A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease

Coumarins are plant-derived polyphenolic compounds belonging to the benzopyrones family, possessing wide-ranging pharmaceutical applications including cytoprotection, which may translate into therapeutic potential for multiple diseases, including Parkinson’s disease (PD). Here we demonstrate the neu...

Full description

Autores:
Fouché, Belinda
Turner, Stephanie
Gorham, Rebecca
Stephenson, Eloise J.
Gutbier, Simon
Elson, Joanna L.
García-Beltrán, Olimpo
Van Der Westhuizen, Francois H.
Pienaar, Ilse S.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5572
Acceso en línea:
https://hdl.handle.net/20.500.12313/5572
https://link.springer.com/article/10.1007/s12035-022-03107-8
Palabra clave:
Mitocondría
Parkinson
Antioxidant
Iron chelation
Mitochondria; MPP+
Neuroprotection
Parkinson’s disease
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UNIBAGUE2_075e55f3466a4b43f8f11143b7a3bff6
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5572
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease
title A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease
spellingShingle A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease
Mitocondría
Parkinson
Antioxidant
Iron chelation
Mitochondria; MPP+
Neuroprotection
Parkinson’s disease
title_short A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease
title_full A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease
title_fullStr A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease
title_full_unstemmed A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease
title_sort A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease
dc.creator.fl_str_mv Fouché, Belinda
Turner, Stephanie
Gorham, Rebecca
Stephenson, Eloise J.
Gutbier, Simon
Elson, Joanna L.
García-Beltrán, Olimpo
Van Der Westhuizen, Francois H.
Pienaar, Ilse S.
dc.contributor.author.none.fl_str_mv Fouché, Belinda
Turner, Stephanie
Gorham, Rebecca
Stephenson, Eloise J.
Gutbier, Simon
Elson, Joanna L.
García-Beltrán, Olimpo
Van Der Westhuizen, Francois H.
Pienaar, Ilse S.
dc.subject.armarc.none.fl_str_mv Mitocondría
Parkinson
topic Mitocondría
Parkinson
Antioxidant
Iron chelation
Mitochondria; MPP+
Neuroprotection
Parkinson’s disease
dc.subject.proposal.eng.fl_str_mv Antioxidant
Iron chelation
Mitochondria; MPP+
Neuroprotection
Parkinson’s disease
description Coumarins are plant-derived polyphenolic compounds belonging to the benzopyrones family, possessing wide-ranging pharmaceutical applications including cytoprotection, which may translate into therapeutic potential for multiple diseases, including Parkinson’s disease (PD). Here we demonstrate the neuroprotective potential of a new polyhydroxyl coumarin, N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide (CT51), against the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+). MPP+’s mechanism of toxicity relates to its ability to inhibit complex I of the mitochondrial electron transport chain (METC), leading to adenosine triphosphate (ATP) depletion, increased reactive oxygen species (ROS) production, and apoptotic cell death, hence mimicking PD-related neuropathology. Dopaminergic differentiated human neuroblastoma cells were briefly pretreated with CT51, followed by toxin exposure. CT51 significantly restored somatic cell viability and neurite processes; hence, the drug targets cell bodies and axons thereby preserving neural function and circuitry against PD-related damage. Moreover, MPP+ emulates the iron dyshomeostasis affecting dopaminergic neurons in PD-affected brains, whilst CT51 was previously revealed as an effective iron chelator that preferentially partitions to mitochondria. We extend these findings by characterising the drug’s interactive effects at the METC level. CT51 did not improve mitochondrial coupling efficiency. However, voltammetric measurements and high-resolution respirometry analysis revealed that CT51 acts as an antioxidant agent. Also, the neuronal protection afforded by CT51 associated with downregulating MPP+-induced upregulated expression of hypoxia-inducible factor 1 alpha (HIF-1α), a protein which regulates iron homeostasis and protects against certain forms of oxidative stress after translocating to mitochondria. Our findings support the further development of CT51 as a dual functioning iron chelator and antioxidant antiparkinsonian agent
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-02
dc.date.accessioned.none.fl_str_mv 2025-08-29T22:33:04Z
