A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease
Coumarins are plant-derived polyphenolic compounds belonging to the benzopyrones family, possessing wide-ranging pharmaceutical applications including cytoprotection, which may translate into therapeutic potential for multiple diseases, including Parkinson’s disease (PD). Here we demonstrate the neu...
- Autores:
-
Fouché, Belinda
Turner, Stephanie
Gorham, Rebecca
Stephenson, Eloise J.
Gutbier, Simon
Elson, Joanna L.
García-Beltrán, Olimpo
Van Der Westhuizen, Francois H.
Pienaar, Ilse S.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5572
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5572
https://link.springer.com/article/10.1007/s12035-022-03107-8
- Palabra clave:
- Mitocondría
Parkinson
Antioxidant
Iron chelation
Mitochondria; MPP+
Neuroprotection
Parkinson’s disease
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
| id |
UNIBAGUE2_075e55f3466a4b43f8f11143b7a3bff6 |
|---|---|
| oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/5572 |
| network_acronym_str |
UNIBAGUE2 |
| network_name_str |
Repositorio Universidad de Ibagué |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease |
| title |
A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease |
| spellingShingle |
A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease Mitocondría Parkinson Antioxidant Iron chelation Mitochondria; MPP+ Neuroprotection Parkinson’s disease |
| title_short |
A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease |
| title_full |
A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease |
| title_fullStr |
A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease |
| title_full_unstemmed |
A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease |
| title_sort |
A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease |
| dc.creator.fl_str_mv |
Fouché, Belinda Turner, Stephanie Gorham, Rebecca Stephenson, Eloise J. Gutbier, Simon Elson, Joanna L. García-Beltrán, Olimpo Van Der Westhuizen, Francois H. Pienaar, Ilse S. |
| dc.contributor.author.none.fl_str_mv |
Fouché, Belinda Turner, Stephanie Gorham, Rebecca Stephenson, Eloise J. Gutbier, Simon Elson, Joanna L. García-Beltrán, Olimpo Van Der Westhuizen, Francois H. Pienaar, Ilse S. |
| dc.subject.armarc.none.fl_str_mv |
Mitocondría Parkinson |
| topic |
Mitocondría Parkinson Antioxidant Iron chelation Mitochondria; MPP+ Neuroprotection Parkinson’s disease |
| dc.subject.proposal.eng.fl_str_mv |
Antioxidant Iron chelation Mitochondria; MPP+ Neuroprotection Parkinson’s disease |
| description |
Coumarins are plant-derived polyphenolic compounds belonging to the benzopyrones family, possessing wide-ranging pharmaceutical applications including cytoprotection, which may translate into therapeutic potential for multiple diseases, including Parkinson’s disease (PD). Here we demonstrate the neuroprotective potential of a new polyhydroxyl coumarin, N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide (CT51), against the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+). MPP+’s mechanism of toxicity relates to its ability to inhibit complex I of the mitochondrial electron transport chain (METC), leading to adenosine triphosphate (ATP) depletion, increased reactive oxygen species (ROS) production, and apoptotic cell death, hence mimicking PD-related neuropathology. Dopaminergic differentiated human neuroblastoma cells were briefly pretreated with CT51, followed by toxin exposure. CT51 significantly restored somatic cell viability and neurite processes; hence, the drug targets cell bodies and axons thereby preserving neural function and circuitry against PD-related damage. Moreover, MPP+ emulates the iron dyshomeostasis affecting dopaminergic neurons in PD-affected brains, whilst CT51 was previously revealed as an effective iron chelator that preferentially partitions to mitochondria. We extend these findings by characterising the drug’s interactive effects at the METC level. CT51 did not improve mitochondrial coupling efficiency. However, voltammetric measurements and high-resolution respirometry analysis revealed that CT51 acts as an antioxidant agent. Also, the neuronal protection afforded by CT51 associated with downregulating MPP+-induced upregulated expression of hypoxia-inducible factor 1 alpha (HIF-1α), a protein which regulates iron homeostasis and protects against certain forms of oxidative stress after translocating to mitochondria. Our findings support the further development of CT51 as a dual functioning iron chelator and antioxidant antiparkinsonian agent |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023-02 |
| dc.date.accessioned.none.fl_str_mv |
2025-08-29T22:33:04Z |
