TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions

This study focused on investigating the adhesion and tribological properties of niobium-doped titanium nitride (TiNbN) coatings deposited on D2 steel substrates at various substrate temperatures (Ts) under simulated cutting conditions. X-ray diffraction confirmed the presence of coatings with an FCC...

Full description

Autores:
Gonzalez-Carmona, Juan Manuel
Mambuscay Lozano, Claudia Lorena
Ortega-Portilla, Carolina
Hurtado-Macias, Abel
Piamba, Jeferson Fernando
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5560
Acceso en línea:
https://hdl.handle.net/20.500.12313/5560
https://www.mdpi.com/1996-1944/16/13/4531
Palabra clave:
TiNbN - Revestimiento
Adhesion
Arc PVD
Tribology
Wear
Rights
openAccess
License
© 2023 by the authors.
id UNIBAGUE2_09f2e8cc76b5743a3ee6df293ca095e0
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5560
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions
title TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions
spellingShingle TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions
TiNbN - Revestimiento
Adhesion
Arc PVD
Tribology
Wear
title_short TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions
title_full TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions
title_fullStr TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions
title_full_unstemmed TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions
title_sort TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions
dc.creator.fl_str_mv Gonzalez-Carmona, Juan Manuel
Mambuscay Lozano, Claudia Lorena
Ortega-Portilla, Carolina
Hurtado-Macias, Abel
Piamba, Jeferson Fernando
dc.contributor.author.none.fl_str_mv Gonzalez-Carmona, Juan Manuel
Mambuscay Lozano, Claudia Lorena
Ortega-Portilla, Carolina
Hurtado-Macias, Abel
Piamba, Jeferson Fernando
dc.subject.armarc.none.fl_str_mv TiNbN - Revestimiento
topic TiNbN - Revestimiento
Adhesion
Arc PVD
Tribology
Wear
dc.subject.proposal.eng.fl_str_mv Adhesion
Arc PVD
Tribology
Wear
description This study focused on investigating the adhesion and tribological properties of niobium-doped titanium nitride (TiNbN) coatings deposited on D2 steel substrates at various substrate temperatures (Ts) under simulated cutting conditions. X-ray diffraction confirmed the presence of coatings with an FCC crystalline structure, where Nb substitutes Ti atoms in the TiN lattice. With increasing Ts, the lattice parameter decreased, and the crystallite material transitioned from flat-like to spherical shapes. Nanoindentation tests revealed an increase in hardness (H) with Ts, while a decrease in the elastic modulus (E) resulted in an improved elastic strain limit for failure (H/E) and plastic deformation resistance (H3/E2), thereby enhancing stiffness and contact elasticity. Adhesion analysis showed critical loads of ~50 N at Ts of 200 and 400 °C, and ~38 N at Ts of 600 °C. Cohesive failures were associated with lateral cracking, while adhesive failures were attributed to chipping spallation. The tribological behavior was evaluated using a pin-on-disk test, which indicated an increase in friction coefficients with Ts, although they remained lower than those of the substrate. Friction and wear were influenced by the surface morphology, facilitating the formation of abrasive particles. However, the absence of coating detachment in the wear tracks suggested that the films were capable of withstanding the load and wear
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-07
dc.date.accessioned.none.fl_str_mv 2025-08-29T14:16:03Z
dc.date.available.none.fl_str_mv 2025-08-29T14:16:03Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Gonzalez-Carmona, J., Mambuscay, C., Ortega-Portilla, C., Hurtado-Macias, A. y Piamba, J. (2023). TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions. Materials, 16(13). DOI: 10.3390/ma16134531
dc.identifier.doi.none.fl_str_mv 10.3390/ma16134531
dc.identifier.issn.none.fl_str_mv 19961944
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5560
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/1996-1944/16/13/4531
identifier_str_mv Gonzalez-Carmona, J., Mambuscay, C., Ortega-Portilla, C., Hurtado-Macias, A. y Piamba, J. (2023). TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions. Materials, 16(13). DOI: 10.3390/ma16134531
10.3390/ma16134531
19961944
url https://hdl.handle.net/20.500.12313/5560
https://www.mdpi.com/1996-1944/16/13/4531
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 13
dc.relation.citationstartpage.none.fl_str_mv 4531
dc.relation.citationvolume.none.fl_str_mv 16
dc.relation.ispartofjournal.none.fl_str_mv Materials
dc.relation.references.none.fl_str_mv Ge, Y.; Cheng, J.; Zhang, B.; Xue, L.; Hong, S.; Wu, Y.; Liang, X.; Zhang, Z.; Zhang, X. Sliding wear behaviors of the AlNiTi amorphous coatings: Effect of temperatures. J. Mater. Res. Technol. 2022, 21, 2362–2374.
Yeo, N.C.Y.; Pepin, H.; Yang, S.S. Revolutionizing Technology Adoption for the Remanufacturing Industry. Procedia CIRP 2017, 61, 17–21.
Zhang, Y.; Zhang, Z.; Yao, W.; Liang, X. Microstructure, mechanical properties and corrosion resistance of high-level hard Nb-Ta-W and Nb-Ta-W-Hf multi-principal element alloy thin films. J. Alloys Compd. 2022, 920, 166000.