dc.date.available.none.fl_str_mv 2025-08-29T22:33:04Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Fouché, B., Turner, S., Gorham, R., Stephenson, E., Gutbier, S., Elson, J., García-Beltrán, O., Van Der Westhuizen, F. y Pienaar, I. (2023). A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease. Molecular Neurobiology, 60(2), 749 - 767. DOI: 10.1007/s12035-022-03107-8
dc.identifier.doi.none.fl_str_mv 10.1007/s12035-022-03107-8
dc.identifier.eissn.none.fl_str_mv 15591182
dc.identifier.issn.none.fl_str_mv 08937648
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5572
dc.identifier.url.none.fl_str_mv https://link.springer.com/article/10.1007/s12035-022-03107-8
identifier_str_mv Fouché, B., Turner, S., Gorham, R., Stephenson, E., Gutbier, S., Elson, J., García-Beltrán, O., Van Der Westhuizen, F. y Pienaar, I. (2023). A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease. Molecular Neurobiology, 60(2), 749 - 767. DOI: 10.1007/s12035-022-03107-8
10.1007/s12035-022-03107-8
15591182
08937648
url https://hdl.handle.net/20.500.12313/5572
https://link.springer.com/article/10.1007/s12035-022-03107-8
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 767
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 749
dc.relation.citationvolume.none.fl_str_mv 60
dc.relation.ispartofjournal.none.fl_str_mv Molecular Neurobiology
dc.relation.references.none.fl_str_mv Lyons TJ, Eide DJ (2007) Transport and storage of metal ions in biology. In: Bertini I, Gray HB, Stiefel EI, Valentine JS (eds) Biological Inorganic Chemistry. University Science Books, Sausalito, pp 57–77
Mühlenhoff U, Hoffmann B, Richter N, Rietzschel N, Spantgar F, Stehling O, Uzarska MA, Lill R (2015) Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol 94:292–308
Rouault TA (2012) Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech 5:155–164
Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ et al (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 94:280–291
Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H et al (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823:1491–1508
Lill R, Srinivasan V, Mühlenhoff U (2014) The role of mitochondria in cytosolic-nuclear iron-sulfur protein biogenesis and in cellular iron regulation. Curr Opin Microbiol 22C:111–119
Hadzhieva M, Kirches E, Mawrin C (2014) Review: Iron metabolism and the role of iron in neurodegenerative disorders. Neuropathol Appl Neurobiol 40:240–257
Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1987) Increased nigral iron content in post-mortem parkinsonian brain. Lancet 2:1219–1220
Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836
Lu J, Liu X, Tian Y, Li H, Ren Z, Liang S, Zhang G, Zhao C et al (2019) Moxibustion exerts a neuroprotective effect through antiferroptosis in Parkinson’s disease. Evid Based Complement Alternat Med 2019:2735492c
Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, Li X, Zhao C et al (2020) FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 17:1796–1812
García-Beltrán O, Mena NP, Aguirre P, Germán B-G, Galdámez A, Nagles A, Adasme T, Hidalgo C et al (2017) Development of an iron-selective antioxidant probe with protective effects on neuronal function. PLoS ONE 12:e0189043
Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980
Ramachandiran S, Hansen JM, Jones DP, Richardson JR, Miller GW (2007) Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation. Toxicol Sci 95:163–171
Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508
Suzuki K, Mizuno Y, Yoshida M (1990) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-like compounds on mitochondrial respiration. Adv Neurol 53:215–218
Pinilla LL, Ugun-Klusek A, Rutella S, De Girolamo LA (2021) Hypoxia signaling in Parkinson’s disease: there is use in asking “What HIF?” Biology 10:723
Khwanraj K, Phruksaniyom C, Madlah S, Dharmasaroja P (2015) Differential expression of tyrosine hydroxylase protein and apoptosis-related genes in differentiated and undifferentiated SH-SY5Y neuroblastoma cells treated with MPP. Neurol Res Int 2015:734703
Gutbier S, Spreng A-S, Delp J, Schildknecht S, Karreman C, Suciu I, Brunner T, Groettrup M et al (2018) Prevention of neuronal apoptosis by astrocytes through thiol-mediated stress response modulation and accelerated recovery from proteotoxic stress. Cell Death Differ 25:2101–2117
Gutbier S, Kyriakou S, Schildknecht S, Ückert A-K, Brüll M, Lewis F, Dickens D, Pearson L et al (2020) Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants. Arch Toxicol 94:3105–3123
O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426
Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8:1535–1550