| dc.date.available.none.fl_str_mv |
2025-08-29T22:33:04Z |
| dc.type.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Fouché, B., Turner, S., Gorham, R., Stephenson, E., Gutbier, S., Elson, J., García-Beltrán, O., Van Der Westhuizen, F. y Pienaar, I. (2023). A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease. Molecular Neurobiology, 60(2), 749 - 767. DOI: 10.1007/s12035-022-03107-8 |
| dc.identifier.doi.none.fl_str_mv |
10.1007/s12035-022-03107-8 |
| dc.identifier.eissn.none.fl_str_mv |
15591182 |
| dc.identifier.issn.none.fl_str_mv |
08937648 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/5572 |
| dc.identifier.url.none.fl_str_mv |
https://link.springer.com/article/10.1007/s12035-022-03107-8 |
| identifier_str_mv |
Fouché, B., Turner, S., Gorham, R., Stephenson, E., Gutbier, S., Elson, J., García-Beltrán, O., Van Der Westhuizen, F. y Pienaar, I. (2023). A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease. Molecular Neurobiology, 60(2), 749 - 767. DOI: 10.1007/s12035-022-03107-8 10.1007/s12035-022-03107-8 15591182 08937648 |
| url |
https://hdl.handle.net/20.500.12313/5572 https://link.springer.com/article/10.1007/s12035-022-03107-8 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.none.fl_str_mv |
767 |
| dc.relation.citationissue.none.fl_str_mv |
2 |
| dc.relation.citationstartpage.none.fl_str_mv |
749 |
| dc.relation.citationvolume.none.fl_str_mv |
60 |
| dc.relation.ispartofjournal.none.fl_str_mv |
Molecular Neurobiology |
| dc.relation.references.none.fl_str_mv |
Lyons TJ, Eide DJ (2007) Transport and storage of metal ions in biology. In: Bertini I, Gray HB, Stiefel EI, Valentine JS (eds) Biological Inorganic Chemistry. University Science Books, Sausalito, pp 57–77 Mühlenhoff U, Hoffmann B, Richter N, Rietzschel N, Spantgar F, Stehling O, Uzarska MA, Lill R (2015) Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol 94:292–308 Rouault TA (2012) Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech 5:155–164 Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ et al (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 94:280–291 Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H et al (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823:1491–1508 Lill R, Srinivasan V, Mühlenhoff U (2014) The role of mitochondria in cytosolic-nuclear iron-sulfur protein biogenesis and in cellular iron regulation. Curr Opin Microbiol 22C:111–119 Hadzhieva M, Kirches E, Mawrin C (2014) Review: Iron metabolism and the role of iron in neurodegenerative disorders. Neuropathol Appl Neurobiol 40:240–257 Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1987) Increased nigral iron content in post-mortem parkinsonian brain. Lancet 2:1219–1220 Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836 Lu J, Liu X, Tian Y, Li H, Ren Z, Liang S, Zhang G, Zhao C et al (2019) Moxibustion exerts a neuroprotective effect through antiferroptosis in Parkinson’s disease. Evid Based Complement Alternat Med 2019:2735492c Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, Li X, Zhao C et al (2020) FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 17:1796–1812 García-Beltrán O, Mena NP, Aguirre P, Germán B-G, Galdámez A, Nagles A, Adasme T, Hidalgo C et al (2017) Development of an iron-selective antioxidant probe with protective effects on neuronal function. PLoS ONE 12:e0189043 Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980 Ramachandiran S, Hansen JM, Jones DP, Richardson JR, Miller GW (2007) Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation. Toxicol Sci 95:163–171 Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508 Suzuki K, Mizuno Y, Yoshida M (1990) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-like compounds on mitochondrial respiration. Adv Neurol 53:215–218 Pinilla LL, Ugun-Klusek A, Rutella S, De Girolamo LA (2021) Hypoxia signaling in Parkinson’s disease: there is use in asking “What HIF?” Biology 10:723 Khwanraj K, Phruksaniyom C, Madlah S, Dharmasaroja P (2015) Differential expression of tyrosine hydroxylase protein and apoptosis-related genes in differentiated and undifferentiated SH-SY5Y neuroblastoma cells treated with MPP. Neurol Res Int 2015:734703 Gutbier S, Spreng A-S, Delp J, Schildknecht S, Karreman C, Suciu I, Brunner T, Groettrup M et al (2018) Prevention of neuronal apoptosis by astrocytes through thiol-mediated stress response modulation and accelerated recovery from proteotoxic stress. Cell Death Differ 25:2101–2117 Gutbier S, Kyriakou S, Schildknecht S, Ückert A-K, Brüll M, Lewis F, Dickens D, Pearson L et al (2020) Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants. Arch Toxicol 94:3105–3123 O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426 Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8:1535–1550 Specian AF, Serpeloni JM, Tuttis K, Ribeiro DL, Ciliao HL, Varanda EA, Sannomiya M, Lopez-Martinez W et al (2016) LDH, proliferation curves and cell cycle analysis are the most suitable assays to identify and characterize new phytotherapeutic compounds. Cytotechnol 68:2729–2744 Bruce LL, Christensen MA, Fritzsch B (1997) Electron microscopic differentiation of directly and transneuronally transported DiI and applications for studies of synaptogenesis. J Neurosci Methods 73:107–112 Honig MG, Hume RI (1989) Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci 12:40–41 Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD et al (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59 Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312 Uribe P, Villegas JV, Boguen R, Treulen F, Sánchez R, Mallmann P, Isachenko V, Rahimi G et al (2017) Use of the fluorescent dye tetramethylrhodamine methyl ester perchlorate for mitochondrial membrane potential assessment in human spermatozoa. Andrologia 49(9):e12753 Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115 Nikolić MD, Pavlović AN, Mitić SS, Tošić SB, Mitić MN, Kaličanin BM, Manojlović DD, Stanković DM (2019) Use of cyclic voltammetry to determine the antioxidant capacity of berry fruits: correlation with spectrophotometric assays. Eur J Hortic Sci 84:152–160 Rebelo MJ, Rego R, Ferreira M, Oliveira MC (2013) Comparative study of the antioxidant capacity and polyphenol content of Douro wines by chemical and electrochemical methods. Food Chem 141:566–573 Głod BK, Kiersztyn I, Piszcz P (2014) Total antioxidant potential assay with cyclic voltammetry and/or differential pulse voltammetry measurements. J Electroanal Chem 719:24–29 Jara-Palacios MJ, Escudero-Gilete ML, Hernández-Hierro JM, Heredia FJ, Hernanz D (2017) Cyclic voltammetry to evaluate the antioxidant potential in winemaking byproducts. Talanta 165:211–215 Song J, Miermont A, Lim CT, Kamm RD (2018) A 3D microvascular network model to study the impact of hypoxia on the extravasation potential of breast cell lines. Sci Rep 8:17949 Tambuwala MM, Khan MN, Thompson P, McCarron PA (2019) Albumin nano-encapsulation of caffeic acid phenethyl ester and piceatannol potentiated its ability to modulate HIF and NF-kB pathways and improves therapeutic outcome in experimental colitis. Drug Deliv Transl Res 9:14–24 Yang S-A, Yoon J, Kim K, Park Y (2017) Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease. Cytometry A 91:510–518 Camins A, Sureda FX, Gabriel C, Pallas M, Escubedo E, Camarasa J (1997) Effect of 1-methyl-4-phenylpyridinium (MPP+) on mitochondrial membrane potential in cerebellar neurons: Interaction with the NMDA receptor. J Neural Transm 104:569–577 Kim-Han JS, Antenor-Dorsey JA, O’Malley KL (2011) The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. J Neurosci 31:7212–7221 Chen Y, Chen C, Song D, Liu T, Cheng O (2021) Dexmedetomidine protects SH-SY5Y cells against MPP+-induced declining of mitochondrial membrane potential and cell cycle deficits. Eur J Neurosci (in press). https://doi.org/10.1111/ejn.15252 Mapa MST, Viet QL, Wimalasena K (2018) Characteristics of the mitochondrial and cellular uptake of MPP+, as probed by the fluorescent mimic, 4'I-MPP+. PLoS ONE 13:e0197946 TeSlaa T, Teitell MA (2014) Techniques to monitor glycolysis. Methods Enzymol 542:91–114 Van der Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033 Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y (eds) Mitochondrial dysfunction in drug-induced toxicity. John Wiley, Hoboken, pp 327–352 Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837–1845 Allen SP, Rajan S, Duffy L, Mortiboys H, Higginbottom A, Grierson AJ, Shaw PJ (2014) Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis. Neurobiol Aging 35:1499–1509 Brett AMO, Ghica ME (2003) Electochemical oxidation of quercetin. Electroanalysis 15:1745–1750 Keyrouz R, Abasq ML, Le Bourvellec C, Blanc N, Audibert L, Argall E, Hauchard D (2011) Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany. Food Chem 126:831–836 Dong S-Y, Guo Y-J, Feng Y, Cui X-X, Kuo S-H, Liu T, Wu Y-C (2016) The epigenetic regulation of HIF-1α by SIRT1 in MPP(+) treated SH-SY5Y cells. Biochem Biophys Res Commun 470:453–459 Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840 Henderson MX, Trojanowski JQ, Lee VM-Y (2019) α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies. Neurosci Lett 709:134316 Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, Elstner M, Morris CM (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68:1820–1825 Kaur D, Rajagopalan S, Andersen JK (2009) Chronic expression of H-ferritin in