Chuang, K.-C.; Chang, Y.-Y.; Chiang, C.-Y.; Liu, Y.-C.; Hung, H.-H.; Tseng, K.-K.; Yeh, J.-W.; Cheng, H.-W. Corrosion of plasma sputtering medium entropy alloy thin film: A multidisciplinary perspective. Corros. Sci. 2023, 216, 111020.
Kannan, S.; Steinebach, H.; Rieth, L.; Solzbacher, F. Selectivity, stability and repeatability of In2O3 thin films towards NOx at high temperatures (≥500 °C). Sens. Actuators B Chem. 2010, 148, 126–134.
Zhao, J.; Liu, Z.; Wang, B.; Hu, J.; Wan, Y. Tool coating effects on cutting temperature during metal cutting processes: Comprehensive review and future research directions. Mech. Syst. Signal Process. 2021, 150, 107302.
Zambrano, D.F.; Hernandez-Bravo, R.; Ruden, A.; Espinosa-Arbelaez, D.G.; Gonzalez-Carmona, J.M.; Mujica, V. Mechanical, tribological and electrochemical behavior of Zr-based ceramic thin films for dental implants. Ceram. Int. 2023, 49, 2102–2114.
Seinmann, P.A.; Tardy, Y.; Hintermann, H.E. Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load. Thin Solid Film. 1987, 154, 333–349.
Mondragon-Rodríguez, G.C.; Hernandez-Mendoza, J.L.; Gomez-Ovalle, A.E.; Gonzalez-Carmona, J.M.; Ortega-Portilla, C.; Camacho, N.; Hurtado-Macías, A.; Espinosa-Arbelaez, D.G. Alvarado-Orozco, High-temperature tribology of Hf doped c-Al0.64Ti0.36N cathodic arc PVD coatings deposited on M2 tool steel. Surf. Coat. Technol. 2021, 422, 127516.
Gregorio, A.; Santos, T.; Rossi, R.; Jesus, A.M.P.; Outeiro, J.C.; Rosa, P.A.R. Tribology of metal cutting: Newly formed underside of chip. Procedia CIRP 2019, 82, 136–141.
Grigoriev, S.; Vereschaka, A.; Milovich, F.; Migranov, M.; An-dreev, N.; Bublikov, J.; Sitnikov, N.; Oganyan, G. Investigation of the tribological properties of Ti-TiN-(Ti,Al,Nb,Zr)N composite coating and its efficiency in increasing wear resistance of metal cutting tools. Tribol. Int. 2021, 164, 107236.
Zhu, J.-J.; Jiang, L.; Zhai, L.-H.; Zhou, J.-M.; Ding, X.-B.; Li, Z.-J. Effect of TiN inclusions on oxidation behavior of austenitic stainless steels. Mater. Lett. 2023, 335, 133761.
Olaya, J.J.; Rodil, S.E.; Muhl, S. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering. Thin Solid Film. 2008, 516, 8319–8326.
Brčka, J.; Hotový, I. Processes on the target, discharge and NbN film behaviour in reactive dc magnetron deposition. Vacuum 1995, 46, 1407–1412.
Hotový, I.; Huran, J.; Búc, D.; Srnánek, R. Thermal stability of NbN films deposited on GaAs substrates. Vacuum 1998, 50, 45–48.
Pogrebnjak, A.D.; Rogoz, V.M.; Bondar, O.V.; Erdybaeva, N.K.; Plotnikov, S. Vr Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: A review. Prot. Met. Phys. Chem. Surf. 2016, 52, 802–813.
Hotovy, I.; Buc, D.; Brcka, J.; Srnanek, R. Study of Niobium Nitride Films Produced by DC Reactive Magnetron Sputtering. Phys. Stat. Sol. 1997, 161, 97–104.
Lopez, S.; Wong, M.; Sproul, W.D. Thermal behavior of carbon nitride and TiN/NbN superlattice films. J. Vac. Sci. Technol. A Vac. Surf. Film. 1995, 13, 1644–1648.
Hultman, L.; Engström, C.; Odén, M. Mechanical and thermal stability of TiN/NbN superlattice thin films. Surf. Coat. Technol. 2000, 133, 227–233.
Rutherford, K.L.; Hatto, P.W.; Davies, C.; Hutchings, I.M. Abrasive wear resistance of TiN/NbN multi-layers: Measurement and neural network modelling. Surf. Coat. Technol. 1996, 86, 472–479.
Cicek, H.; Baran, O.; Keles, A.; Totik, Y.; Efeoglu, I. A comparative study of fatigue properties of TiVN and TiNbN thin films deposited on different substrates. Surf. Coat. Technol. 2017, 332, 296–303.
Sheppard, L.R.; Zhang, H.; Liu, R.; Macartney, S.; Murphy, T.; Wainer, P.; Wuhrer, R. Reactive sputtered TixNbyNz coatings. II. Effect of common deposition parameters. Mater. Chem. Phys. 2019, 224, 320–327.
