in the Construction Sector: A Multi-Criteria Decision Analysis Approach
title_fullStr Potential Utilization of Rice Waste in the Construction Sector: A Multi-Criteria Decision Analysis Approach
title_full_unstemmed Potential Utilization of Rice Waste in the Construction Sector: A Multi-Criteria Decision Analysis Approach
title_sort Potential Utilization of Rice Waste in the Construction Sector: A Multi-Criteria Decision Analysis Approach
dc.creator.fl_str_mv Daniel Henao
Luz Adriana Sanchez-Echeverri
Nelson Javier Tovar-Perilla
dc.contributor.author.none.fl_str_mv Daniel Henao
Luz Adriana Sanchez-Echeverri
Nelson Javier Tovar-Perilla
dc.subject.armarc.none.fl_str_mv Residuos de arroz - Sector de la construcción
topic Residuos de arroz - Sector de la construcción
Rice waste valorization
Analytic hierarchy process (AHP)
Sustainable construction
dc.subject.proposal.eng.fl_str_mv Rice waste valorization
Analytic hierarchy process (AHP)
Sustainable construction
description Effective management of agricultural waste is an important contribution to environmental sustainability and economic development, especially considering the significant volume of agricultural residues produced worldwide. Rice is a widely cultivated crop in Colombia, and its high production results in a high amount of wastes, which is often underutilized due to a lack of knowledge regarding its potential value-added applications. On the other hand, the construction industry has become increasingly aware of the necessity to develop materials with reduced environmental impact. Therefore, this study explores the application of the Analytic Hierarchy Process (AHP) to evaluate various alternatives for utilizing rice waste in construction materials; the alternatives were evaluated based on criteria tailored to the needs of local agricultural communities in the Tolima region of Colombia. The findings highlight the potential of rice husk ash (RHA) as an environmentally responsible alternative in the construction sector, offering a viable solution for waste management while contributing to the economic development of small-scale farmers.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-11-06T20:02:25Z
dc.date.available.none.fl_str_mv 2025-11-06T20:02:25Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Henao, D.; Sanchez- Echeverri, L.A.; Tovar-Perilla, N.J. Potential Utilization of RiceWaste in the Construction Sector: A Multi- Criteria Decision Analysis Approach. Resources 2024, 13, 139. https:// doi.org/10.3390/resources13100139
dc.identifier.doi.none.fl_str_mv https:// doi.org/10.3390/resources13100139
dc.identifier.issn.none.fl_str_mv 20799276
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5912
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2079-9276/13/10/139
identifier_str_mv Henao, D.; Sanchez- Echeverri, L.A.; Tovar-Perilla, N.J. Potential Utilization of RiceWaste in the Construction Sector: A Multi- Criteria Decision Analysis Approach. Resources 2024, 13, 139. https:// doi.org/10.3390/resources13100139
20799276
url https:// doi.org/10.3390/resources13100139
https://hdl.handle.net/20.500.12313/5912
https://www.mdpi.com/2079-9276/13/10/139
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 10
dc.relation.citationvolume.none.fl_str_mv 13
dc.relation.ispartofjournal.none.fl_str_mv Resources
dc.relation.references.none.fl_str_mv Gáfaro, M.; Pellegrina, H.S. Political economy of roads: The role of access to cities in Colombia. J. Int. Econ. 2022, 137, 103598.
OECD. OECD Review of Agricultural Policies: Colombia 2015; OECD Publishing: Paris, France, 2015
FAOSTAT. Suite of Food Security Indicators. 2023. Available online: https://www.fao.org/faostat/en/#country/44 (accessed on 25 September 2024).
Durand-Morat, A.; Bairagi, S. International Rice Outlook: International Rice Baseline Projections 2021–2031 (Research Reports and Research Bulletins); University of Arkansas: Fayetteville, AR, USA, 2022; Available online: https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1052&context=aaesrb (accessed on 10 July 2024).
Phillips, J.; Durand-Morat, A.; Nalley, L.L.; Graterol, E.; Bonatti, M.; de la Pava, K.L.; Urioste, S.; Yang, W. Understanding demand for broken rice and its potential food security implications in Colombia. J. Agric. Food Res. 2024, 15, 100884.
Gobernación del Tolima. Tolima en Cifras 2022; Gobernación del Tolima: Tolima, Colombia, 2022. Available online: https://www.tolima.gov.co/tolima/cifras-y-estadisticas/tolima-en-cifras#2659-vigencia-2022 (accessed on 25 September 2024).
Logroño, W.; Ramírez, G.; Recalde, C.; Echeverría, M.; Cunachi, A. Bioelectricity Generation from Vegetables and Fruits Wastes by Using Single Chamber Microbial Fuel Cells with High Andean Soils. Energy Procedia 2015, 75, 2009–2014.
Bayomy, H.M.; Alamri, E.S.; Albalawi, A.N.; Alharbi, R.; Ozaybi, N.A.; Rozan, M.A.; Shamsia, S.M. Production of Extruded Functional Snacks Based on Resistant Starch Using Waste Rice and Whey Milk. LWT-Food Sci. Technol. 2024, 197, 115871
Tamilselvan, R.; Selwynraj, A.I. A novel g-C3N4 photocatalytic pretreatment for reducing silica and modifying the structure of rice straw for sustainable biofuel production. Process Saf. Environ. Prot. 2024, 187, 799–809.
Pandey, V.; Panda, S.K.; Singh, V.K. Preparation and characterization of high-strength insulating porous bricks by reusing coal mine overburden waste, red mud, and rice husk. J. Clean. Prod. 2024, 469, 143134.
Gupte, A.P.; Basaglia, M.; Casella, S.; Favaro, L. Rice Waste Streams as a Promising Source of Biofuels: Feedstocks, Biotechnologies, and Future Perspectives. Renew. Sustain. Energy Rev. 2022, 167, 112673.
Sobuz, M.H.R.; Al-Imran; Datta, S.D.; Jabin, J.A.; Aditto, F.S.; Hasan, N.M.S.; Hasan, M.; Zaman, A.A.U. Assessing the Influence of Sugarcane Bagasse Ash for the Production of Eco-Friendly Concrete: Experimental and Machine Learning Approaches. Case Stud. Constr. Mater. 2024, 20, e02839.