dopaminergic midbrain neurons results in an age-related expansion of the labile iron pool and subsequent neurodegeneration: implications for Parkinson’s disease. Brain Res 1297:17–22 Walter U (2010) Transcranial sonography in brain disorders with trace metal accumulation. Int Rev Neurobiol 90:166–178 Nuñez M, Chana-Cuevas P (2018) New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals 11:109 Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland A-S et al (2020) Conservative iron chelation for neurodegenerative diseases such as Parkinson’s disease and amyotrophic lateral sclerosis. J Neural Transm 127:189–203 Napier I, Ponka P, Richardson DR (2005) Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 105:1867–1874 Mena NP, García-Beltrán O, Lourido F, Urrutia PJ, Mena R, Castro-Castillo V, Cassels BK, Núñez MT (2015) The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Biochem Biophys Res Commun 463:787–792 Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105 Paul BT, Manz DH, Torti FM, Torti SV (2017) Mitochondria and iron: current questions. Expert Rev Hematol 10:65–79 Petrat F, Weisheit D, Lensen M, de Groot H, Sustmann R, Rauen U (2002) Selective determination of mitochondrial chelatable iron in viable cells with a new fluorescent sensor. Biochem J 362:137–147 Glickstein H, El RB, Shvartsman M, Cabantchik ZI (2005) Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood 106:3242–3250 Reelfs O, Abbate V, Hider RC, Pourzand C (2016) A powerful mitochondria-targeted iron chelator affords high photoprotection against solar ultraviolet a radiation. J Invest Dermatol 136:1692–1700 Cilibrizzi A, Pourzand C, Abbate V, Reelfs O, Versari L, Floresta G, Hider R (2022) The synthesis and properties of mitochondrial targeted iron chelators BioMetals (in press). https://doi.org/10.1007/s10534-022-00383-8 Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448 Gómez FJ, Aguirre P, Gonzalez-Billault C, Núñez MT (2010) Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). J Neural Transm 118:421–431 Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WST et al (2011) Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation 8:129 Gao J, Zhou Q, Wu D, Chen L (2021) Mitochondrial iron metabolism and its role in diseases. Clin Chim Acta 513:6–12 Stehling O, Lill R (2013) The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol 5:a011312 Ma L, Azad MG, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF et al (2021) Parkinson’s disease: alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 41:101896 Li X, Hao S, Han A, Yang Y, Fang G, Liu G, Liu J, Wang S (2019) Intracellular Fenton reaction based on mitochondria-targeted copper(ii)–peptide complex for induced apoptosis. J Mater Chem B 7:4008 Lee DH, Kim C-S, Lee YJ (2011) Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol 49:271–280 Pérez-Barrón G, Montes S, Aguirre-Vidal Y, Santiago M, Gallardo E, Espartero JL, Rios C, Monroy-Noyola A (2021) Antioxidant effect of hydroxytyrosol, hydroxytyrosol acetate and nitrohydroxytyrosol in a rat MPP+ model of Parkinson’s disease. Neurochem Res 46:2923–2935 Liddell JR, White AR (2018) Nexus between mitochondrial function, iron, copper and glutathione in Parkinson’s disease. Neurochem Int 117:126–138 Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75–86 Zhu JH, Gusdon AM, Cimen H, Van Houten B, Koc E, Chu CT (2012) Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2. Cell Death Dis 3:e312 Dukes AA, Bai Q, Van Laar VS, Zhou Y, Ilin V, David CN, Agim ZS, Bonkowsky JL et al (2016) Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP+ exposure. Neurobiol Dis 95:238–249 Chen C, Turnbull DM, Reeve AK (2019) Mitochondrial dysfunction in Parkinson’s disease - cause or consequence? Biology 8:38 Raza C, Rabia Anjum R, Ain Shakeel NUI (2019) Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci 226:77–90 Ferrucci M, Fornai F (2021) MPTP neurotoxicity: actions, mechanisms, and animal modeling of Parkinson’s disease. In: Kostrzewa RM (ed) Handbook of Neurotoxicity. Springer, Cham Poetsch AR (2020) The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 18:207–219 Pettifer KM, Jiang S, Bau C, Ballerini P, D’Alimonte I, Werstiuk ES, Rathbone MP (2007) MPP+-induced cytotoxicity in neuroblastoma cells: antagonism and reversal by guanosine. Purinergic Signal 3:399–409 Chen L-J, Gao Y-Q, Li X-J, Shen D-H, Sun F-Y (2005) Melatonin protects against MPTP/MPP+ -induced mitochondrial DNA oxidative damage in vivo and in vitro. J Pineal Res 39:34–42 Kwok KH-H, Ho PW, Chu AC, Ho JW, Liu HF, Yiu DC, Chan KH, Kung MH et al (2010) Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med 49:1023–1035 Ashrafi G, Schwarz TL (2012) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42 Li H-S, Zhou Y-N, Lu L, Li S-F, Long D, Chen X-L, Zhang J-B, Feng L et al (2019) HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol 25:101–109 Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268 Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF et al (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886 Briston T, Yang J, Ashcroft M (2011) HIF-1α localization with mitochondria: a new role for an old favorite? Cell Cycle 10:4170–4171 Hara Y, Yanatori I, Tanaka A, Kishi F, Lemasters JJ, Nishina S, Sasaki K, Hino K (2020) Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep 21:e50202 |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