Sheppard, L.R.; Zhang, H.; Liu, R.; Macartney, S.; Murphy, T.; Wuhrer, R. Reactive sputtered TiXNYNZ thin films. I. Basic processing relationships. Mater. Chem. Phys. 2019, 224, 308–313.
Grimberg, I.; Zhitomirsky, V.M.; Boxman, R.L.; Goldsmith, S.; Weiss, B.Z. Multicomponent Ti-Zr-N and Ti-Nb-N coatings deposited by vacuum arc. Surf. Coat. Technol. 1998, 108, 154–159.
Baran, Ö.; Keleş, A.; Çiçek, H.; Totik, Y.; Efeoğlu, İ. The mechanical and tribological properties of Ti [Nb, V] N films on the Al-2024 alloy. Surf. Coat. Technol. 2017, 332, 312–318.
Bull, S.J.; Berasetegui, E.G.; Page, T.F. Modelling of the indentation response of coatings and surface treatments. Wear 2004, 256, 857–866.
Keleş, A.; Çiçek, H.; Baran, Ö.; Totik, Y.; Efeoğlu, İ. Determining the critical loads of V and Nb doped ternary TiN-based coatings deposited using CFUBMS on steels. Surf. Coat. Technol. 2017, 332, 168–173.
Nasab, S.A.; Manafi, S.; Ghahremani, D. Preparation of mullite/NbN composites through spark plasma sintering. Mater. Chem. Phys. 2022, 285, 126126.
ASTM E3-11; Standard Guide for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 1 January 2017.
ASTM E92-17; Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 1 May 2017.
ASTM C1624-05; Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. ASTM International: West Conshohocken, PA, USA, 31 December 2010.
ASTM G99-17; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International: West Conshohocken, PA, USA, 1 January 2017.
Ajenifuja, E.; Popoola, A.P.I.; Popoola, O.M. Thickness dependent chemical and microstructural properties of DC reactive magnetron sputtered titanium nitride thin films on low carbon steel cross-section. J. Mater. Res. Technol. 2019, 8, 377–384.
Kalal, S.; Gupta, M.; Rawat, R. N concentration effects on structure and superconductivity of NbN thin films. J. Alloys Compd. 2021, 851, 149–154.
Arockiasamy, M.L.S.; Sundareswari, M.; Rajagopalan, M. Ductility behaviour of cubic titanium niobium nitride ternary alloy: A first-principles study. Indian J. Phys. 2016, 90, 149–154.
Ran, Y.; Lu, H.; Zhao, S.; Jia, L.; Li, Y.; Jiang, Z.; Wang, Z. Effects of substrate bias and temperature on the structure and dielectric properties of TixZr1−xNy ternary nitride thin film. Surf. Coat. Technol. J. 2019, 359, 258–264.
Cedeño-Vente, M.L.; Manríquez, J.; Mondragón-Rodríguez, G.C.; Camacho, N.; Gómez-Ovalle, A.E.; Gonzalez-Carmona, J.M.; Alvarado-Orozco, J.M.; Espinosa-Arbelaez, D.G. Application of a transmission line model to evaluate the influence of structural defects on the corrosion behavior of arc-PVD CrN coatings. Ceram. Int. 2021, 47, 20885–20899.
Gómez-Ovalle, A.E.; Torres, M.; Jimenez, S.M.A.; Alvarado-Orozco, J.M.; Espinosa-Arbeláez, D.G.; Gonzalez-Carmona, J.M.; Zárate-Medina, J.; Mondragón-Rodríguez, G.C. Experimental-numerical failure analysis of the c-Al0.66Ti0.34N-M2 steel system applying instrumented indentation and extended finite element method. Surf. Coat. Technol. 2020, 393, 125845.
Grigoriev, S.; Vereschaka, A.; Milovich, F.; Sitnikov, N.; Andreev, N.; Bublikov, J.; Sotova, C.; Sadov, I. Investigation of the Influence of Microdroplets on the Coatings Nanolayer Structure. Coatings 2020, 10, 1204
Shah, A.; Izman, S.; Abdul-Kadir, M.R.; Mas-Ayu, H. Influence of substrate temperature on adhesion strength of TiN coating of biomedical Ti–13Zr–13Nb alloy. Arab. J. Sci. Eng. 2017, 42, 4737–4742.
Brown, I.G. Cathodic arc deposition of films. Annu. Rev. Mater. Sci. 1998, 28, 243–269.
Sanders, D.M.; Anders, A. Review of cathodic arc deposition technology at the start of the new millennium. Surf. Coat. Technol. 2000, 133, 78–90.
Hainsworth, S.V.; McGurk, M.R.; Page, T.F. The effect of coating cracking on the indentation response of thin hard-coated systems. Surf. Coat. Technol. 1998, 102, 97–107.
Hainsworth, S.V.; Chandler, H.W.; Page, T.F. Analysis of nanoindentation load-displacement loading curves. J. Mater. Res. 1996, 11, 1987–1995.
Hou, M.; Mou, W.; Yan, G.; Song, G.; Wu, Y.; Ji, W.; Jiang, Z.; Wang, W.; Qian, C.; Cai, Z. Effects of different distribution of residual stresses in the depth direction on cutting performance of TiAlN coated WC-10wt%Co tools in milling Ti-6Al-4V. Surf. Coat. Technol. 2020, 397, 125972.