Saraswat, A.; Parashar, A.K.; Bahadur, R. Effect of Coconut Shell Ash Substitute with Cement on the Mechanical Properties of Cement Concrete. Mater. Today Proc. 2023. Available online: https://www.sciencedirect.com/science/article/pii/S2214785323050848 (accessed on 10 November 2023).
Lejano, B.; Elevado, K.J.; Fandiño, M.A.; Ng, E.A.; Datinguinoo, Z.A.N.; Oliveros, S.B. Experimental Investigation of Utilizing Coconut Shell Ash and Coconut Shell Granules as Aggregates in Coconut Coir Reinforced Concrete. Clean. Eng. Technol. 2024, 21, 100779.
Xiong, G.; Cundy, A.; Guo, X. Utilization of Corn Cob Ash (CCA) to Prepare Geopolymer Grout: Reaction Mechanism, Crack Repair Effectiveness and Life Cycle Assessment. J. Clean. Prod. 2024, 476, 143741
Ahmad, J.; Arbili, M.M.; Alabduljabbar, H.; Deifalla, A.F. Concrete Made with Partially Substituted Corn Cob Ash: A Review. Case Stud. Constr. Mater. 2023, 19, e01942.
Ali, B.; Azab, M.; Ahmed, H.; Kurda, R.; El Ouni, M.H.; Elhag, A.B. Investigation of Physical, Strength, and Ductility Characteristics of Concrete Reinforced with Banana (Musaceae) Stem Fiber. J. Build. Eng. 2022, 61, 105364.
Arulrajah, A.; Yaghoubi, E.; Wong, Y.C.; Horpibulsuk, S. Recycled plastic granules and demolition wastes as construction materials: Resilient moduli and strength characteristics. Constr. Build. Mater. 2017, 147, 639–647.
Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J.; Suarez-Puentes, J.G.; Bravo-Cervera, J.E.; Rojas-Parra, D.F. Mechanical and Market Study for Sand/Recycled-Plastic Cobbles in a Medium-Size Colombian City. Recycling 2021, 6, 17.
Nyika, J.; Dinka, M. Recycling Plastic Waste Materials for Building and Construction: A Minireview. Mater. Today Proc. 2022, 62, 3257–3262
Yousef, A.R.; Ahmad, W.; Ahmad, A.; Aslam, F.; Joyklad, P.; Alabduljabbar, H. Potential Use of Recycled Plastic and Rubber Aggregate in Cementitious Materials for Sustainable Construction: A Review. J. Clean. Prod. 2021, 329, 129736
Ahmed, N. Utilizing Plastic Waste in the Building and Construction Industry: A Pathway towards the Circular Economy. Constr. Build. Mater. 2023, 383, 131311.
Poopalam, K.D.; Ismail, T.N.M.T.; Hanzah, N.A.; Alias, A.H.; Wahab, N.A.; Ibrahim, Z.; Subramaniam, V.; Armylisas, A.H.N.; Idris, Z. Utilization of Oil Palm Biomass and Polyurethanes as Sustainable Construction Materials: A Review. Dev. Built Environ. 2024, 17, 100380.
Monedero, E.; Hernández, J.J.; Collado, R.; Pazo, A.; Aineto, M.; Acosta, A. Evaluation of ashes from agro-industrial biomass as a component for producing construction materials. J. Clean. Prod. 2021, 318, 128517
da Costa, T.P.; Quinteiro, P.; Tarelho, L.A.C.; Arroja, L.; Dias, A.C. Environmental Assessment of Valorisation Alternatives for Woody Biomass Ash in Construction Materials. Resour. Conserv. Recycl. 2019, 148, 67–79
Sathiparan, N.; Anburuvel, A.; Selvam, V.V. Utilization of agro-waste groundnut shell and its derivatives in sustainable construction and building materials—A review. J. Build. Eng. 2023, 66, 105866.
Azevedo, A.R.G.; Amin, M.; Hadzima-Nyarko, M.; Agwa, I.S.; Zeyad, A.M.; Tayeh, B.A.; Adesina, A. Possibilities for the Application of Agro-Industrial Wastes in Cementitious Materials: A Brief Review of the Brazilian Perspective. Clean. Mater. 2022, 3, 100040
Zareei, S.A.; Ameri, F.; Dorostkar, F.; Ahmadi, M. Rice Husk Ash as a Partial Replacement of Cement in High Strength Concrete Containing Micro Silica: Evaluating Durability and Mechanical Properties. Case Stud. Constr. Mater. 2017, 7, 73–81.
Tayeh, B.A.; Alyousef, R.; Alabduljabbar, H.; Alaskar, A. Recycling of Rice Husk Waste for a Sustainable Concrete: A Critical Review. J. Clean. Prod. 2021, 312, 127734.
Saaty, T.L. The Analytic Hierarchy Process—What It Is and How It Is Used. In The Analytic Hierarchy Process; Elsevier: Amsterdam, The Netherlands, 1980; pp. 161–167
Mardani, A.; Jusoh, A.; Nor, K.M.; Khalifah, Z.; Zakwan, N.; Valipour, A. Application of Multiple-Criteria Decision-Making Techniques and Approaches to Sustainable Energy Planning and Management: A Review. Renew. Sustain. Energy Rev. 2015, 56, 1457–1470
Zhang, C.; Qiao, P.; Fu, Q.; Zhang, J.; Shen, L. Evaluating Integrated Pest Management Strategies Using an Analytical Hierarchy Process (AHP). Comput. Electron. Agric. 2017, 136, 157–165
Kumar, R.; Saroj, D.P.; Kumar, P.; Singh, P.; Kumar, P.; Singh, R.K. Evaluation of Water Conservation Strategies Using the Analytic Hierarchy Process for Sustainable Irrigation Management. J. Clean. Prod. 2020, 253, 118261
Tovar-Perilla, N.J.; Bermeo-Andrade, H.P.; Torres-Delgado, J.F.; Gómez, M.I. Methodology to Support Decision-Making in Prioritization Improvement Plans Aimed at Agricultural Sector: Case Study. Dyna 2018, 85, 356–363.
Salazar-Camacho, N.A.; Delgadillo-Mirquez, L.; Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J. Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process. Sustainability 2024, 16, 7817.
Alzate, B.A.; Giraldo, L.T.; Barbosa, A.F. Vigilancia Tecnológica: Metodologías y aplicaciones. Rev. GPT Gestión Pers. Tecnol. 2012, 5, 13. Available online: https://www.redalyc.org/pdf/4778/477847114019.pdf (accessed on 5 July 2024)
Sánchez-Torres, J. Herramientas de software para la práctica en la empresa de la vigilancia tecnológica e inteligencia competitiva: Evaluación comparativa. Preface by E. Ríos Pita; Presentation by F. Palop Marro. 2002. Available online: https://www.researchgate.net/publication/31842359_Herramientas_de_software_para_la_practica_en_la_empresa_de_la_vigilancia_tecnologica_e_inteligencia_competitiva_evaluacion_comparativa_JM_Sanchez_Torres_pref_de_Eduardo_Rios_Pita_presen_de_Fernando_Pa (accessed on 25 September 2024).
Carrillo-Zambrano, E.; Páez-Leal, M.C.; Suárez, J.M.; Luna-González, M.L. Modelo de vigilancia tecnológica para la gestión de un grupo de investigación en salud. MedUNAB 2018, 21, 84–99.
Silva, L.R.; de Carvalho Gama, K.N.; Salles, P.V.; Braga, F.C.S. Concrete with Rice Husk Ash and Construction and Demolition Wastes. Res. Soc. Dev. 2019, 8, 2684861.
Madandoust, R.; Ranjbar, M.M.; Moghadam, H.A.; Mousavi, S.Y. Mechanical Properties and Durability Assessment of Rice Husk Ash Concrete. Biosyst. Eng. 2011, 110, 144–152.
Jamil, M.; Kaish, A.B.M.A.; Raman, S.N.; Zain, M.F.M. Pozzolanic Contribution of Rice Husk Ash in Cementitious Systems. Constr. Build. Mater. 2013, 47, 588–593
Adamu, M.; Jimoh, A.A.; Waziri, M.A. Experimental Investigation on Rice Husk Ash as Cement Replacement in Concrete Production. Constr. Build. Mater. 2016, 127, 353–362.
Vieira, A.P.; Toledo Filho, R.D.; Tavares, L.M.; Cordeiro, G.C. Effect of Particle Size, Porous Structure, and Content of Rice Husk Ash on the Hydration Process and Compressive Strength Evolution of Concrete. Constr. Build. Mater. 2020, 236, 117553
Ameri, F.; Shoaei, P.; Bahrami, N.; Vaezi, M.; Ozbakkaloglu, T. Optimum Rice Husk Ash Content and Bacterial Concentration in Self-Compacting Concrete. Constr. Build. Mater. 2019, 222, 796–813.
Safari, J.; Mirzaei, M.; Rooholamini, H.; Hassani, A. Effect of Rice Husk Ash and Macro-Synthetic Fibre on the Properties of Self-Compacting Concrete. Constr. Build. Mater. 2018, 175, 371–380
Chopra, D.; Siddique, R.; Kunal. Strength, Permeability, and Microstructure of Self-Compacting Concrete Containing Rice Husk Ash. Biosyst. Eng. 2015, 130, 72–80
Antiohos, S.K.; Papadakis, V.G.; Tsimas, S. Rice Husk Ash (RHA) Effectiveness in Cement and Concrete as a Function of Reactive Silica and Fineness. Cem. Concr. Res. 2014, 61–62, 20–27.
Salas, A.; Delvasto, S.; Mejía de Gutiérrez, R. Developing High-Performance Concrete Incorporating Highly-Reactive Rice Husk Ash. Ing. Investig. 2013, 33, 49–55
Cerutti, F.; Santilli, A. En Camino Hacia un hormigón sustentable: Uso de cementos puzolánicos en uruguay. Mem. Investig. Ing. 2017, 15, 37–42
Nguyen, V.T.; Ye, G.; van Breugel, K.; Fraaij, A.L.A.; Dai, B.D. The Study of Using Rice Husk Ash to Produce Ultra High Performance Concrete. Constr. Build. Mater. 2011, 25, 2030–2035
Khan, R.; Jabbar, A.; Ahmad, I.; Khan, W.; Khan, A.N.; Mirza, J. Reduction in Environmental Problems Using Rice-Husk Ash in Concrete. Constr. Build. Mater. 2012, 30, 360–365.
Gursel, A.P.; Maryman, H.; Ostertag, C. A Life-Cycle Approach to Environmental, Mechanical, and Durability Properties of “Green” Concrete Mixes with Rice Husk Ash. J. Clean. Prod. 2016, 112, 823–836
Muthukrishnan, S.; Kua, H.W.; Yu, L.N.; Chung, J.K.H. Study on Fresh Properties of Cementitious Materials Containing Rice Husk Ash for Construction 3D Printing. SSRN Electron. J. 2020, 32, 04020195
Munshi, S.; Sharma, R.P. Experimental Investigation on Strength and Water Permeability of Mortar Incorporate with Rice Straw Ash. Adv. Mater. Sci. Eng. 2016, 2016, 9696505
Yuzer, N.; Cinar, Z.; Akoz, F.; Biricik, H.; Gurkan, Y.Y.; Kabay, N.; Kizilkanat, A.B. Influence of Raw Rice Husk Addition on Structure and Properties of Concrete. Constr. Build. Mater. 2013, 44, 54–62
Chabi, E.; Doko, V.; Hounkpè, S.P.; Adjovi, E.C. Study of Cement Composites on Addition of Rice Husk. Case Stud. Constr. Mater. 2020, 12, e00345.
Fajardo Cárdenas, C.A.; Alvarado Loo, C. Lightweight Mortars with Rice Husk: Mix Design and Property Evaluation. Rev. Ing. Constr. 2011, 26, 273–282.
Novoa-Galeano, M.A.; Becerra-Leon, L.D.; Vasquez-Piñeros, M.P. Rice husk ash and its effect on adhesive mortars. Av. Investig. En Ing. 2012, 9, 73–82.
Bie, R.-S.; Song, X.-F.; Liu, Q.-Q.; Ji, X.-Y.; Chen, P. Studies on Effects of Burning Conditions and Rice Husk Ash (RHA) Blending Amount on the Mechanical Behavior of Cement. Cem. Concr. Compos. 2015, 55, 162–168.
Hamzeh, Y.; Ziabari, K.P.; Torkaman, J.; Ashori, A.; Jafari, M. Study on the Effects of White Rice Husk Ash and Fibrous Materials Additions on Some Properties of Fiber-Cement Composites. J. Environ. Manag. 2013, 117, 263–267
Pincha Tuabanda, A.; Valdivieso Pulgar, G. Ceniza de Cascarilla de Arroz en Mortero para Reducir las Patologías por Humedad en Enlucidos. Bachelor’s Thesis, Universidad Nacional de Chimborazo, Riobamba, Ecuador, 2023.
Antiohos, S.K.; Tapali, J.G.; Zervaki, M.; Sousa-Coutinho, J.; Tsimas, S.; Papadakis, V.G. Low Embodied Energy Cement Containing Untreated RHA: A Strength Development and Durability Study. Constr. Build. Mater. 2013, 49, 455–463.
He, Z.; Hu, L.; Shao, Y.; Cai, X.; Zhang, S. Microstructure and Properties of Sustainable Cement-Based Materials Using Combustion Treated Rice Husk Ash. Constr. Build. Mater. 2021, 294, 123482.
Barbosa de Lima, P.C.; de Castro Xavier, G.; Lopes Pinheiro, I.; Albuquerque Tashima, M.M.; John, V.M.; Savastano, H., Jr. Evaluation of the use of cellulose pulp, residue from the paper industry, in combination with rice husk ash in the production of fiber cement. Constr. Build. Mater. 2014, 61, 46–50
Liu, J.; Jia, C.; He, C. Flexural Properties of Rice Straw and Starch Composites. AASRI Procedia 2012, 3, 89–94.
Marques, B.; Tadeu, A.; Almeida, J.; Antonio, J.; de Brito, J. Characterisation of Sustainable Building Walls Made from Rice Straw Bales. J. Build. Eng. 2020, 28, 101041
Quintana-Gallardo, A.; Clausell, J.R.; Guillén-Guillamón, I.; Mendiguchia, F.A. Waste Valorization of Rice Straw as a Building Material in Valencia and its Implications for Local and Global Ecosystems. J. Clean. Prod. 2021, 318, 128507
António, J.; Tadeu, A.; Marques, B.; Almeida, J.A.S.; Pinto, V. Application of Rice Husk in the Development of New Composite Boards. Constr. Build. Mater. 2018, 176, 432–439.
Muthuraj, R.; Lacoste, C.; Lacroix, P.; Bergeret, A. Sustainable Thermal Insulation Biocomposites from Rice Husk, Wheat Husk, Wood Fibers, and Textile Waste Fibers: Elaboration and Performance Evaluation. Ind. Crops Prod. 2019, 135, 238–245.
Guzmán, Á.; Delvasto, S.; Sánchez, E.; Amigó, V. Use of Rice Straw Ash as a Substitute for Feldspar in the Production of Triaxial Porcelain. Bol. Soc. Esp. Ceram. Vidr. 2013, 52, 25–30
Delgado-Trujillo, J.; Martínez-Chica, J.P.; Guzmán-Aponte, A.; Delvasto-Arjona, S.; Amigó-Borrás, V.; Sánchez-Vílchez, E. Reemplazo del cuarzo por ceniza de tamo de arroz en la manufactura de gres porcelánico. Rev. EIA 2015, 12, 41–50.
Hwang, C.-L.; Huynh, T.-P. Investigation into the Use of Unground Rice Husk Ash to Produce Eco-Friendly Construction Bricks. Constr. Build. Mater. 2015, 93, 335–341
Allam, M.E.; Garas, G.L.; El Kady, H.G. Recycled Chopped Rice Straw-Cement Bricks: Mechanical, Fire Resistance & Economical Assessment. Aust. J. Basic Appl. Sci. 2011, 5, 27–33. Available online: https://www.researchgate.net/publication/260793495 (accessed on 20 June 2024).
Sandanayake, M.; Zhang, G.; Setunge, S. Environmental Impacts of Construction in Building Industry—A Review of Knowledge Advances, Gaps and Future Directions. Appl. Sci. 2019, 9, 2400.
Chen, L.; Huang, L.; Hua, J.; Chen, Z.; Wei, L.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Dong, L.; Yap, P.-S. Green construction for low-carbon cities: A review. Environ. Chem. Lett. 2023, 21, 1627–1657
Pinzón Sanchez, A.M. Los Materiales más Usados para la Construcción en Colombia. 2021. Available online: https://contratistas.co/noticias/los-materiales-mas-usados-enconstruccion-colombia/ (accessed on 15 July 2024).
Icontec. Norma Técnica Colombiana (NTC) 3819: Morteros para Albañilería; Instituto Colombiano de Normas Técnicas y Certificación (Icontec): Bogota, Colombia, 2010
Icontec. Norma Técnica Colombiana NTC 3829: Adoquín de Arcilla para Tránsito Peatonal y Vehicular Liviano; Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 2004
Kumar, A.S.; Gopi, R. Strength and Durability Studies on Paver Blocks with Rice Husk Ash as Partial Replacement of Cement. Mater. Today Proc. 2022, 52, 683–688.
Guguloth, B.; Saravanan, M. Strength and Durability of Concrete Using Rice Husk Ash as a Partial Replacement of Cement. Mater. Today Proc. 2022, 52, 1606–1610.
Ma, W.; Wang, Y.; Huang, L.; Yan, L.; Kasal, B. Natural and Recycled Aggregate Concrete Containing Rice Husk Ash as Replacement of Cement: Mechanical Properties, Microstructure, Strength Model and Statistical Analysis. J. Build. Eng. 2023, 66, 105917.
dc.rights.none.fl_str_mv © 2024 by the authors
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv © 2024 by the authors
http://purl.org/coar/access_right/c_abf2
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.none.fl_str_mv Suiza
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/e3d55679-c0d1-4c39-97da-533985989c69/download
https://repositorio.unibague.edu.co/bitstreams/aa0be7c0-bf50-49a9-8aec-e009bf5bff09/download
https://repositorio.unibague.edu.co/bitstreams/d246e45a-15fe-454f-b575-bbec968002bd/download
https://repositorio.unibague.edu.co/bitstreams/393db6d4-caea-4dfb-9cd9-ebe8b40c910e/download
bitstream.checksum.fl_str_mv 7b8311e1ffc35ed1d2339bda92c9239c
5b9d2e02ab362d87fa11301a192cafa3
2fa3e590786b9c0f3ceba1b9656b7ac3
8a62ea9eb7cd6b48b4ee327843a808b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059993065816064
spelling Daniel Henao8b736f10-96bf-4344-bf61-4636d8583dde-1Luz Adriana Sanchez-Echeverri1340fa2a-bfc9-46a9-91cb-38c940c7d2a0-1Nelson Javier Tovar-Perilla1f34f015-82d7-4780-9feb-5793b57ff385-12025-11-06T20:02:25Z2025-11-06T20:02:25Z2024Effective management of agricultural waste is an important contribution to environmental sustainability and economic development, especially considering the significant volume of agricultural residues produced worldwide. Rice is a widely cultivated crop in Colombia, and its high production results in a high amount of wastes, which is often underutilized due to a lack of knowledge regarding its potential value-added applications. On the other hand, the construction industry has become increasingly aware of the necessity to develop materials with reduced environmental impact. Therefore, this study explores the application of the Analytic Hierarchy Process (AHP) to evaluate various alternatives for utilizing rice waste in construction materials; the alternatives were evaluated based on criteria tailored to the needs of local agricultural communities in the Tolima region of Colombia. The findings highlight the potential of rice husk ash (RHA) as an environmentally responsible alternative in the construction sector, offering a viable solution for waste management while contributing to the economic development of small-scale farmers.application/pdfHenao, D.; Sanchez- Echeverri, L.A.; Tovar-Perilla, N.J. Potential Utilization of RiceWaste in the Construction Sector: A Multi- Criteria Decision Analysis Approach. Resources 2024, 13, 139. https:// doi.org/10.3390/resources13100139https:// doi.org/10.3390/resources1310013920799276https://hdl.handle.net/20.500.12313/5912https://www.mdpi.com/2079-9276/13/10/139engMultidisciplinary Digital Publishing Institute (MDPI)Suiza1013ResourcesGáfaro, M.; Pellegrina, H.S. Political economy of roads: The role of access to cities in Colombia. J. Int. Econ. 2022, 137, 103598.OECD. OECD Review of Agricultural Policies: Colombia 2015; OECD Publishing: Paris, France, 2015FAOSTAT. Suite of Food Security Indicators. 2023. Available online: https://www.fao.org/faostat/en/#country/44 (accessed on 25 September 2024).Durand-Morat, A.; Bairagi, S. International Rice Outlook: International Rice Baseline Projections 2021–2031 (Research Reports and Research Bulletins); University of Arkansas: Fayetteville, AR, USA, 2022; Available online: https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1052&context=aaesrb (accessed on 10 July 2024).Phillips, J.; Durand-Morat, A.; Nalley, L.L.; Graterol, E.; Bonatti, M.; de la Pava, K.L.; Urioste, S.; Yang, W. Understanding demand for broken rice and its potential food security implications in Colombia. J. Agric. Food Res. 2024, 15, 100884.Gobernación del Tolima. Tolima en Cifras 2022; Gobernación del Tolima: Tolima, Colombia, 2022. Available online: https://www.tolima.gov.co/tolima/cifras-y-estadisticas/tolima-en-cifras#2659-vigencia-2022 (accessed on 25 September 2024).Logroño, W.; Ramírez, G.; Recalde, C.; Echeverría, M.; Cunachi, A. Bioelectricity Generation from Vegetables and Fruits Wastes by Using Single Chamber Microbial Fuel Cells with High Andean Soils. Energy Procedia 2015, 75, 2009–2014.Bayomy, H.M.; Alamri, E.S.; Albalawi, A.N.; Alharbi, R.; Ozaybi, N.A.; Rozan, M.A.; Shamsia, S.M. Production of Extruded Functional Snacks Based on Resistant Starch Using Waste Rice and Whey Milk. LWT-Food Sci. Technol. 2024, 197, 115871Tamilselvan, R.; Selwynraj, A.I. A novel g-C3N4 photocatalytic pretreatment for reducing silica and modifying the structure of rice straw for sustainable biofuel production. Process Saf. Environ. Prot. 2024, 187, 799–809.Pandey, V.; Panda, S.K.; Singh, V.K. Preparation and characterization of high-strength insulating porous bricks by reusing coal mine overburden waste, red mud, and rice husk. J. Clean. Prod. 2024, 469, 143134.Gupte, A.P.; Basaglia, M.; Casella, S.; Favaro, L. Rice Waste Streams as a Promising Source of Biofuels: Feedstocks, Biotechnologies, and Future Perspectives. Renew. Sustain. Energy Rev. 2022, 167, 112673.Sobuz, M.H.R.; Al-Imran; Datta, S.D.; Jabin, J.A.; Aditto, F.S.; Hasan, N.M.S.; Hasan, M.; Zaman, A.A.U. Assessing the Influence of Sugarcane Bagasse Ash for the Production of Eco-Friendly Concrete: Experimental and Machine Learning Approaches. Case Stud. Constr. Mater. 2024, 20, e02839.Saraswat, A.; Parashar, A.K.; Bahadur, R. Effect of Coconut Shell Ash Substitute with Cement on the Mechanical Properties of Cement Concrete. Mater. Today Proc. 2023. Available online: https://www.sciencedirect.com/science/article/pii/S2214785323050848 (accessed on 10 November 2023).Lejano, B.; Elevado, K.J.; Fandiño, M.A.; Ng, E.A.; Datinguinoo, Z.A.N.; Oliveros, S.B. Experimental Investigation of Utilizing Coconut Shell Ash and Coconut Shell Granules as Aggregates in Coconut Coir Reinforced Concrete. Clean. Eng. Technol. 2024, 21, 100779.Xiong, G.; Cundy, A.; Guo, X. Utilization of Corn Cob Ash (CCA) to Prepare Geopolymer Grout: Reaction Mechanism, Crack Repair Effectiveness and Life Cycle Assessment. J. Clean. Prod. 2024, 476, 143741Ahmad, J.; Arbili, M.M.; Alabduljabbar, H.; Deifalla, A.F. Concrete Made with Partially Substituted Corn Cob Ash: A Review. Case Stud. Constr. Mater. 2023, 19, e01942.Ali, B.; Azab, M.; Ahmed, H.; Kurda, R.; El Ouni, M.H.; Elhag, A.B. Investigation of Physical, Strength, and Ductility Characteristics of Concrete Reinforced with Banana (Musaceae) Stem Fiber. J. Build. Eng. 2022, 61, 105364.Arulrajah, A.; Yaghoubi, E.; Wong, Y.C.; Horpibulsuk, S. Recycled plastic granules and demolition wastes as construction materials: Resilient moduli and strength characteristics. Constr. Build. Mater. 2017, 147, 639–647.Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J.; Suarez-Puentes, J.G.; Bravo-Cervera, J.E.; Rojas-Parra, D.F. Mechanical and Market Study for Sand/Recycled-Plastic Cobbles in a Medium-Size Colombian City. Recycling 2021, 6, 17.Nyika, J.; Dinka, M. Recycling Plastic Waste Materials for Building and Construction: A Minireview. Mater. Today Proc. 2022, 62, 3257–3262Yousef, A.R.; Ahmad, W.; Ahmad, A.; Aslam, F.; Joyklad, P.; Alabduljabbar, H. Potential Use of Recycled Plastic and Rubber Aggregate in Cementitious Materials for Sustainable Construction: A Review. J. Clean. Prod. 2021, 329, 129736Ahmed, N. Utilizing Plastic Waste in the Building and Construction Industry: A Pathway towards the Circular Economy. Constr. Build. Mater. 2023, 383, 131311.Poopalam, K.D.; Ismail, T.N.M.T.; Hanzah, N.A.; Alias, A.H.; Wahab, N.A.; Ibrahim, Z.; Subramaniam, V.; Armylisas, A.H.N.; Idris, Z. Utilization of Oil Palm Biomass and Polyurethanes as Sustainable Construction Materials: A Review. Dev. Built Environ. 2024, 17, 100380.Monedero, E.; Hernández, J.J.; Collado, R.; Pazo, A.; Aineto, M.; Acosta, A. Evaluation of ashes from agro-industrial biomass as a component for producing construction materials. J. Clean. Prod. 2021, 318, 128517da Costa, T.P.; Quinteiro, P.; Tarelho, L.A.C.; Arroja, L.; Dias, A.C. Environmental Assessment of Valorisation Alternatives for Woody Biomass Ash in Construction Materials. Resour. Conserv. Recycl. 2019, 148, 67–79Sathiparan, N.; Anburuvel, A.; Selvam, V.V. Utilization of agro-waste groundnut shell and its derivatives in sustainable construction and building materials—A review. J. Build. Eng. 2023, 66, 105866.Azevedo, A.R.G.; Amin, M.; Hadzima-Nyarko, M.; Agwa, I.S.; Zeyad, A.M.; Tayeh, B.A.; Adesina, A. Possibilities for the Application of Agro-Industrial Wastes in Cementitious Materials: A Brief Review of the Brazilian Perspective. Clean. Mater. 2022, 3, 100040Zareei, S.A.; Ameri, F.; Dorostkar, F.; Ahmadi, M. Rice Husk Ash as a Partial Replacement of Cement in High Strength Concrete Containing Micro Silica: Evaluating Durability and Mechanical Properties. Case Stud. Constr. Mater. 2017, 7, 73–81.Tayeh, B.A.; Alyousef, R.; Alabduljabbar, H.; Alaskar, A. Recycling of Rice Husk Waste for a Sustainable Concrete: A Critical Review. J. Clean. Prod. 2021, 312, 127734.Saaty, T.L. The Analytic Hierarchy Process—What It Is and How It Is Used. In The Analytic Hierarchy Process; Elsevier: Amsterdam, The Netherlands, 1980; pp. 161–167Mardani, A.; Jusoh, A.; Nor, K.M.; Khalifah, Z.; Zakwan, N.; Valipour, A. Application of Multiple-Criteria Decision-Making Techniques and Approaches to Sustainable Energy Planning and Management: A Review. Renew. Sustain. Energy Rev. 2015, 56, 1457–1470Zhang, C.; Qiao, P.; Fu, Q.; Zhang, J.; Shen, L. Evaluating Integrated Pest Management Strategies Using an Analytical Hierarchy Process (AHP). Comput. Electron. Agric. 2017, 136, 157–165Kumar, R.; Saroj, D.P.; Kumar, P.; Singh, P.; Kumar, P.; Singh, R.K. Evaluation of Water Conservation Strategies Using the Analytic Hierarchy Process for Sustainable Irrigation Management. J. Clean. Prod. 2020, 253, 118261Tovar-Perilla, N.J.; Bermeo-Andrade, H.P.; Torres-Delgado, J.F.; Gómez, M.I. Methodology to Support Decision-Making in Prioritization Improvement Plans Aimed at Agricultural Sector: Case Study. Dyna 2018, 85, 356–363.Salazar-Camacho, N.A.; Delgadillo-Mirquez, L.; Sanchez-Echeverri, L.A.; Tovar-Perilla, N.J. Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process. Sustainability 2024, 16, 7817.Alzate, B.A.; Giraldo, L.T.; Barbosa, A.F. Vigilancia Tecnológica: Metodologías y aplicaciones. Rev. GPT Gestión Pers. Tecnol. 2012, 5, 13. Available online: https://www.redalyc.org/pdf/4778/477847114019.pdf (accessed on 5 July 2024)Sánchez-Torres, J. Herramientas de software para la práctica en la empresa de la vigilancia tecnológica e inteligencia competitiva: Evaluación comparativa. Preface by E. Ríos Pita; Presentation by F. Palop Marro. 2002. Available online: https://www.researchgate.net/publication/31842359_Herramientas_de_software_para_la_practica_en_la_empresa_de_la_vigilancia_tecnologica_e_inteligencia_competitiva_evaluacion_comparativa_JM_Sanchez_Torres_pref_de_Eduardo_Rios_Pita_presen_de_Fernando_Pa (accessed on 25 September 2024).Carrillo-Zambrano, E.; Páez-Leal, M.C.; Suárez, J.M.; Luna-González, M.L. Modelo de vigilancia tecnológica para la gestión de un grupo de investigación en salud. MedUNAB 2018, 21, 84–99.Silva, L.R.; de Carvalho Gama, K.N.; Salles, P.V.; Braga, F.C.S. Concrete with Rice Husk Ash and Construction and Demolition Wastes. Res. Soc. Dev. 2019, 8, 2684861.Madandoust, R.; Ranjbar, M.M.; Moghadam, H.A.; Mousavi, S.Y. Mechanical Properties and Durability Assessment of Rice Husk Ash Concrete. Biosyst. Eng. 2011, 110, 144–152.Jamil, M.; Kaish, A.B.M.A.; Raman, S.N.; Zain, M.F.M. Pozzolanic Contribution of Rice Husk Ash in Cementitious Systems. Constr. Build. Mater. 2013, 47, 588–593Adamu, M.; Jimoh, A.A.; Waziri, M.A. Experimental Investigation on Rice Husk Ash as Cement Replacement in Concrete Production. Constr. Build. Mater. 2016, 127, 353–362.Vieira, A.P.; Toledo Filho, R.D.; Tavares, L.M.; Cordeiro, G.C. Effect of Particle Size, Porous Structure, and Content of Rice Husk Ash on the Hydration Process and Compressive Strength Evolution of Concrete. Constr. Build. Mater. 2020, 236, 117553Ameri, F.; Shoaei, P.; Bahrami, N.; Vaezi, M.; Ozbakkaloglu, T. Optimum Rice Husk Ash Content and Bacterial Concentration in Self-Compacting Concrete. Constr. Build. Mater. 2019, 222, 796–813.Safari, J.; Mirzaei, M.; Rooholamini, H.; Hassani, A. Effect of Rice Husk Ash and Macro-Synthetic Fibre on the Properties of Self-Compacting Concrete. Constr. Build. Mater. 2018, 175, 371–380Chopra, D.; Siddique, R.; Kunal. Strength, Permeability, and Microstructure of Self-Compacting Concrete Containing Rice Husk Ash. Biosyst. Eng. 2015, 130, 72–80Antiohos, S.K.; Papadakis, V.G.; Tsimas, S. Rice Husk Ash (RHA) Effectiveness in Cement and Concrete as a Function of Reactive Silica and Fineness. Cem. Concr. Res. 2014, 61–62, 20–27.Salas, A.; Delvasto, S.; Mejía de Gutiérrez, R. Developing High-Performance Concrete Incorporating Highly-Reactive Rice Husk Ash. Ing. Investig. 2013, 33, 49–55Cerutti, F.; Santilli, A. En Camino Hacia un hormigón sustentable: Uso de cementos puzolánicos en uruguay. Mem. Investig. Ing. 2017, 15, 37–42Nguyen, V.T.; Ye, G.; van Breugel, K.; Fraaij, A.L.A.; Dai, B.D. The Study of Using Rice Husk Ash to Produce Ultra High Performance Concrete. Constr. Build. Mater. 2011, 25, 2030–2035Khan, R.; Jabbar, A.; Ahmad, I.; Khan, W.; Khan, A.N.; Mirza, J. Reduction in Environmental Problems Using Rice-Husk Ash in Concrete. Constr. Build. Mater. 2012, 30, 360–365.Gursel, A.P.; Maryman, H.; Ostertag, C. A Life-Cycle Approach to Environmental, Mechanical, and Durability Properties of “Green” Concrete Mixes with Rice Husk Ash. J. Clean. Prod. 2016, 112, 823–836Muthukrishnan, S.; Kua, H.W.; Yu, L.N.; Chung, J.K.H. Study on Fresh Properties of Cementitious Materials Containing Rice Husk Ash for Construction 3D Printing. SSRN Electron. J. 2020, 32, 04020195Munshi, S.; Sharma, R.P. Experimental Investigation on Strength and Water Permeability of Mortar Incorporate with Rice Straw Ash. Adv. Mater. Sci. Eng. 2016, 2016, 9696505Yuzer, N.; Cinar, Z.; Akoz, F.; Biricik, H.; Gurkan, Y.Y.; Kabay, N.; Kizilkanat, A.B. Influence of Raw Rice Husk Addition on Structure and Properties of Concrete. Constr. Build. Mater. 2013, 44, 54–62Chabi, E.; Doko, V.; Hounkpè, S.P.; Adjovi, E.C. Study of Cement Composites on Addition of Rice Husk. Case Stud. Constr. Mater. 2020, 12, e00345.Fajardo Cárdenas, C.A.; Alvarado Loo, C. Lightweight Mortars with Rice Husk: Mix Design and Property Evaluation. Rev. Ing. Constr. 2011, 26, 273–282.Novoa-Galeano, M.A.; Becerra-Leon, L.D.; Vasquez-Piñeros, M.P. Rice husk ash and its effect on adhesive mortars. Av. Investig. En Ing. 2012, 9, 73–82.Bie, R.-S.; Song, X.-F.; Liu, Q.-Q.; Ji, X.-Y.; Chen, P. Studies on Effects of Burning Conditions and Rice Husk Ash (RHA) Blending Amount on the Mechanical Behavior of Cement. Cem. Concr. Compos. 2015, 55, 162–168.Hamzeh, Y.; Ziabari, K.P.; Torkaman, J.; Ashori, A.; Jafari, M. Study on the Effects of White Rice Husk Ash and Fibrous Materials Additions on Some Properties of Fiber-Cement Composites. J. Environ. Manag. 2013, 117, 263–267Pincha Tuabanda, A.; Valdivieso Pulgar, G. Ceniza de Cascarilla de Arroz en Mortero para Reducir las Patologías por Humedad en Enlucidos. Bachelor’s Thesis, Universidad Nacional de Chimborazo, Riobamba, Ecuador, 2023.Antiohos, S.K.; Tapali, J.G.; Zervaki, M.; Sousa-Coutinho, J.; Tsimas, S.; Papadakis, V.G. Low Embodied Energy Cement Containing Untreated RHA: A Strength Development and Durability Study. Constr. Build. Mater. 2013, 49, 455–463.He, Z.; Hu, L.; Shao, Y.; Cai, X.; Zhang, S. Microstructure and Properties of Sustainable Cement-Based Materials Using Combustion Treated Rice Husk Ash. Constr. Build. Mater. 2021, 294, 123482.Barbosa de Lima, P.C.; de Castro Xavier, G.; Lopes Pinheiro, I.; Albuquerque Tashima, M.M.; John, V.M.; Savastano, H., Jr. Evaluation of the use of cellulose pulp, residue from the paper industry, in combination with rice husk ash in the production of fiber cement. Constr. Build. Mater. 2014, 61, 46–50Liu, J.; Jia, C.; He, C. Flexural Properties of Rice Straw and Starch Composites. AASRI Procedia 2012, 3, 89–94.Marques, B.; Tadeu, A.; Almeida, J.; Antonio, J.; de Brito, J. Characterisation of Sustainable Building Walls Made from Rice Straw Bales. J. Build. Eng. 2020, 28, 101041Quintana-Gallardo, A.; Clausell, J.R.; Guillén-Guillamón, I.; Mendiguchia, F.A. Waste Valorization of Rice Straw as a Building Material in Valencia and its Implications for Local and Global Ecosystems. J. Clean. Prod. 2021, 318, 128507António, J.; Tadeu, A.; Marques, B.; Almeida, J.A.S.; Pinto, V. Application of Rice Husk in the Development of New Composite Boards. Constr. Build. Mater. 2018, 176, 432–439.Muthuraj, R.; Lacoste, C.; Lacroix, P.; Bergeret, A. Sustainable Thermal Insulation Biocomposites from Rice Husk, Wheat Husk, Wood Fibers, and Textile Waste Fibers: Elaboration and Performance Evaluation. Ind. Crops Prod. 2019, 135, 238–245.Guzmán, Á.; Delvasto, S.; Sánchez, E.; Amigó, V. Use of Rice Straw Ash as a Substitute for Feldspar in the Production of Triaxial Porcelain. Bol. Soc. Esp. Ceram. Vidr. 2013, 52, 25–30Delgado-Trujillo, J.; Martínez-Chica, J.P.; Guzmán-Aponte, A.; Delvasto-Arjona, S.; Amigó-Borrás, V.; Sánchez-Vílchez, E. Reemplazo del cuarzo por ceniza de tamo de arroz en la manufactura de gres porcelánico. Rev. EIA 2015, 12, 41–50.Hwang, C.-L.; Huynh, T.-P. Investigation into the Use of Unground Rice Husk Ash to Produce Eco-Friendly Construction Bricks. Constr. Build. Mater. 2015, 93, 335–341Allam, M.E.; Garas, G.L.; El Kady, H.G. Recycled Chopped Rice Straw-Cement Bricks: Mechanical, Fire Resistance & Economical Assessment. Aust. J. Basic Appl. Sci. 2011, 5, 27–33. Available online: https://www.researchgate.net/publication/260793495 (accessed on 20 June 2024).Sandanayake, M.; Zhang, G.; Setunge, S. Environmental Impacts of Construction in Building Industry—A Review of Knowledge Advances, Gaps and Future Directions. Appl. Sci. 2019, 9, 2400.Chen, L.; Huang, L.; Hua, J.; Chen, Z.; Wei, L.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Dong, L.; Yap, P.-S. Green construction for low-carbon cities: A review. Environ. Chem. Lett. 2023, 21, 1627–1657Pinzón Sanchez, A.M. Los Materiales más Usados para la Construcción en Colombia. 2021. Available online: https://contratistas.co/noticias/los-materiales-mas-usados-enconstruccion-colombia/ (accessed on 15 July 2024).Icontec. Norma Técnica Colombiana (NTC) 3819: Morteros para Albañilería; Instituto Colombiano de Normas Técnicas y Certificación (Icontec): Bogota, Colombia, 2010Icontec. Norma Técnica Colombiana NTC 3829: Adoquín de Arcilla para Tránsito Peatonal y Vehicular Liviano; Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 2004Kumar, A.S.; Gopi, R. Strength and Durability Studies on Paver Blocks with Rice Husk Ash as Partial Replacement of Cement. Mater. Today Proc. 2022, 52, 683–688.Guguloth, B.; Saravanan, M. Strength and Durability of Concrete Using Rice Husk Ash as a Partial Replacement of Cement. Mater. Today Proc. 2022, 52, 1606–1610.Ma, W.; Wang, Y.; Huang, L.; Yan, L.; Kasal, B. Natural and Recycled Aggregate Concrete Containing Rice Husk Ash as Replacement of Cement: Mechanical Properties, Microstructure, Strength Model and Statistical Analysis. J. Build. Eng. 2023, 66, 105917.© 2024 by the authorsinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/Residuos de arroz - Sector de la construcciónRice waste valorizationAnalytic hierarchy process (AHP)Sustainable constructionPotential Utilization of Rice Waste in the Construction Sector: A Multi-Criteria Decision Analysis ApproachArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain3672https://repositorio.unibague.edu.co/bitstreams/e3d55679-c0d1-4c39-97da-533985989c69/download7b8311e1ffc35ed1d2339bda92c9239cMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg27601https://repositorio.unibague.edu.co/bitstreams/aa0be7c0-bf50-49a9-8aec-e009bf5bff09/download5b9d2e02ab362d87fa11301a192cafa3MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/d246e45a-15fe-454f-b575-bbec968002bd/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf112126https://repositorio.unibague.edu.co/bitstreams/393db6d4-caea-4dfb-9cd9-ebe8b40c910e/download8a62ea9eb7cd6b48b4ee327843a808b6MD5220.500.12313/5912oai:repositorio.unibague.edu.co:20.500.12313/59122025-11-07 03:03:35.311https://creativecommons.org/licenses/by/4.0/© 2024 by the authorshttps://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=