| dc.rights.license.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
closedAccess |
| rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| dc.publisher.place.none.fl_str_mv |
Estados Unidos |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
https://pubmed.ncbi.nlm.nih.gov/36357615/ |
| institution |
Universidad de Ibagué |
| bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/f00563bd-98ed-4d9d-9a74-d66d3e0ddc18/download https://repositorio.unibague.edu.co/bitstreams/4e96fd68-32d5-4e53-95a0-704169c39ed6/download https://repositorio.unibague.edu.co/bitstreams/221e1c4b-0cad-41c7-a28d-c07a7464659d/download https://repositorio.unibague.edu.co/bitstreams/abd69c66-9cf6-427d-b1fd-462914412bb1/download |
| bitstream.checksum.fl_str_mv |
2fa3e590786b9c0f3ceba1b9656b7ac3 7600b88503ea92ec84ea3d2eb09d6d6c 08da6115c49ff8ff9d9314e80d189848 d3011a0ed8ca49864119263f5bdbe0f7 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
| repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
| _version_ |
1851059985098735616 |
| spelling |
Fouché, Belindafcc113fb-1061-4ae2-904b-62cd1054ed67-1Turner, Stephanie0dafe24d-904d-4e3a-82ec-eb646a72d7fc-1Gorham, Rebeccadb8132bc-debf-411d-9be4-d3b079903d0b-1Stephenson, Eloise J.c7f27bc9-6463-4295-a403-27465d12d7d3-1Gutbier, Simonf6cefc73-1da0-4436-b0a3-8bcfa067a545-1Elson, Joanna L.a15b77d6-bae6-4dba-8e03-e12009f7d0f0-1García-Beltrán, Olimpo5bc12f58-2b62-4c7c-a477-0820b4de72e9-1Van Der Westhuizen, Francois H.5307774c-fc85-4f81-90f7-a89460c37e9c-1Pienaar, Ilse S.4dcd4d53-71c6-4202-befe-6356390d6ea2-12025-08-29T22:33:04Z2025-08-29T22:33:04Z2023-02Coumarins are plant-derived polyphenolic compounds belonging to the benzopyrones family, possessing wide-ranging pharmaceutical applications including cytoprotection, which may translate into therapeutic potential for multiple diseases, including Parkinson’s disease (PD). Here we demonstrate the neuroprotective potential of a new polyhydroxyl coumarin, N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide (CT51), against the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+). MPP+’s mechanism of toxicity relates to its ability to inhibit complex I of the mitochondrial electron transport chain (METC), leading to adenosine triphosphate (ATP) depletion, increased reactive oxygen species (ROS) production, and apoptotic cell death, hence mimicking PD-related neuropathology. Dopaminergic differentiated human neuroblastoma cells were briefly pretreated with CT51, followed by toxin exposure. CT51 significantly restored somatic cell viability and neurite processes; hence, the drug targets cell bodies and axons thereby preserving neural function and circuitry against PD-related damage. Moreover, MPP+ emulates the iron dyshomeostasis affecting dopaminergic neurons in PD-affected brains, whilst CT51 was previously revealed as an effective iron chelator that preferentially partitions to mitochondria. We extend these findings by characterising the drug’s interactive effects at the METC level. CT51 did not improve mitochondrial coupling efficiency. However, voltammetric measurements and high-resolution respirometry analysis revealed that CT51 acts as an antioxidant agent. Also, the neuronal protection afforded by CT51 associated with downregulating MPP+-induced upregulated expression of hypoxia-inducible factor 1 alpha (HIF-1α), a protein which regulates iron homeostasis and protects against certain forms of oxidative stress after translocating to mitochondria. Our findings support the further development of CT51 as a dual functioning iron chelator and antioxidant antiparkinsonian agentapplication/pdfFouché, B., Turner, S., Gorham, R., Stephenson, E., Gutbier, S., Elson, J., García-Beltrán, O., Van Der Westhuizen, F. y Pienaar, I. (2023). A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s Disease. Molecular Neurobiology, 60(2), 749 - 767. DOI: 10.1007/s12035-022-03107-810.1007/s12035-022-03107-81559118208937648https://hdl.handle.net/20.500.12313/5572https://link.springer.com/article/10.1007/s12035-022-03107-8engSpringerEstados