Guemmaz, M.; Moraitis, G.; Mosser, A.; Khan, M.A.; Parlebas, J.C. Electronic structure of sub-stoichiometric titanium carbides, nitrides and carbonitrides: Comparison of TB-LMTO calculations and valence XPS spectra. J. Alloys Compd. 1997, 262, 397–401.
Tsai, D.-C.; Huang, Y.-L.; Lin, S.-R.; Liang, S.-C.; Shieu, F.-S. Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering. Appl. Surf. Sci. 2010, 257, 1361–1367.
Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E. Microstructural evolution during film growth. J. Vac. Sci. Technol. A Vac. Surf. Film. 2003, 21, S117–S128.
Restrepo, J.; Mondragon-Rodriguez, G.; Gonzalez-Carmona, J.M.; Alvarado-Orozco, J.M.; Garcia-Zarco, O.; Rodil, S.E. Cathodic Arc Evaporation of Self-Lubricating TiSiVN Coatings. J. Mater. Eng. Perform. 2022, 31, 1857–1869.
Richter, J. Application of Vickers indentation for assessment of PVD TiN coated new nonledeburitic high-speed steels. Surf. Coat. Technol. 2003, 162, 119–130.
Faisal, N.H.; Ahmed, R.; Prathuru, A.K.; Spence, S.; Hossain, M.; Steel, J.A. An Improved Vickers Indentation Fracture Toughness Model to Assess the Quality of Thermally Sprayed Coatings, Engineering Fracture Mechanics; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 128, pp. 189–204
Chen, J. Indentation-based methods to assess fracture toughness for thin coatings. J. Phys. D Appl. Phys. 2012, 45, 203001.
González-Carmona, J.M.; Triviño, J.D.; Gómez-Ovalle, Á.; Ortega, C.; Alvarado-Orozco, J.M.; Sánchez-Sthepa, H.; Avila, A. Wear mechanisms identification using Kelvin probe force microscopy in TiN, ZrN and TiN/ZrN hard ceramic multilayers coatings. Ceram. Int. 2020, 46, 24592–24604.
Guo, H.; Chen, W.; Shan, Y.; Wang, W.; Zhang, Z.; Jia, J. Microstructures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperatures. Appl. Surf. Sci. 2015, 357, 473–478.
Londoño-Menjura, R.F.; Ospina, R.; Escobar, D.; Quintero, J.H.; Olaya, A.; Mello, E. Restrepo-Parra, Influence of deposition temperature on WTiN coatings tribological performance. Appl. Surf. Sci. 2018, 427, 1096–1104
Samuel, J.J.; Kumar, P.K.; Kumar, D.D.; Kirubaharan, A.M.K.; Raj, T.A.; Aravind, P. Effect of substrate temperature and preferred orientation on the tribological properties of Tantalum nitride coatings. Mater. Today Proc. 2021, 44, 4404–4408.
Agudelo-Morimitsu, L.C.; De La Roche, J.; Ruden, A.; Escobar, D.; Restrepo-Parra, E. Effect of substrate temperature on the mechanical and tribological properties of W/WC produced by DC magnetron sputtering. Ceram. Int. 2014, 40, 7037–7042.
Wang, Y.; He, N.; Wang, C.; Li, J.; Guo, W.; Sui, Y.; Lan, J. Microstructure and tribological performance of (AlCrWTiMo)N film controlled by substrate temperature. Appl. Surf. Sci. 2022, 574, 151677.
Subramanian, B.; Ananthakumar, R.; Jayachandran, M. Structural and tribological properties of DC reactive magnetron sputtered titani-um/titanium nitride (Ti/TiN) multilayered coatings. Surf. Coat. Technol. 2011, 205, 3485–3492.
Xian, G.; Xiong, J.; Fan, H.; Jiang, F.; Guo, Z.; Zhao, H.; Xian, L.; Jing, Z.; Liao, J.; Liu, Y. Investigations on microstructure, mechanical and tribological properties of TiN coat-ings deposited on three different tool materials. Int. J. Refract. Met. Hard Mater. 2022, 102, 105700.
Hong, D.; Niu, Y.; Li, H.; Zhong, X.; Tu, W.; Zheng, X.; Sun, J. Comparison of microstructure and tribological properties of plasma-sprayed TiN, TiC and TiB2 coatings. Surf. Coat. Technol. 2019, 374, 181–188.
Deng, J.; Liu, A. Dry sliding wear behavior of PVD TiN, Ti55Al45N, and Ti35Al65N coatings at temperatures up to 600 °C. Int. J. Refract. Met. Hard Mater. 2013, 41, 241–249.
Ben, D. Beake, Nano- and Micro-Scale Impact Testing of Hard Coatings: A Review. Coatings 2022, 12, 793.
Li, W.; Zhang, L.; Wu, C.; Cui, Z.; Niu, C. Influence of Tool and Workpiece Properties on the Wear of the Counterparts in Contact Sliding. J. Tribol. 2022, 144, 021702.
dc.rights.none.fl_str_mv © 2023 by the authors.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2023 by the authors.