Specian AF, Serpeloni JM, Tuttis K, Ribeiro DL, Ciliao HL, Varanda EA, Sannomiya M, Lopez-Martinez W et al (2016) LDH, proliferation curves and cell cycle analysis are the most suitable assays to identify and characterize new phytotherapeutic compounds. Cytotechnol 68:2729–2744
Bruce LL, Christensen MA, Fritzsch B (1997) Electron microscopic differentiation of directly and transneuronally transported DiI and applications for studies of synaptogenesis. J Neurosci Methods 73:107–112
Honig MG, Hume RI (1989) Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci 12:40–41
Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD et al (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59
Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312
Uribe P, Villegas JV, Boguen R, Treulen F, Sánchez R, Mallmann P, Isachenko V, Rahimi G et al (2017) Use of the fluorescent dye tetramethylrhodamine methyl ester perchlorate for mitochondrial membrane potential assessment in human spermatozoa. Andrologia 49(9):e12753
Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115
Nikolić MD, Pavlović AN, Mitić SS, Tošić SB, Mitić MN, Kaličanin BM, Manojlović DD, Stanković DM (2019) Use of cyclic voltammetry to determine the antioxidant capacity of berry fruits: correlation with spectrophotometric assays. Eur J Hortic Sci 84:152–160
Rebelo MJ, Rego R, Ferreira M, Oliveira MC (2013) Comparative study of the antioxidant capacity and polyphenol content of Douro wines by chemical and electrochemical methods. Food Chem 141:566–573
Głod BK, Kiersztyn I, Piszcz P (2014) Total antioxidant potential assay with cyclic voltammetry and/or differential pulse voltammetry measurements. J Electroanal Chem 719:24–29
Jara-Palacios MJ, Escudero-Gilete ML, Hernández-Hierro JM, Heredia FJ, Hernanz D (2017) Cyclic voltammetry to evaluate the antioxidant potential in winemaking byproducts. Talanta 165:211–215
Song J, Miermont A, Lim CT, Kamm RD (2018) A 3D microvascular network model to study the impact of hypoxia on the extravasation potential of breast cell lines. Sci Rep 8:17949
Tambuwala MM, Khan MN, Thompson P, McCarron PA (2019) Albumin nano-encapsulation of caffeic acid phenethyl ester and piceatannol potentiated its ability to modulate HIF and NF-kB pathways and improves therapeutic outcome in experimental colitis. Drug Deliv Transl Res 9:14–24
Yang S-A, Yoon J, Kim K, Park Y (2017) Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease. Cytometry A 91:510–518
Camins A, Sureda FX, Gabriel C, Pallas M, Escubedo E, Camarasa J (1997) Effect of 1-methyl-4-phenylpyridinium (MPP+) on mitochondrial membrane potential in cerebellar neurons: Interaction with the NMDA receptor. J Neural Transm 104:569–577
Kim-Han JS, Antenor-Dorsey JA, O’Malley KL (2011) The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. J Neurosci 31:7212–7221
Chen Y, Chen C, Song D, Liu T, Cheng O (2021) Dexmedetomidine protects SH-SY5Y cells against MPP+-induced declining of mitochondrial membrane potential and cell cycle deficits. Eur J Neurosci (in press). https://doi.org/10.1111/ejn.15252
Mapa MST, Viet QL, Wimalasena K (2018) Characteristics of the mitochondrial and cellular uptake of MPP+, as probed by the fluorescent mimic, 4'I-MPP+. PLoS ONE 13:e0197946
TeSlaa T, Teitell MA (2014) Techniques to monitor glycolysis. Methods Enzymol 542:91–114
Van der Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033
Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y (eds) Mitochondrial dysfunction in drug-induced toxicity. John Wiley, Hoboken, pp 327–352
Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837–1845
Allen SP, Rajan S, Duffy L, Mortiboys H, Higginbottom A, Grierson AJ, Shaw PJ (2014) Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis. Neurobiol Aging 35:1499–1509
Brett AMO, Ghica ME (2003) Electochemical oxidation of quercetin. Electroanalysis 15:1745–1750
Keyrouz R, Abasq ML, Le Bourvellec C, Blanc N, Audibert L, Argall E, Hauchard D (2011) Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany. Food Chem 126:831–836
Dong S-Y, Guo Y-J, Feng Y, Cui X-X, Kuo S-H, Liu T, Wu Y-C (2016) The epigenetic regulation of HIF-1α by SIRT1 in MPP(+) treated SH-SY5Y cells. Biochem Biophys Res Commun 470:453–459
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840
Henderson MX, Trojanowski JQ, Lee VM-Y (2019) α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies. Neurosci Lett 709:134316
Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, Elstner M, Morris CM (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68:1820–1825
Kaur D, Rajagopalan S, Andersen JK (2009) Chronic expression of H-ferritin in dopaminergic midbrain neurons results in an age-related expansion of the labile iron pool and subsequent neurodegeneration: implications for Parkinson’s disease. Brain Res 1297:17–22
Walter U (2010) Transcranial sonography in brain disorders with trace metal accumulation. Int Rev Neurobiol 90:166–178
Nuñez M, Chana-Cuevas P (2018) New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals 11:109
Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland A-S et al (2020) Conservative iron chelation for neurodegenerative diseases such as Parkinson’s disease and amyotrophic lateral sclerosis. J Neural Transm 127:189–203
Napier I, Ponka P, Richardson DR (2005) Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 105:1867–1874
Mena NP, García-Beltrán O, Lourido F, Urrutia PJ, Mena R, Castro-Castillo V, Cassels BK, Núñez MT (2015) The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Biochem Biophys Res Commun 463:787–792
Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105
Paul BT, Manz DH, Torti FM, Torti SV (2017) Mitochondria and iron: current questions. Expert Rev Hematol 10:65–79
Petrat F, Weisheit D, Lensen M, de Groot H, Sustmann R, Rauen U (2002) Selective determination of mitochondrial chelatable iron in viable cells with a new fluorescent sensor. Biochem J 362:137–147
Glickstein H, El RB, Shvartsman M, Cabantchik ZI (2005) Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood 106:3242–3250
Reelfs O, Abbate V, Hider RC, Pourzand C (2016) A powerful mitochondria-targeted iron chelator affords high photoprotection against solar ultraviolet a radiation. J Invest Dermatol 136:1692–1700
Cilibrizzi A, Pourzand C, Abbate V, Reelfs O, Versari L, Floresta G, Hider R (2022) The synthesis and properties of mitochondrial targeted iron chelators BioMetals (in press). https://doi.org/10.1007/s10534-022-00383-8
Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448
Gómez FJ, Aguirre P, Gonzalez-Billault C, Núñez MT (2010) Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). J Neural Transm 118:421–431
Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WST et al (2011) Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation 8:129
Gao J, Zhou Q, Wu D, Chen L (2021) Mitochondrial iron metabolism and its role in diseases. Clin Chim Acta 513:6–12
Stehling O, Lill R (2013) The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol 5:a011312
Ma L, Azad MG, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF et al (2021) Parkinson’s disease: alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 41:101896
Li X, Hao S, Han A, Yang Y, Fang G, Liu G, Liu J, Wang S (2019) Intracellular Fenton reaction based on mitochondria-targeted copper(ii)–peptide complex for induced apoptosis. J Mater Chem B 7:4008
Lee DH, Kim C-S, Lee YJ (2011) Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol 49:271–280
Pérez-Barrón G, Montes S, Aguirre-Vidal Y, Santiago M, Gallardo E, Espartero JL, Rios C, Monroy-Noyola A (2021) Antioxidant effect of hydroxytyrosol, hydroxytyrosol acetate and nitrohydroxytyrosol in a rat MPP+ model of Parkinson’s disease. Neurochem Res 46:2923–2935
Liddell JR, White AR (2018) Nexus between mitochondrial function, iron, copper and glutathione in Parkinson’s disease. Neurochem Int 117:126–138
Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75–86
Zhu JH, Gusdon AM, Cimen H, Van Houten B, Koc E, Chu CT (2012) Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2. Cell Death Dis 3:e312
Dukes AA, Bai Q, Van Laar VS, Zhou Y, Ilin V, David CN, Agim ZS, Bonkowsky JL et al (2016) Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP+ exposure. Neurobiol Dis 95:238–249
Chen C, Turnbull DM, Reeve AK (2019) Mitochondrial dysfunction in Parkinson’s disease - cause or consequence? Biology 8:38
Raza C, Rabia Anjum R, Ain Shakeel NUI (2019) Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci 226:77–90
Ferrucci M, Fornai F (2021) MPTP neurotoxicity: actions, mechanisms, and animal modeling of Parkinson’s disease. In: Kostrzewa RM (ed) Handbook of Neurotoxicity. Springer, Cham
Poetsch AR (2020) The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 18:207–219
Pettifer KM, Jiang S, Bau C, Ballerini P, D’Alimonte I, Werstiuk ES, Rathbone MP (2007) MPP+-induced cytotoxicity in neuroblastoma cells: antagonism and reversal by guanosine. Purinergic Signal 3:399–409
Chen L-J, Gao Y-Q, Li X-J, Shen D-H, Sun F-Y (2005) Melatonin protects against MPTP/MPP+ -induced mitochondrial DNA oxidative damage in vivo and in vitro. J Pineal Res 39:34–42
Kwok KH-H, Ho PW, Chu AC, Ho JW, Liu HF, Yiu DC, Chan KH, Kung MH et al (2010) Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med 49:1023–1035
Ashrafi G, Schwarz TL (2012) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42
Li H-S, Zhou Y-N, Lu L, Li S-F, Long D, Chen X-L, Zhang J-B, Feng L et al (2019) HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol 25:101–109
Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268
Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF et al (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886
Briston T, Yang J, Ashcroft M (2011) HIF-1α localization with mitochondria: a new role for an old favorite? Cell Cycle 10:4170–4171
Hara Y, Yanatori I, Tanaka A, Kishi F, Lemasters JJ, Nishina S, Sasaki K, Hino K (2020) Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep 21:e50202
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
dc.publisher.place.none.fl_str_mv Estados Unidos
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv https://pubmed.ncbi.nlm.nih.gov/36357615/
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/f00563bd-98ed-4d9d-9a74-d66d3e0ddc18/download
https://repositorio.unibague.edu.co/bitstreams/4e96fd68-32d5-4e53-95a0-704169c39ed6/download
https://repositorio.unibague.edu.co/bitstreams/221e1c4b-0cad-41c7-a28d-c07a7464659d/download
https://repositorio.unibague.edu.co/bitstreams/abd69c66-9cf6-427d-b1fd-462914412bb1/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
7600b88503ea92ec84ea3d2eb09d6d6c
08da6115c49ff8ff9d9314e80d189848
d3011a0ed8ca49864119263f5bdbe0f7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059985098735616
spelling Fouché, Belindafcc113fb-1061-4ae2-904b-62cd1054ed67-1Turner, Stephanie0dafe24d-904d-4e3a-82ec-eb646a72d7fc-1Gorham, Rebeccadb8132bc-debf-411d-9be4-d3b079903d0b-1Stephenson, Eloise J.c7f27bc9-6463-4295-a403-27465d12d7d3-1Gutbier, Simonf6cefc73-1da0-4436-b0a3-8bcfa067a545-1Elson, Joanna L.a15b77d6-bae6-4dba-8e03-e12009f7d0f0-1García-Beltrán, Olimpo5bc12f58-2b62-4c7c-a477-0820b4de72e9-1Van Der Westhuizen, Francois H.5307774c-fc85-4f81-90f7-a89460c37e9c-1Pienaar, Ilse S.4dcd4d53-71c6-4202-befe-6356390d6ea2-12025-08-29T22:33:04Z2025-08-29T22:33:04Z2023-02Coumarins are plant-derived polyphenolic compounds belonging to the benzopyrones family, possessing wide-ranging pharmaceutical applications including cytoprotection, which may translate into therapeutic potential for multiple diseases, including Parkinson’s disease (PD). Here we demonstrate the neuroprotective potential of a new polyhydroxyl coumarin, N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide (CT51), against the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+). MPP+’s mechanism of toxicity relates to its ability to inhibit complex I of the mitochondrial electron transport chain (METC), leading to adenosine triphosphate (ATP) depletion, increased reactive oxygen species (ROS) production, and apoptotic cell death, hence mimicking PD-related neuropathology. Dopaminergic differentiated human neuroblastoma cells were briefly pretreated with CT51, followed by toxin exposure. CT51 significantly restored somatic cell viability and neurite processes; hence, the drug targets cell bodies and axons thereby preserving neural function and circuitry against PD-related damage. Moreover, MPP+ emulates the iron dyshomeostasis affecting dopaminergic neurons in PD-affected brains, whilst CT51 was previously revealed as an effective iron chelator that preferentially partitions to mitochondria. We extend these findings by characterising the drug’s interactive effects at the METC level. CT51 did not improve mitochondrial coupling efficiency. However, voltammetric measurements and high-resolution respirometry analysis revealed that CT51 acts as an antioxidant agent. Also, the neuronal protection afforded by CT51 associated with downregulating MPP+-induced upregulated expression of hypoxia-inducible factor 1 alpha (HIF-1α), a protein which regulates iron homeostasis and protects against certain forms of oxidative stress after translocating to mitochondria. Our findings support the further development of CT51 as a dual functioning iron chelator and antioxidant antiparkinsonian agentapplication/pdfFouché, B., Turner, S., Gorham, R., Stephenson, E., Gutbier, S., Elson, J., García-Beltrán, O., Van Der Westhuizen, F. y Pienaar, I. (2023). A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease. Molecular Neurobiology, 60(2), 749 - 767. DOI: 10.1007/s12035-022-03107-810.1007/s12035-022-03107-81559118208937648https://hdl.handle.net/20.500.12313/5572https://link.springer.com/article/10.1007/s12035-022-03107-8engSpringerEstados Unidos767274960Molecular NeurobiologyLyons TJ, Eide DJ (2007) Transport and storage of metal ions in biology. In: Bertini I, Gray HB, Stiefel EI, Valentine JS (eds) Biological Inorganic Chemistry. University Science Books, Sausalito, pp 57–77Mühlenhoff U, Hoffmann B, Richter N, Rietzschel N, Spantgar F, Stehling O, Uzarska MA, Lill R (2015) Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol 94:292–308Rouault TA (2012) Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech 5:155–164Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ et al (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 94:280–291Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H et al (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823:1491–1508Lill R, Srinivasan V, Mühlenhoff U (2014) The role of mitochondria in cytosolic-nuclear iron-sulfur protein biogenesis and in cellular iron regulation. Curr Opin Microbiol 22C:111–119Hadzhieva M, Kirches E, Mawrin C (2014) Review: Iron metabolism and the role of iron in neurodegenerative disorders. Neuropathol Appl Neurobiol 40:240–257Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1987) Increased nigral iron content in post-mortem parkinsonian brain. Lancet 2:1219–1220Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836Lu J, Liu X, Tian Y, Li H, Ren Z, Liang S, Zhang G, Zhao C et al (2019) Moxibustion exerts a neuroprotective effect through antiferroptosis in Parkinson’s disease. Evid Based Complement Alternat Med 2019:2735492cTian Y, Lu J, Hao X, Li H, Zhang G, Liu X, Li X, Zhao C et al (2020) FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 17:1796–1812García-Beltrán O, Mena NP, Aguirre P, Germán B-G, Galdámez A, Nagles A, Adasme T, Hidalgo C et al (2017) Development of an iron-selective antioxidant probe with protective effects on neuronal function. PLoS ONE 12:e0189043Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980Ramachandiran S, Hansen JM, Jones DP, Richardson JR, Miller GW (2007) Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation. Toxicol Sci 95:163–171Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508Suzuki K, Mizuno Y, Yoshida M (1990) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-like compounds on mitochondrial respiration. Adv Neurol 53:215–218Pinilla LL, Ugun-Klusek A, Rutella S, De Girolamo LA (2021) Hypoxia signaling in Parkinson’s disease: there is use in asking “What HIF?” Biology 10:723Khwanraj K, Phruksaniyom C, Madlah S, Dharmasaroja P (2015) Differential expression of tyrosine hydroxylase protein and apoptosis-related genes in differentiated and undifferentiated SH-SY5Y neuroblastoma cells treated with MPP. Neurol Res Int 2015:734703Gutbier S, Spreng A-S, Delp J, Schildknecht S, Karreman C, Suciu I, Brunner T, Groettrup M et al (2018) Prevention of neuronal apoptosis by astrocytes through thiol-mediated stress response modulation and accelerated recovery from proteotoxic stress. Cell Death Differ 25:2101–2117Gutbier S, Kyriakou S, Schildknecht S, Ückert A-K, Brüll M, Lewis F, Dickens D, Pearson L et al (2020) Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants. Arch Toxicol 94:3105–3123O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8:1535–1550Specian AF, Serpeloni JM, Tuttis K, Ribeiro DL, Ciliao HL, Varanda EA, Sannomiya M, Lopez-Martinez W et al (2016) LDH, proliferation curves and cell cycle analysis are the most suitable assays to identify and characterize new phytotherapeutic compounds. Cytotechnol 68:2729–2744Bruce LL, Christensen MA, Fritzsch B (1997) Electron microscopic differentiation of directly and transneuronally transported DiI and applications for studies of synaptogenesis. J Neurosci Methods 73:107–112Honig MG, Hume RI (1989) Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci 12:40–41Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD et al (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312Uribe P, Villegas JV, Boguen R, Treulen F, Sánchez R, Mallmann P, Isachenko V, Rahimi G et al (2017) Use of the fluorescent dye tetramethylrhodamine methyl ester perchlorate for mitochondrial membrane potential assessment in human spermatozoa. Andrologia 49(9):e12753Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115Nikolić MD, Pavlović AN, Mitić SS, Tošić SB, Mitić MN, Kaličanin BM, Manojlović DD, Stanković DM (2019) Use of cyclic voltammetry to determine the antioxidant capacity of berry fruits: correlation with spectrophotometric assays. Eur J Hortic Sci 84:152–160Rebelo MJ, Rego R, Ferreira M, Oliveira MC (2013) Comparative study of the antioxidant capacity and polyphenol content of Douro wines by chemical and electrochemical methods. Food Chem 141:566–573Głod BK, Kiersztyn I, Piszcz P (2014) Total antioxidant potential assay with cyclic voltammetry and/or differential pulse voltammetry measurements. J Electroanal Chem 719:24–29Jara-Palacios MJ, Escudero-Gilete ML, Hernández-Hierro JM, Heredia FJ, Hernanz D (2017) Cyclic voltammetry to evaluate the antioxidant potential in winemaking byproducts. Talanta 165:211–215Song J, Miermont A, Lim CT, Kamm RD (2018) A 3D microvascular network model to study the impact of hypoxia on the extravasation potential of breast cell lines. Sci Rep 8:17949Tambuwala MM, Khan MN, Thompson P, McCarron PA (2019) Albumin nano-encapsulation of caffeic acid phenethyl ester and piceatannol potentiated its ability to modulate HIF and NF-kB pathways and improves therapeutic outcome in experimental colitis. Drug Deliv Transl Res 9:14–24Yang S-A, Yoon J, Kim K, Park Y (2017) Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease. Cytometry A 91:510–518Camins A, Sureda FX, Gabriel C, Pallas M, Escubedo E, Camarasa J (1997) Effect of 1-methyl-4-phenylpyridinium (MPP+) on mitochondrial membrane potential in cerebellar neurons: Interaction with the NMDA receptor. J Neural Transm 104:569–577Kim-Han JS, Antenor-Dorsey JA, O’Malley KL (2011) The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. J Neurosci 31:7212–7221Chen Y, Chen C, Song D, Liu T, Cheng O (2021) Dexmedetomidine protects SH-SY5Y cells against MPP+-induced declining of mitochondrial membrane potential and cell cycle deficits. Eur J Neurosci (in press). https://doi.org/10.1111/ejn.15252Mapa MST, Viet QL, Wimalasena K (2018) Characteristics of the mitochondrial and cellular uptake of MPP+, as probed by the fluorescent mimic, 4'I-MPP+. PLoS ONE 13:e0197946TeSlaa T, Teitell MA (2014) Techniques to monitor glycolysis. Methods Enzymol 542:91–114Van der Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y (eds) Mitochondrial dysfunction in drug-induced toxicity. John Wiley, Hoboken, pp 327–352Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837–1845Allen SP, Rajan S, Duffy L, Mortiboys H, Higginbottom A, Grierson AJ, Shaw PJ (2014) Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis. Neurobiol Aging 35:1499–1509Brett AMO, Ghica ME (2003) Electochemical oxidation of quercetin. Electroanalysis 15:1745–1750Keyrouz R, Abasq ML, Le Bourvellec C, Blanc N, Audibert L, Argall E, Hauchard D (2011) Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany. Food Chem 126:831–836Dong S-Y, Guo Y-J, Feng Y, Cui X-X, Kuo S-H, Liu T, Wu Y-C (2016) The epigenetic regulation of HIF-1α by SIRT1 in MPP(+) treated SH-SY5Y cells. Biochem Biophys Res Commun 470:453–459Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840Henderson MX, Trojanowski JQ, Lee VM-Y (2019) α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies. Neurosci Lett 709:134316Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, Elstner M, Morris CM (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68:1820–1825Kaur D, Rajagopalan S, Andersen JK (2009) Chronic expression of H-ferritin in dopaminergic midbrain neurons results in an age-related expansion of the labile iron pool and subsequent neurodegeneration: implications for Parkinson’s disease. Brain Res 1297:17–22Walter U (2010) Transcranial sonography in brain disorders with trace metal accumulation. Int Rev Neurobiol 90:166–178Nuñez M, Chana-Cuevas P (2018) New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals 11:109Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland A-S et al (2020) Conservative iron chelation for neurodegenerative diseases such as Parkinson’s disease and amyotrophic lateral sclerosis. J Neural Transm 127:189–203Napier I, Ponka P, Richardson DR (2005) Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 105:1867–1874Mena NP, García-Beltrán O, Lourido F, Urrutia PJ, Mena R, Castro-Castillo V, Cassels BK, Núñez MT (2015) The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Biochem Biophys Res Commun 463:787–792Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105Paul BT, Manz DH, Torti FM, Torti SV (2017) Mitochondria and iron: current questions. Expert Rev Hematol 10:65–79Petrat F, Weisheit D, Lensen M, de Groot H, Sustmann R, Rauen U (2002) Selective determination of mitochondrial chelatable iron in viable cells with a new fluorescent sensor. Biochem J 362:137–147Glickstein H, El RB, Shvartsman M, Cabantchik ZI (2005) Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood 106:3242–3250Reelfs O, Abbate V, Hider RC, Pourzand C (2016) A powerful mitochondria-targeted iron chelator affords high photoprotection against solar ultraviolet a radiation. J Invest Dermatol 136:1692–1700Cilibrizzi A, Pourzand C, Abbate V, Reelfs O, Versari L, Floresta G, Hider R (2022) The synthesis and properties of mitochondrial targeted iron chelators BioMetals (in press). https://doi.org/10.1007/s10534-022-00383-8Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448Gómez FJ, Aguirre P, Gonzalez-Billault C, Núñez MT (2010) Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). J Neural Transm 118:421–431Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WST et al (2011) Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation 8:129Gao J, Zhou Q, Wu D, Chen L (2021) Mitochondrial iron metabolism and its role in diseases. Clin Chim Acta 513:6–12Stehling O, Lill R (2013) The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol 5:a011312Ma L, Azad MG, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF et al (2021) Parkinson’s disease: alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 41:101896Li X, Hao S, Han A, Yang Y, Fang G, Liu G, Liu J, Wang S (2019) Intracellular Fenton reaction based on mitochondria-targeted copper(ii)–peptide complex for induced apoptosis. J Mater Chem B 7:4008Lee DH, Kim C-S, Lee YJ (2011) Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol 49:271–280Pérez-Barrón G, Montes S, Aguirre-Vidal Y, Santiago M, Gallardo E, Espartero JL, Rios C, Monroy-Noyola A (2021) Antioxidant effect of hydroxytyrosol, hydroxytyrosol acetate and nitrohydroxytyrosol in a rat MPP+ model of Parkinson’s disease. Neurochem Res 46:2923–2935Liddell JR, White AR (2018) Nexus between mitochondrial function, iron, copper and glutathione in Parkinson’s disease. Neurochem Int 117:126–138Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75–86Zhu JH, Gusdon AM, Cimen H, Van Houten B, Koc E, Chu CT (2012) Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2. Cell Death Dis 3:e312Dukes AA, Bai Q, Van Laar VS, Zhou Y, Ilin V, David CN, Agim ZS, Bonkowsky JL et al (2016) Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP+ exposure. Neurobiol Dis 95:238–249Chen C, Turnbull DM, Reeve AK (2019) Mitochondrial dysfunction in Parkinson’s disease - cause or consequence? Biology 8:38Raza C, Rabia Anjum R, Ain Shakeel NUI (2019) Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci 226:77–90Ferrucci M, Fornai F (2021) MPTP neurotoxicity: actions, mechanisms, and animal modeling of Parkinson’s disease. In: Kostrzewa RM (ed) Handbook of Neurotoxicity. Springer, ChamPoetsch AR (2020) The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 18:207–219Pettifer KM, Jiang S, Bau C, Ballerini P, D’Alimonte I, Werstiuk ES, Rathbone MP (2007) MPP+-induced cytotoxicity in neuroblastoma cells: antagonism and reversal by guanosine. Purinergic Signal 3:399–409Chen L-J, Gao Y-Q, Li X-J, Shen D-H, Sun F-Y (2005) Melatonin protects against MPTP/MPP+ -induced mitochondrial DNA oxidative damage in vivo and in vitro. J Pineal Res 39:34–42Kwok KH-H, Ho PW, Chu AC, Ho JW, Liu HF, Yiu DC, Chan KH, Kung MH et al (2010) Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med 49:1023–1035Ashrafi G, Schwarz TL (2012) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42Li H-S, Zhou Y-N, Lu L, Li S-F, Long D, Chen X-L, Zhang J-B, Feng L et al (2019) HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol 25:101–109Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF et al (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886Briston T, Yang J, Ashcroft M (2011) HIF-1α localization with mitochondria: a new role for an old favorite? Cell Cycle 10:4170–4171Hara Y, Yanatori I, Tanaka A, Kishi F, Lemasters JJ, Nishina S, Sasaki K, Hino K (2020) Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep 21:e50202© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://pubmed.ncbi.nlm.nih.gov/36357615/MitocondríaParkinsonAntioxidantIron chelationMitochondria; MPP+NeuroprotectionParkinson’s diseaseA Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s DiseaseArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/f00563bd-98ed-4d9d-9a74-d66d3e0ddc18/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain4203https://repositorio.unibague.edu.co/bitstreams/4e96fd68-32d5-4e53-95a0-704169c39ed6/download7600b88503ea92ec84ea3d2eb09d6d6cMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg24229https://repositorio.unibague.edu.co/bitstreams/221e1c4b-0cad-41c7-a28d-c07a7464659d/download08da6115c49ff8ff9d9314e80d189848MD54ORIGINALArtículo.pdfArtículo.pdfapplication/pdf140394https://repositorio.unibague.edu.co/bitstreams/abd69c66-9cf6-427d-b1fd-462914412bb1/downloadd3011a0ed8ca49864119263f5bdbe0f7MD5220.500.12313/5572oai:repositorio.unibague.edu.co:20.500.12313/55722025-09-12 12:24:02.672https://creativecommons.org/licenses/by-nc/4.0/© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=