Unidos767274960Molecular NeurobiologyLyons TJ, Eide DJ (2007) Transport and storage of metal ions in biology. In: Bertini I, Gray HB, Stiefel EI, Valentine JS (eds) Biological Inorganic Chemistry. University Science Books, Sausalito, pp 57–77Mühlenhoff U, Hoffmann B, Richter N, Rietzschel N, Spantgar F, Stehling O, Uzarska MA, Lill R (2015) Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol 94:292–308Rouault TA (2012) Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech 5:155–164Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ et al (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 94:280–291Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H et al (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823:1491–1508Lill R, Srinivasan V, Mühlenhoff U (2014) The role of mitochondria in cytosolic-nuclear iron-sulfur protein biogenesis and in cellular iron regulation. Curr Opin Microbiol 22C:111–119Hadzhieva M, Kirches E, Mawrin C (2014) Review: Iron metabolism and the role of iron in neurodegenerative disorders. Neuropathol Appl Neurobiol 40:240–257Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1987) Increased nigral iron content in post-mortem parkinsonian brain. Lancet 2:1219–1220Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836Lu J, Liu X, Tian Y, Li H, Ren Z, Liang S, Zhang G, Zhao C et al (2019) Moxibustion exerts a neuroprotective effect through antiferroptosis in Parkinson’s disease. Evid Based Complement Alternat Med 2019:2735492cTian Y, Lu J, Hao X, Li H, Zhang G, Liu X, Li X, Zhao C et al (2020) FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 17:1796–1812García-Beltrán O, Mena NP, Aguirre P, Germán B-G, Galdámez A, Nagles A, Adasme T, Hidalgo C et al (2017) Development of an iron-selective antioxidant probe with protective effects on neuronal function. PLoS ONE 12:e0189043Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980Ramachandiran S, Hansen JM, Jones DP, Richardson JR, Miller GW (2007) Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation. Toxicol Sci 95:163–171Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508Suzuki K, Mizuno Y, Yoshida M (1990) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-like compounds on mitochondrial respiration. Adv Neurol 53:215–218Pinilla LL, Ugun-Klusek A, Rutella S, De Girolamo LA (2021) Hypoxia signaling in Parkinson’s disease: there is use in asking “What HIF?” Biology 10:723Khwanraj K, Phruksaniyom C, Madlah S, Dharmasaroja P (2015) Differential expression of tyrosine hydroxylase protein and apoptosis-related genes in differentiated and undifferentiated SH-SY5Y neuroblastoma cells treated with MPP. Neurol Res Int 2015:734703Gutbier S, Spreng A-S, Delp J, Schildknecht S, Karreman C, Suciu I, Brunner T, Groettrup M et al (2018) Prevention of neuronal apoptosis by astrocytes through thiol-mediated stress response modulation and accelerated recovery from proteotoxic stress. Cell Death Differ 25:2101–2117Gutbier S, Kyriakou S, Schildknecht S, Ückert A-K, Brüll M, Lewis F, Dickens D, Pearson L et al (2020) Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants. Arch Toxicol 94:3105–3123O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8:1535–1550Specian AF, Serpeloni JM, Tuttis K, Ribeiro DL, Ciliao HL, Varanda EA, Sannomiya M, Lopez-Martinez W et al (2016) LDH, proliferation curves and cell cycle analysis are the most suitable assays to identify and characterize new phytotherapeutic compounds. Cytotechnol 68:2729–2744Bruce LL, Christensen MA, Fritzsch B (1997) Electron microscopic differentiation of directly and transneuronally transported DiI and applications for studies of synaptogenesis. J Neurosci Methods 73:107–112Honig MG, Hume RI (1989) Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci 12:40–41Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD et al (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312Uribe P, Villegas JV, Boguen R, Treulen F, Sánchez R, Mallmann P, Isachenko V, Rahimi G et al (2017) Use of the fluorescent dye tetramethylrhodamine methyl ester perchlorate for mitochondrial membrane potential assessment in human spermatozoa. Andrologia 49(9):e12753Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115Nikolić MD, Pavlović AN, Mitić SS, Tošić SB, Mitić MN, Kaličanin BM, Manojlović DD, Stanković DM (2019) Use of cyclic voltammetry to determine the antioxidant capacity of berry fruits: correlation with spectrophotometric assays. Eur J Hortic Sci 84:152–160Rebelo MJ, Rego R, Ferreira M, Oliveira MC (2013) Comparative study of the antioxidant capacity and polyphenol content of Douro wines by chemical and electrochemical