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.none.fl_str_mv Suiza
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv https://www.mdpi.com/1996-1944/16/13/4531
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/94637edb-a355-4f6c-aaf9-ae1c35e182b6/download
https://repositorio.unibague.edu.co/bitstreams/05c1d9bc-6afa-47bc-af18-85972707ca7c/download
https://repositorio.unibague.edu.co/bitstreams/c8277be4-a70f-4636-976f-5a08677514b4/download
https://repositorio.unibague.edu.co/bitstreams/b0a3bd5e-8c75-474d-abb2-da9129d127e3/download
bitstream.checksum.fl_str_mv a55414a6913359007c6a7ee4e47acbd9
5c72fab72ee3b9a589a7b1c3e0af3815
2fa3e590786b9c0f3ceba1b9656b7ac3
f82157e976c75d44bf272cafa5be18a3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059993173819392
spelling Gonzalez-Carmona, Juan Manuel110bf547-831e-4382-a336-5d447618fea6-1Mambuscay Lozano, Claudia Lorena9fe189a9-1c36-483d-b437-5feb3e425554600Ortega-Portilla, Carolina782a067f-b121-4e48-9d99-bd4b890c5268-1Hurtado-Macias, Abel4c9a5bb9-8e94-498b-ae18-ed92320f5b47-1Piamba, Jeferson Fernando4ce91b6d-87c1-4a1b-9fb3-be355b73f221-12025-08-29T14:16:03Z2025-08-29T14:16:03Z2023-07This study focused on investigating the adhesion and tribological properties of niobium-doped titanium nitride (TiNbN) coatings deposited on D2 steel substrates at various substrate temperatures (Ts) under simulated cutting conditions. X-ray diffraction confirmed the presence of coatings with an FCC crystalline structure, where Nb substitutes Ti atoms in the TiN lattice. With increasing Ts, the lattice parameter decreased, and the crystallite material transitioned from flat-like to spherical shapes. Nanoindentation tests revealed an increase in hardness (H) with Ts, while a decrease in the elastic modulus (E) resulted in an improved elastic strain limit for failure (H/E) and plastic deformation resistance (H3/E2), thereby enhancing stiffness and contact elasticity. Adhesion analysis showed critical loads of ~50 N at Ts of 200 and 400 °C, and ~38 N at Ts of 600 °C. Cohesive failures were associated with lateral cracking, while adhesive failures were attributed to chipping spallation. The tribological behavior was evaluated using a pin-on-disk test, which indicated an increase in friction coefficients with Ts, although they remained lower than those of the substrate. Friction and wear were influenced by the surface morphology, facilitating the formation of abrasive particles. However, the absence of coating detachment in the wear tracks suggested that the films were capable of withstanding the load and wearapplication/pdfGonzalez-Carmona, J., Mambuscay, C., Ortega-Portilla, C., Hurtado-Macias, A. y Piamba, J. (2023). TiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting Conditions. Materials, 16(13). DOI: 10.3390/ma1613453110.3390/ma1613453119961944https://hdl.handle.net/20.500.12313/5560https://www.mdpi.com/1996-1944/16/13/4531engMultidisciplinary Digital Publishing Institute (MDPI)Suiza13453116MaterialsGe, Y.; Cheng, J.; Zhang, B.; Xue, L.; Hong, S.; Wu, Y.; Liang, X.; Zhang, Z.; Zhang, X. Sliding wear behaviors of the AlNiTi amorphous coatings: Effect of temperatures. J. Mater. Res. Technol. 2022, 21, 2362–2374.Yeo, N.C.Y.; Pepin, H.; Yang, S.S. Revolutionizing Technology Adoption for the Remanufacturing Industry. Procedia CIRP 2017, 61, 17–21.Zhang, Y.; Zhang, Z.; Yao, W.; Liang, X. Microstructure, mechanical properties and corrosion resistance of high-level hard Nb-Ta-W and Nb-Ta-W-Hf multi-principal element alloy thin films. J. Alloys Compd. 2022, 920, 166000.Chuang, K.-C.; Chang, Y.-Y.; Chiang, C.-Y.; Liu, Y.-C.; Hung, H.-H.; Tseng, K.-K.; Yeh, J.-W.; Cheng, H.-W. Corrosion of plasma sputtering medium entropy alloy thin film: A multidisciplinary perspective. Corros. Sci. 2023, 216, 111020.Kannan, S.; Steinebach, H.; Rieth, L.; Solzbacher, F. Selectivity, stability and repeatability of In2O3 thin films towards NOx at high temperatures (≥500 °C). Sens. Actuators B Chem. 2010, 148, 126–134.Zhao, J.; Liu, Z.; Wang, B.; Hu, J.; Wan, Y. Tool coating effects on cutting temperature during metal cutting processes: Comprehensive review and future research directions. Mech. Syst. Signal Process. 