methods. Food Chem 141:566–573Głod BK, Kiersztyn I, Piszcz P (2014) Total antioxidant potential assay with cyclic voltammetry and/or differential pulse voltammetry measurements. J Electroanal Chem 719:24–29Jara-Palacios MJ, Escudero-Gilete ML, Hernández-Hierro JM, Heredia FJ, Hernanz D (2017) Cyclic voltammetry to evaluate the antioxidant potential in winemaking byproducts. Talanta 165:211–215Song J, Miermont A, Lim CT, Kamm RD (2018) A 3D microvascular network model to study the impact of hypoxia on the extravasation potential of breast cell lines. Sci Rep 8:17949Tambuwala MM, Khan MN, Thompson P, McCarron PA (2019) Albumin nano-encapsulation of caffeic acid phenethyl ester and piceatannol potentiated its ability to modulate HIF and NF-kB pathways and improves therapeutic outcome in experimental colitis. Drug Deliv Transl Res 9:14–24Yang S-A, Yoon J, Kim K, Park Y (2017) Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease. Cytometry A 91:510–518Camins A, Sureda FX, Gabriel C, Pallas M, Escubedo E, Camarasa J (1997) Effect of 1-methyl-4-phenylpyridinium (MPP+) on mitochondrial membrane potential in cerebellar neurons: Interaction with the NMDA receptor. J Neural Transm 104:569–577Kim-Han JS, Antenor-Dorsey JA, O’Malley KL (2011) The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. J Neurosci 31:7212–7221Chen Y, Chen C, Song D, Liu T, Cheng O (2021) Dexmedetomidine protects SH-SY5Y cells against MPP+-induced declining of mitochondrial membrane potential and cell cycle deficits. Eur J Neurosci (in press). https://doi.org/10.1111/ejn.15252Mapa MST, Viet QL, Wimalasena K (2018) Characteristics of the mitochondrial and cellular uptake of MPP+, as probed by the fluorescent mimic, 4'I-MPP+. PLoS ONE 13:e0197946TeSlaa T, Teitell MA (2014) Techniques to monitor glycolysis. Methods Enzymol 542:91–114Van der Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y (eds) Mitochondrial dysfunction in drug-induced toxicity. John Wiley, Hoboken, pp 327–352Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837–1845Allen SP, Rajan S, Duffy L, Mortiboys H, Higginbottom A, Grierson AJ, Shaw PJ (2014) Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis. Neurobiol Aging 35:1499–1509Brett AMO, Ghica ME (2003) Electochemical oxidation of quercetin. Electroanalysis 15:1745–1750Keyrouz R, Abasq ML, Le Bourvellec C, Blanc N, Audibert L, Argall E, Hauchard D (2011) Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany. Food Chem 126:831–836Dong S-Y, Guo Y-J, Feng Y, Cui X-X, Kuo S-H, Liu T, Wu Y-C (2016) The epigenetic regulation of HIF-1α by SIRT1 in MPP(+) treated SH-SY5Y cells. Biochem Biophys Res Commun 470:453–459Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840Henderson MX, Trojanowski JQ, Lee VM-Y (2019) α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies. Neurosci Lett 709:134316Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, Elstner M, Morris CM (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68:1820–1825Kaur D, Rajagopalan S, Andersen JK (2009) Chronic expression of H-ferritin in dopaminergic midbrain neurons results in an age-related expansion of the labile iron pool and subsequent neurodegeneration: implications for Parkinson’s disease. Brain Res 1297:17–22Walter U (2010) Transcranial sonography in brain disorders with trace metal accumulation. Int Rev Neurobiol 90:166–178Nuñez M, Chana-Cuevas P (2018) New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals 11:109Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland A-S et al (2020) Conservative iron chelation for neurodegenerative diseases such as Parkinson’s disease and amyotrophic lateral sclerosis. J Neural Transm 127:189–203Napier I, Ponka P, Richardson DR (2005) Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 105:1867–1874Mena NP, García-Beltrán O, Lourido F, Urrutia PJ, Mena R, Castro-Castillo V, Cassels BK, Núñez MT (2015) The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Biochem Biophys Res Commun 463:787–792Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105Paul BT, Manz DH, Torti FM, Torti SV (2017) Mitochondria and iron: current questions. Expert Rev Hematol 10:65–79Petrat F, Weisheit D, Lensen M, de Groot H, Sustmann R, Rauen U (2002) Selective determination of mitochondrial chelatable iron in viable cells with a new fluorescent sensor. Biochem J 362:137–147Glickstein H, El RB, Shvartsman M, Cabantchik ZI (2005) Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood 106:3242–3250Reelfs O, Abbate V, Hider RC, Pourzand C (2016) A powerful mitochondria-targeted iron chelator affords high photoprotection against solar ultraviolet a radiation. J Invest Dermatol 136:1692–1700Cilibrizzi A, Pourzand C, Abbate V, Reelfs