2021, 150, 107302.Zambrano, D.F.; Hernandez-Bravo, R.; Ruden, A.; Espinosa-Arbelaez, D.G.; Gonzalez-Carmona, J.M.; Mujica, V. Mechanical, tribological and electrochemical behavior of Zr-based ceramic thin films for dental implants. Ceram. Int. 2023, 49, 2102–2114.Seinmann, P.A.; Tardy, Y.; Hintermann, H.E. Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load. Thin Solid Film. 1987, 154, 333–349.Mondragon-Rodríguez, G.C.; Hernandez-Mendoza, J.L.; Gomez-Ovalle, A.E.; Gonzalez-Carmona, J.M.; Ortega-Portilla, C.; Camacho, N.; Hurtado-Macías, A.; Espinosa-Arbelaez, D.G. Alvarado-Orozco, High-temperature tribology of Hf doped c-Al0.64Ti0.36N cathodic arc PVD coatings deposited on M2 tool steel. Surf. Coat. Technol. 2021, 422, 127516.Gregorio, A.; Santos, T.; Rossi, R.; Jesus, A.M.P.; Outeiro, J.C.; Rosa, P.A.R. Tribology of metal cutting: Newly formed underside of chip. Procedia CIRP 2019, 82, 136–141.Grigoriev, S.; Vereschaka, A.; Milovich, F.; Migranov, M.; An-dreev, N.; Bublikov, J.; Sitnikov, N.; Oganyan, G. Investigation of the tribological properties of Ti-TiN-(Ti,Al,Nb,Zr)N composite coating and its efficiency in increasing wear resistance of metal cutting tools. Tribol. Int. 2021, 164, 107236.Zhu, J.-J.; Jiang, L.; Zhai, L.-H.; Zhou, J.-M.; Ding, X.-B.; Li, Z.-J. Effect of TiN inclusions on oxidation behavior of austenitic stainless steels. Mater. Lett. 2023, 335, 133761.Olaya, J.J.; Rodil, S.E.; Muhl, S. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering. Thin Solid Film. 2008, 516, 8319–8326.Brčka, J.; Hotový, I. Processes on the target, discharge and NbN film behaviour in reactive dc magnetron deposition. Vacuum 1995, 46, 1407–1412.Hotový, I.; Huran, J.; Búc, D.; Srnánek, R. Thermal stability of NbN films deposited on GaAs substrates. Vacuum 1998, 50, 45–48.Pogrebnjak, A.D.; Rogoz, V.M.; Bondar, O.V.; Erdybaeva, N.K.; Plotnikov, S. Vr Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: A review. Prot. Met. Phys. Chem. Surf. 2016, 52, 802–813.Hotovy, I.; Buc, D.; Brcka, J.; Srnanek, R. Study of Niobium Nitride Films Produced by DC Reactive Magnetron Sputtering. Phys. Stat. Sol. 1997, 161, 97–104.Lopez, S.; Wong, M.; Sproul, W.D. Thermal behavior of carbon nitride and TiN/NbN superlattice films. J. Vac. Sci. Technol. A Vac. Surf. Film. 1995, 13, 1644–1648.Hultman, L.; Engström, C.; Odén, M. Mechanical and thermal stability of TiN/NbN superlattice thin films. Surf. Coat. Technol. 2000, 133, 227–233.Rutherford, K.L.; Hatto, P.W.; Davies, C.; Hutchings, I.M. Abrasive wear resistance of TiN/NbN multi-layers: Measurement and neural network modelling. Surf. Coat. Technol. 1996, 86, 472–479.Cicek, H.; Baran, O.; Keles, A.; Totik, Y.; Efeoglu, I. A comparative study of fatigue properties of TiVN and TiNbN thin films deposited on different substrates. Surf. Coat. Technol. 2017, 332, 296–303.Sheppard, L.R.; Zhang, H.; Liu, R.; Macartney, S.; Murphy, T.; Wainer, P.; Wuhrer, R. Reactive sputtered TixNbyNz coatings. II. Effect of common deposition parameters. Mater. Chem. Phys. 2019, 224, 320–327.Sheppard, L.R.; Zhang, H.; Liu, R.; Macartney, S.; Murphy, T.; Wuhrer, R. Reactive sputtered TiXNYNZ thin films. I. Basic processing relationships. Mater. Chem. Phys. 2019, 224, 308–313.Grimberg, I.; Zhitomirsky, V.M.; Boxman, R.L.; Goldsmith, S.; Weiss, B.Z. Multicomponent Ti-Zr-N and Ti-Nb-N coatings deposited by vacuum arc. Surf. Coat. Technol. 1998, 108, 154–159.Baran, Ö.; Keleş, A.; Çiçek, H.; Totik, Y.; Efeoğlu, İ. The mechanical and tribological properties of Ti [Nb, V] N films on the Al-2024 alloy. Surf. Coat. Technol. 2017, 332, 312–318.Bull, S.J.; Berasetegui, E.G.; Page, T.F. Modelling of the indentation response of coatings and surface treatments. Wear 2004, 256, 857–866.Keleş, A.; Çiçek, H.; Baran, Ö.; Totik, Y.; Efeoğlu, İ. Determining the critical loads of V and Nb doped ternary TiN-based coatings deposited using CFUBMS on steels. Surf. Coat. Technol. 2017, 332, 168–173.Nasab, S.A.; Manafi, S.; Ghahremani, D. Preparation of mullite/NbN composites through spark plasma sintering. Mater. Chem. Phys. 2022, 285, 126126.ASTM E3-11; Standard Guide for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 1 January 2017.ASTM E92-17; Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 1 May 2017.ASTM C1624-05; Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. ASTM International: West Conshohocken, PA, USA, 31 December 2010.ASTM G99-17; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International: West Conshohocken, PA, USA, 1 January 2017.Ajenifuja, E.; Popoola, A.P.I.; Popoola, O.M. Thickness dependent chemical and microstructural properties of DC reactive magnetron sputtered titanium nitride thin films on low carbon steel cross-section. J. Mater. Res. Technol. 2019, 8, 377–384.Kalal, S.; Gupta, M.; Rawat, R. N concentration effects on structure and superconductivity of NbN thin films. J. Alloys Compd. 2021, 851, 149–154.Arockiasamy, M.L.S.; Sundareswari, M.; Rajagopalan, M. Ductility behaviour of cubic titanium niobium nitride ternary alloy: A first-principles study. Indian J. Phys. 2016, 90, 149–154.Ran, Y.; Lu, H.; Zhao, S.; Jia, L.; Li, Y.; Jiang, Z.; Wang, Z. Effects of substrate bias and temperature on the structure and dielectric properties of TixZr1−xNy ternary nitride thin film. Surf. Coat. Technol. J. 2019, 359, 258–264.Cedeño-Vente, M.L.; Manríquez, J.; Mondragón-Rodríguez, G.C.; Camacho, N.; Gómez-Ovalle, A.E.; Gonzalez-Carmona, J.M.; Alvarado-Orozco, J.M.; Espinosa-Arbelaez, D.G. Application of a transmission line model to evaluate the influence of structural defects on the corrosion behavior of arc-PVD CrN coatings. Ceram. Int. 2021, 47, 20885–20899.Gómez-Ovalle, A.E.; Torres, M.; Jimenez, S.M.A.; Alvarado-Orozco, J.M.; Espinosa-Arbeláez, D.G.; Gonzalez-Carmona, J.M.; Zárate-Medina, J.; Mondragón-Rodríguez, G.C. Experimental-numerical failure analysis of the c-Al0.66Ti0.34N-M2 steel system applying instrumented indentation and extended finite element method. Surf. Coat. Technol. 2020, 393, 125845.Grigoriev, S.; Vereschaka, A.; Milovich, F.; Sitnikov, N.; Andreev, N.; Bublikov, J.; Sotova, C.; Sadov, I. Investigation of the Influence of Microdroplets on the Coatings Nanolayer Structure. Coatings 2020, 10, 1204Shah, A.; Izman, S.; Abdul-Kadir, M.R.; Mas-Ayu, H. Influence of substrate temperature on adhesion strength of TiN coating of biomedical Ti–13Zr–13Nb alloy. Arab. J. Sci. Eng. 2017, 42, 4737–4742.Brown, I.G. Cathodic arc deposition of films. Annu. Rev. Mater. Sci. 1998, 28, 243–269.Sanders, D.M.; Anders, A. Review of cathodic arc deposition technology at the start of the new millennium. Surf. Coat. Technol. 2000, 133, 78–90.Hainsworth, S.V.; McGurk, M.R.; Page, T.F. The effect of coating cracking on the indentation response of thin hard-coated systems. Surf. Coat. Technol. 1998, 102, 97–107.Hainsworth, S.V.; Chandler, H.W.; Page, T.F. Analysis of nanoindentation load-displacement loading curves. J. Mater. Res. 1996, 11, 1987–1995.Hou, M.; Mou, W.; Yan, G.; Song, G.; Wu, Y.; Ji, W.; Jiang, Z.; Wang, W.; Qian, C.; Cai, Z. Effects of different distribution of residual stresses in the depth direction on cutting performance of TiAlN coated WC-10wt%Co tools in milling Ti-6Al-4V. Surf. Coat. Technol. 2020, 397, 125972.Guemmaz, M.; Moraitis, G.; Mosser, A.; Khan, M.A.; Parlebas, J.C. Electronic structure of sub-stoichiometric titanium carbides, nitrides and carbonitrides: Comparison of TB-LMTO calculations and valence XPS spectra. J. Alloys Compd. 1997, 262, 397–401.Tsai, D.-C.; Huang, Y.-L.; Lin, S.-R.; Liang, S.-C.; Shieu, F.-S. Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering. Appl. Surf. Sci. 2010, 257, 1361–1367.Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E. Microstructural evolution during film growth. J. Vac. Sci. Technol. A Vac. Surf. Film. 2003, 21, S117–S128.Restrepo, J.; Mondragon-Rodriguez, G.; Gonzalez-Carmona, J.M.; Alvarado-Orozco, J.M.; Garcia-Zarco, O.; Rodil, S.E. Cathodic Arc Evaporation of Self-Lubricating TiSiVN Coatings. J. Mater. Eng. Perform. 2022, 31, 1857–1869.Richter, J. Application of Vickers indentation for assessment of PVD TiN coated new nonledeburitic high-speed steels. Surf. Coat. Technol. 2003, 162, 119–130.Faisal, N.H.; Ahmed, R.; Prathuru, A.K.; Spence, S.; Hossain, M.; Steel, J.A. An Improved Vickers Indentation Fracture Toughness Model to Assess the Quality of Thermally Sprayed Coatings, Engineering Fracture Mechanics; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 128, pp. 189–204Chen, J. Indentation-based methods to assess fracture toughness for thin coatings. J. Phys. D Appl. Phys. 2012, 45, 203001.González-Carmona, J.M.; Triviño, J.D.; Gómez-Ovalle, Á.; Ortega, C.; Alvarado-Orozco, J.M.; Sánchez-Sthepa, H.; Avila, A. Wear mechanisms identification using Kelvin probe force microscopy in TiN, ZrN and TiN/ZrN hard ceramic multilayers coatings. Ceram. Int. 2020, 46, 24592–24604.Guo, H.; Chen, W.; Shan, Y.; Wang, W.; Zhang, Z.; Jia, J. Microstructures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperatures. Appl. Surf. Sci. 2015, 357, 473–478.Londoño-Menjura, R.F.; Ospina, R.; Escobar, D.; Quintero, J.H.; Olaya, A.; Mello, E. Restrepo-Parra, Influence of deposition temperature on WTiN coatings tribological performance. Appl. Surf. Sci. 2018, 427, 1096–1104Samuel, J.J.; Kumar, P.K.; Kumar, D.D.; Kirubaharan, A.M.K.; Raj, T.A.; Aravind, P. Effect of substrate temperature and preferred orientation on the tribological properties of Tantalum nitride coatings. Mater. Today Proc. 2021, 44, 4404–4408.Agudelo-Morimitsu, L.C.; De La Roche, J.; Ruden, A.; Escobar, D.; Restrepo-Parra, E. Effect of substrate temperature on the mechanical and tribological properties of W/WC produced by DC magnetron sputtering. Ceram. Int. 2014, 40, 7037–7042.Wang, Y.; He, N.; Wang, C.; Li, J.; Guo, W.; Sui, Y.; Lan, J. Microstructure and tribological performance of (AlCrWTiMo)N film controlled by substrate temperature. Appl. Surf. Sci. 2022, 574, 151677.Subramanian, B.; Ananthakumar, R.; Jayachandran, M. Structural and tribological properties of DC reactive magnetron sputtered titani-um/titanium nitride (Ti/TiN) multilayered coatings. Surf. Coat. Technol. 2011, 205, 3485–3492.Xian, G.; Xiong, J.; Fan, H.; Jiang, F.; Guo, Z.; Zhao, H.; Xian, L.; Jing, Z.; Liao, J.; Liu, Y. Investigations on microstructure, mechanical and tribological properties of TiN coat-ings deposited on three different tool materials. Int. J. Refract. Met. Hard Mater. 2022, 102, 105700.Hong, D.; Niu, Y.; Li, H.; Zhong, X.; Tu, W.; Zheng, X.; Sun, J. Comparison of microstructure and tribological properties of plasma-sprayed TiN, TiC and TiB2 coatings. Surf. Coat. Technol. 2019, 374, 181–188.Deng, J.; Liu, A. Dry sliding wear behavior of PVD TiN, Ti55Al45N, and Ti35Al65N coatings at temperatures up to 600 °C. Int. J. Refract. Met. Hard Mater. 2013, 41, 241–249.Ben, D. Beake, Nano- and Micro-Scale Impact Testing of Hard Coatings: A Review. Coatings 2022, 12, 793.Li, W.; Zhang, L.; Wu, C.; Cui, Z.; Niu, C. Influence of Tool and Workpiece Properties on the Wear of the Counterparts in Contact Sliding. J. Tribol. 2022, 144, 021702.© 2023 by the authors.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.mdpi.com/1996-1944/16/13/4531TiNbN - RevestimientoAdhesionArc PVDTribologyWearTiNbN Hard Coating Deposited at Varied Substrate Temperature by Cathodic Arc: Tribological Performance under Simulated Cutting ConditionsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationTEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain2982https://repositorio.unibague.edu.co/bitstreams/94637edb-a355-4f6c-aaf9-ae1c35e182b6/downloada55414a6913359007c6a7ee4e47acbd9MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg26864https://repositorio.unibague.edu.co/bitstreams/05c1d9bc-6afa-47bc-af18-85972707ca7c/download5c72fab72ee3b9a589a7b1c3e0af3815MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/c8277be4-a70f-4636-976f-5a08677514b4/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51ORIGINALArtículo.pdfArtículo.pdfapplication/pdf106598https://repositorio.unibague.edu.co/bitstreams/b0a3bd5e-8c75-474d-abb2-da9129d127e3/downloadf82157e976c75d44bf272cafa5be18a3MD5220.500.12313/5560oai:repositorio.unibague.edu.co:20.500.12313/55602025-09-12 12:09:41.265https://creativecommons.org/licenses/by-nc/4.0/© 2023 by the authors.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=