O, Versari L, Floresta G, Hider R (2022) The synthesis and properties of mitochondrial targeted iron chelators BioMetals (in press). https://doi.org/10.1007/s10534-022-00383-8Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448Gómez FJ, Aguirre P, Gonzalez-Billault C, Núñez MT (2010) Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). J Neural Transm 118:421–431Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WST et al (2011) Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation 8:129Gao J, Zhou Q, Wu D, Chen L (2021) Mitochondrial iron metabolism and its role in diseases. Clin Chim Acta 513:6–12Stehling O, Lill R (2013) The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol 5:a011312Ma L, Azad MG, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF et al (2021) Parkinson’s disease: alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 41:101896Li X, Hao S, Han A, Yang Y, Fang G, Liu G, Liu J, Wang S (2019) Intracellular Fenton reaction based on mitochondria-targeted copper(ii)–peptide complex for induced apoptosis. J Mater Chem B 7:4008Lee DH, Kim C-S, Lee YJ (2011) Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol 49:271–280Pérez-Barrón G, Montes S, Aguirre-Vidal Y, Santiago M, Gallardo E, Espartero JL, Rios C, Monroy-Noyola A (2021) Antioxidant effect of hydroxytyrosol, hydroxytyrosol acetate and nitrohydroxytyrosol in a rat MPP+ model of Parkinson’s disease. Neurochem Res 46:2923–2935Liddell JR, White AR (2018) Nexus between mitochondrial function, iron, copper and glutathione in Parkinson’s disease. Neurochem Int 117:126–138Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75–86Zhu JH, Gusdon AM, Cimen H, Van Houten B, Koc E, Chu CT (2012) Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2. Cell Death Dis 3:e312Dukes AA, Bai Q, Van Laar VS, Zhou Y, Ilin V, David CN, Agim ZS, Bonkowsky JL et al (2016) Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP+ exposure. Neurobiol Dis 95:238–249Chen C, Turnbull DM, Reeve AK (2019) Mitochondrial dysfunction in Parkinson’s disease - cause or consequence? Biology 8:38Raza C, Rabia Anjum R, Ain Shakeel NUI (2019) Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci 226:77–90Ferrucci M, Fornai F (2021) MPTP neurotoxicity: actions, mechanisms, and animal modeling of Parkinson’s disease. In: Kostrzewa RM (ed) Handbook of Neurotoxicity. Springer, ChamPoetsch AR (2020) The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 18:207–219Pettifer KM, Jiang S, Bau C, Ballerini P, D’Alimonte I, Werstiuk ES, Rathbone MP (2007) MPP+-induced cytotoxicity in neuroblastoma cells: antagonism and reversal by guanosine. Purinergic Signal 3:399–409Chen L-J, Gao Y-Q, Li X-J, Shen D-H, Sun F-Y (2005) Melatonin protects against MPTP/MPP+ -induced mitochondrial DNA oxidative damage in vivo and in vitro. J Pineal Res 39:34–42Kwok KH-H, Ho PW, Chu AC, Ho JW, Liu HF, Yiu DC, Chan KH, Kung MH et al (2010) Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med 49:1023–1035Ashrafi G, Schwarz TL (2012) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42Li H-S, Zhou Y-N, Lu L, Li S-F, Long D, Chen X-L, Zhang J-B, Feng L et al (2019) HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol 25:101–109Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF et al (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886Briston T, Yang J, Ashcroft M (2011) HIF-1α localization with mitochondria: a new role for an old favorite? Cell Cycle 10:4170–4171Hara Y, Yanatori I, Tanaka A, Kishi F, Lemasters JJ, Nishina S, Sasaki K, Hino K (2020) Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep 21:e50202© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://pubmed.ncbi.nlm.nih.gov/36357615/MitocondríaParkinsonAntioxidantIron chelationMitochondria; MPP+NeuroprotectionParkinson’s diseaseA Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson’s DiseaseArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/f00563bd-98ed-4d9d-9a74-d66d3e0ddc18/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain4203https://repositorio.unibague.edu.co/bitstreams/4e96fd68-32d5-4e53-95a0-704169c39ed6/download7600b88503ea92ec84ea3d2eb09d6d6cMD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg24229https://repositorio.unibague.edu.co/bitstreams/221e1c4b-0cad-41c7-a28d-c07a7464659d/download08da6115c49ff8ff9d9314e80d189848MD54ORIGINALArtículo.pdfArtículo.pdfapplication/pdf140394https://repositorio.unibague.edu.co/bitstreams/abd69c66-9cf6-427d-b1fd-462914412bb1/downloadd3011a0ed8ca49864119263f5bdbe0f7MD5220.500.12313/5572oai:repositorio.unibague.edu.co:20.500.12313/55722025-09-12 12:24:02.672https://creativecommons.org/licenses/by-nc/4.0/© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |
