Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula
Los estudios sobre la Antártida son claves a la hora de comprender las influencia del cambio climático y el complejo funcionamiento de localidades prístinas teóricamente aisladas de los efectos del humano en los ecosistema. En esta tarea el Elefante Marino del Sur (Mirounga leonina) ha sido determin...
- Autores:
-
Díaz Camacho, Miguel Ángel
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75850
- Acceso en línea:
- https://hdl.handle.net/1992/75850
- Palabra clave:
- Mitochondrial DNA
Microsatellites
Population structure
Conservation
Genetic flow
Mirounga leonina
Biología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_fb8ecd250a29a3bfccb0b4d1f92b31b9 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75850 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula |
title |
Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula |
spellingShingle |
Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula Mitochondrial DNA Microsatellites Population structure Conservation Genetic flow Mirounga leonina Biología |
title_short |
Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula |
title_full |
Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula |
title_fullStr |
Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula |
title_full_unstemmed |
Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula |
title_sort |
Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula |
dc.creator.fl_str_mv |
Díaz Camacho, Miguel Ángel |
dc.contributor.advisor.none.fl_str_mv |
Caballero Gaitán, Susana Josefina |
dc.contributor.author.none.fl_str_mv |
Díaz Camacho, Miguel Ángel |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Laboratorio de Ecologia Molecular de Vertebrados Acuaticos |
dc.subject.keyword.eng.fl_str_mv |
Mitochondrial DNA Microsatellites Population structure Conservation Genetic flow Mirounga leonina |
topic |
Mitochondrial DNA Microsatellites Population structure Conservation Genetic flow Mirounga leonina Biología |
dc.subject.themes.spa.fl_str_mv |
Biología |
description |
Los estudios sobre la Antártida son claves a la hora de comprender las influencia del cambio climático y el complejo funcionamiento de localidades prístinas teóricamente aisladas de los efectos del humano en los ecosistema. En esta tarea el Elefante Marino del Sur (Mirounga leonina) ha sido determinado como agente clave para el estudio de las complejas dinámicas físicas y ambientales del continente antártico y del Océano Austral gracias a sus profundos y prolongados buceos, junto a su característica de filopatria y los extensos periodos de tiempo que permanece en tierra por sus temporadas de muda de pelo/piel y reproducción. En este estudio se analiza el estado poblacional de una isla no estudiada previamente "Isla Livingston" mediante marcadores genéticos de ADN mitocondrial y ADN nuclear (microsatélites) con el fin de poder o no establecer conexiones genéticas con los stock poblacionales ya definidos junto a una posible estructura poblacional de esta comunidad. No se pudo determinar la presencia de estructura poblacional dentro de esta población en relación con las localidades geográficamente cercanas, manteniéndose el flujo genético con la Isla Rey Jorge y todo el complejo de islas de la Península Antártica. Si bien la baja tasa de individuos en ciertas localidades y la presencia de alelos nulos no permiten una conclusión verdaderamente significativa, se presume que no presentan un ruido significativo en las estimaciones de diversidad, por el contrario los resultados sugieren una gran diversidad genética, flujo genético y crecimiento poblacional de la población de la Isla de Livingston, sugiere posible destinos de machos periféricos al grupo de reproducción y muestra una diferencia de movimiento entre machos y hembras en relación a los lugares de cría gracias a la diferencia de localidades. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-06-04 |
dc.date.accessioned.none.fl_str_mv |
2025-01-30T18:07:47Z |
dc.date.available.none.fl_str_mv |
2025-01-30T18:07:47Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75850 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75850 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
M. Lewis and E. Eder, Ecology and conservation of pinnipeds in Latin America. Springer International Publishing, 2021. doi: 10.1007/978-3-030-63177-2. A. R. Hoelzel, C. Campagna, and T. Arnbom, “Genetic and morphometric differentiation between island and mainland southern elephant seal populations,” Proceedings of the Royal Society B: Biological Sciences, vol. 268, no. 1464, pp. 325–332, Feb. 2001, doi: 10.1098/rspb.2000.1375. A. Fabiani, “Molecular ecology of southern elephant seals {Mirounga leonina): mating system and population genetics,” 2002. L. F. Chauke, P. A. D. S. Bastos, and P. M. N. Bester, “Genetic variation and population structure of southern elephant seals Mirounga leonina from Marion Island,” 2008. M. Chua, S. Y. W. Ho, C. R. McMahon, I. D. Jonsen, and M. de Bruyn, “Movements of southern elephant seals (Mirounga leonina) from Davis Base, Antarctica: combining population genetics and tracking data,” Polar Biol, vol. 45, no. 7, pp. 1163–1174, Jul. 2022, doi: 10.1007/s00300-022-03058-9. C. R. McMahon, M. N. Bester, H. R. Burton, M. A. Hindell, and C. J. A. Bradshaw, “Population status, trends and a re-examination of the hypotheses explaining the recent declines of the southern elephant seal Mirounga leonina,” 2005, Blackwell Publishing Ltd. doi: 10.1111/j.1365-2907.2005.00055.x. M. A. Hindell et al., “Circumpolar habitat use in the southern elephant seal: Implications for foraging success and population trajectories,” Ecosphere, vol. 7, no. 5, May 2016, doi: 10.1002/ecs2.1213. S. Ambroso, J. Salazar, J. M. Gili, and R. Z. Guardiola, “Life in extreme conditions: The paradox of antarctic marine biodiversity,” Metode, vol. 2019, no. 9, pp. 69–75, 2019, doi: 10.7203/metode.9.11324. A. Clarke, R. B. Aronson, J. Alistair Crame, J. M. Gili, and D. B. Blake, “Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf,” Dec. 2004. doi: 10.1017/S0954102004002329. “Mirounga leonina: Hofmeyr, G.J.G.,” Dec. 12, 2014. doi: 10.2305/IUCN.UK.2015-4.RLTS.T13583A45227247.en. M. De Bruyn, B. L. Hall, L. F. Chauke, C. Baroni, P. L. Koch, and A. R. Hoelzel, “Rapid response of a marine mammal species to holocene climate and habitat change,” PLoS Genet, vol. 5, no. 7, Jul. 2009, doi: 10.1371/journal.pgen.1000554. L. J. Corrigan et al., “Population differentiation in the context of Holocene climate change for a migratory marine species, the southern elephant seal,” J Evol Biol, vol. 29, no. 9, pp. 1667–1679, Sep. 2016, doi: 10.1111/jeb.12870. W. Bogdanowicz, M. Pilot, M. Gajewska, E. Suchecka, and M. Golachowski, “Genetic diversity in a moulting colony of southern elephant seals in comparison with breeding colonies,” Mar Ecol Prog Ser, vol. 478, pp. 287–300, Mar. 2013, doi: 10.3354/meps10196. J. van den Hoff, C. R. McMahon, G. R. Simpkins, M. A. Hindell, R. Alderman, and H. R. Burton, “Bottom-up regulation of a pole-ward migratory predator population,” Proceedings of the Royal Society B: Biological Sciences, vol. 281, no. 1782, Mar. 2014, doi: 10.1098/rspb.2013.2842. R. Lewis, T. C. O’Connell, M. Lewis, C. Campagna, and A. R. Hoelzel, “Sex-specific foraging strategies and resource partitioning in the southern elephant seal (Mirounga leonina),” Proceedings of the Royal Society B: Biological Sciences, vol. 273, no. 1603, pp. 2901–2907, Nov. 2006, doi: 10.1098/rspb.2006.3642. C. Baroni and B. L. Hall, “A new Holocene relative sea-level curve for Terra Nova Bay, Victoria Land, Antarctica,” J Quat Sci, vol. 19, no. 4, pp. 377–396, May 2004, doi: 10.1002/jqs.825. J. Acevedo et al., “Review of the current distribution of southern elephant seals in the eastern South Pacific,” N Z J Mar Freshwater Res, vol. 50, no. 2, pp. 240–258, Apr. 2016, doi: 10.1080/00288330.2015.1132746. D. Tirira, “Observación de mamíferos marinos durante XIV Expedición Científica Antártica Ecuatoriana,” Sangolqui, Jun. 2010. J. J. Alava et al., “Southern Elephant Seals (Mirounga leonina) in the Galapagos Islands and the Eastern Tropical Pacific Amid Ocean Environmental Changes: Towards a Habitat Suitability Index,” Aquat Mamm, vol. 48, no. 5, pp. 418–431, 2022, doi: 10.1578/AM.48.5.2022.418. M. Taig-Johnston, M. K. Strom, K. Calhoun, K. Nowak, L. A. Ebensperger, and L. Hayes, “The ecological value of long-term studies of birds and mammals in Central America, South America and Antarctica,” Sep. 06, 2017, BioMed Central Ltd. doi: 10.1186/s40693-017-0070-5. R. W. Slade, C. Moritz, A. Rus Hoelzel, and H. R. Burton, “Molecular Population Genetics of the Southern Elephant Seal Mirounga leonina,” 1998. [Online]. Available: https://academic.oup.com/genetics/article/149/4/1945/6034264 H. Bornemann, M. Kreyscher, S. RAMDOHRl, T. Martinz, A. Carlinp, and J. PLoTZI, “Antarctic Science 12 (If: 3-15 (2000) 0 British Antarctic Survey Printed in the United Kingdom Southern elephant seal movements and Antarctic sea ice,” 2000, [Online]. Available: http://www.awi-bremerhaven.delecology1 A. Fabiani, A. R. Hoelzel, F. Galimberti, and M. M. C. Muelbert, “Long-range paternal gene flow in the southern elephant seal,” Science (1979), vol. 299, no. 5607, p. 676, Jan. 2003, doi: 10.1126/science.299.5607.676. C. A. Tosh et al., “Adult male southern elephant seals from king george Island utilize the Weddell sea,” Antarct Sci, vol. 21, no. 2, pp. 113–121, Apr. 2009, doi: 10.1017/S0954102008001557. L. Lanusse, J. Sánchez, J. Negrete, M. Lizarralde, and S. Poljak, “Elephant seals (Mirounga leonina) at Potter Peninsula, King George Island, Antarctica: genetic variation of the breeding colony and gene flow with other colonies,” Polar Biol, vol. 45, no. 3, pp. 395–403, Mar. 2022, doi: 10.1007/s00300-021-02996-0. J. A. Gil-Delgado et al., “Minimum population size estimates demonstrate an increase in southern elephant seals (Mirounga leonina) on Livingston Island, maritime Antarctica,” Polar Biol, vol. 36, no. 4, pp. 607–610, Apr. 2013, doi: 10.1007/s00300-012-1280-6. S. Caballero et al., “Phylogeography, genetic diversity and population structure of common bottlenose dolphins in the Wider Caribbean inferred from analyses of mitochondrial DNA control region sequences and microsatellite loci: Conservation and management implications,” Anim Conserv, vol. 15, no. 1, pp. 95–112, Feb. 2012, doi: 10.1111/j.1469-1795.2011.00493.x. A. Gullberg and B. Widegren, “Cetacean Mitochondrial DNA Control Region: Sequences of All Extant Baleen Whales and Two Sperm Whale Species ’ @iir.” [Online]. Available: https://academic.oup.com/mbe/article/10/5/960/1037514 M. Y. Stoeckle, M. Das Mishu, and Z. Charlop-Powers, “Gofish: A versatile nested PCR strategy for environmental DNA assays for marine vertebrates,” PLoS One, vol. 13, no. 12, Dec. 2018, doi: 10.1371/journal.pone.0198717. P. J. Allen, W. Amos, P. P. Pomeroy, and andS D. T W I S S, “Microsatellite variation in grey seals ( H u l k h e r u s g y p s ) shows evidence of genetic differentiation between two British breeding colonies,” 1995. C. S. Davies, T. S. Gelatt, D. Sniff, and C. Strobeck, “Dinucleotide microsatellite markers from the Antarctic seals and their use in other Pinnipeds,” Mol Ecol Notes, vol. 2, pp. 203–208, 2002, doi: 10.1046/j.1471-8286. D. R. & M. W. P. Maddison, “Macclade: analysis of phylogeny and character evolution,” 2000, Sunderland: Sinauer. L. Excoffier, P. E. Smouse, and J. M. Quattro, “Analysis of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data,” 1992. [Online]. Available: https://academic.oup.com/genetics/article/131/2/479/6007328 J. W. Leigh and D. Bryant, “POPART: Full-feature software for haplotype network construction,” Methods Ecol Evol, vol. 6, no. 9, pp. 1110–1116, Sep. 2015, doi: 10.1111/2041-210X.12410. M. P. De Arruda, E. C. Gonçalves, M. P. C. Schneider, A. L. Da Costa Da Silva, and E. Morielle-Versute, “An alternative genotyping method using dye-labeled universal primer to reduce unspecific amplifications,” Mol Biol Rep, vol. 37, no. 4, pp. 2031–2036, Apr. 2010, doi: 10.1007/s11033-009-9655-7. C. Van Oosterhout, W. F. Hutchinson, D. P. M. Wills, and P. Shipley, “MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data,” Mol Ecol Notes, vol. 4, no. 3, pp. 535–538, Sep. 2004, doi: 10.1111/j.1471-8286.2004.00684.x. J. K. Pritchard, M. Stephens, and P. Donnelly, “Inference of Population Structure Using Multilocus Genotype Data,” 2000. [Online]. Available: http://www.stats.ox.ac.uk/pritch/home.html. G. Evanno, S. Regnaut, and J. Goudet, “Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study,” Mol Ecol, vol. 14, no. 8, pp. 2611–2620, Jul. 2005, doi: 10.1111/j.1365-294X.2005.02553.x. S. T. Kalinowski, A. P. Wagner, and M. L. Taper, “ML-RELATE: A computer program for maximum likelihood estimation of relatedness and relationship,” Mol Ecol Notes, vol. 6, no. 2, pp. 576–579, Jun. 2006, doi: 10.1111/j.1471-8286.2006.01256.x. M. Barrero, “MODELOS DE DISTRIBUCIÓN GEOGRÁFICA DEL ELEFANTE MARINO DEL SUR (MIROUNGA LEONINA) EN AMBIENTES TERRESTRES Y MARINOS,” Repositorio Institucional Universidad Rey Juan Carlos, 2024. M. P. Chapuis and A. Estoup, “Microsatellite null alleles and estimation of population differentiation,” Mol Biol Evol, vol. 24, no. 3, pp. 621–631, Mar. 2007, doi: 10.1093/molbev/msl191. D. Falush, M. Stephens, and J. K. Pritchard, “Inference of population structure using multilocus genotype data: Dominant markers and null alleles,” Mol Ecol Notes, vol. 7, no. 4, pp. 574–578, Jul. 2007, doi: 10.1111/j.1471-8286.2007.01758.x. W. Yafeng et al., “Null alleles in microsatellite markers,” Biodiversity Science, vol. 21, no. 1, pp. 117–126, Dec. 2013, doi: 10.3724/sp.j.1003.2013.10133. E. E. Dakin and J. C. Avise, “Microsatellite null alleles in parentage analysis,” Nov. 2004. doi: 10.1038/sj.hdy.6800545. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
21 paginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Biología |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Ciencias Biológicas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/3e526282-1c3c-42ca-8086-2f53debe3bf6/download https://repositorio.uniandes.edu.co/bitstreams/7e202f66-78da-4cde-a075-d8fe22538f76/download https://repositorio.uniandes.edu.co/bitstreams/9e24789d-68cf-43bb-a5c1-49f7519992de/download https://repositorio.uniandes.edu.co/bitstreams/ab9e3340-5424-41ee-8996-f61d9bab673a/download https://repositorio.uniandes.edu.co/bitstreams/f09fa775-0ecb-430f-b82f-500c8ebe78f6/download https://repositorio.uniandes.edu.co/bitstreams/171f6826-6d82-4ed2-a3a1-20c50e106015/download https://repositorio.uniandes.edu.co/bitstreams/9e395b7d-b167-4ef8-9294-d38a73ba38cf/download https://repositorio.uniandes.edu.co/bitstreams/afbfeaf9-a295-4176-bce0-3e099a2b6daf/download |
bitstream.checksum.fl_str_mv |
7ee5d5109725eecd36d706c2d2486be0 5903902705e1991fca6f0a28d12abf2b 4460e5956bc1d1639be9ae6146a50347 ae9e573a68e7f92501b6913cc846c39f 04866397c2e343fc7b3a52f4a2b86981 d64975c70c3dfd06cb5317002e727eaf 45a7327b3ee515ddcd56f0db6a1faa9e 3bbe00229f57c44f9a07ac64b38b9896 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927784482537472 |
spelling |
Caballero Gaitán, Susana Josefinavirtual::22872-1Díaz Camacho, Miguel ÁngelFacultad de Ciencias::Laboratorio de Ecologia Molecular de Vertebrados Acuaticos2025-01-30T18:07:47Z2025-01-30T18:07:47Z2024-06-04https://hdl.handle.net/1992/75850instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Los estudios sobre la Antártida son claves a la hora de comprender las influencia del cambio climático y el complejo funcionamiento de localidades prístinas teóricamente aisladas de los efectos del humano en los ecosistema. En esta tarea el Elefante Marino del Sur (Mirounga leonina) ha sido determinado como agente clave para el estudio de las complejas dinámicas físicas y ambientales del continente antártico y del Océano Austral gracias a sus profundos y prolongados buceos, junto a su característica de filopatria y los extensos periodos de tiempo que permanece en tierra por sus temporadas de muda de pelo/piel y reproducción. En este estudio se analiza el estado poblacional de una isla no estudiada previamente "Isla Livingston" mediante marcadores genéticos de ADN mitocondrial y ADN nuclear (microsatélites) con el fin de poder o no establecer conexiones genéticas con los stock poblacionales ya definidos junto a una posible estructura poblacional de esta comunidad. No se pudo determinar la presencia de estructura poblacional dentro de esta población en relación con las localidades geográficamente cercanas, manteniéndose el flujo genético con la Isla Rey Jorge y todo el complejo de islas de la Península Antártica. Si bien la baja tasa de individuos en ciertas localidades y la presencia de alelos nulos no permiten una conclusión verdaderamente significativa, se presume que no presentan un ruido significativo en las estimaciones de diversidad, por el contrario los resultados sugieren una gran diversidad genética, flujo genético y crecimiento poblacional de la población de la Isla de Livingston, sugiere posible destinos de machos periféricos al grupo de reproducción y muestra una diferencia de movimiento entre machos y hembras en relación a los lugares de cría gracias a la diferencia de localidades.Hurtigruten expeditions (https://www.hurtigruten.com)The Antarctic Colombian ProgramIsla de Agua Foundation (Colombia)PregradoGenetics BiologyConservation Biology21 paginasapplication/pdfengUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic PeninsulaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMitochondrial DNAMicrosatellitesPopulation structureConservationGenetic flowMirounga leoninaBiologíaM. Lewis and E. Eder, Ecology and conservation of pinnipeds in Latin America. Springer International Publishing, 2021. doi: 10.1007/978-3-030-63177-2.A. R. Hoelzel, C. Campagna, and T. Arnbom, “Genetic and morphometric differentiation between island and mainland southern elephant seal populations,” Proceedings of the Royal Society B: Biological Sciences, vol. 268, no. 1464, pp. 325–332, Feb. 2001, doi: 10.1098/rspb.2000.1375.A. Fabiani, “Molecular ecology of southern elephant seals {Mirounga leonina): mating system and population genetics,” 2002.L. F. Chauke, P. A. D. S. Bastos, and P. M. N. Bester, “Genetic variation and population structure of southern elephant seals Mirounga leonina from Marion Island,” 2008.M. Chua, S. Y. W. Ho, C. R. McMahon, I. D. Jonsen, and M. de Bruyn, “Movements of southern elephant seals (Mirounga leonina) from Davis Base, Antarctica: combining population genetics and tracking data,” Polar Biol, vol. 45, no. 7, pp. 1163–1174, Jul. 2022, doi: 10.1007/s00300-022-03058-9.C. R. McMahon, M. N. Bester, H. R. Burton, M. A. Hindell, and C. J. A. Bradshaw, “Population status, trends and a re-examination of the hypotheses explaining the recent declines of the southern elephant seal Mirounga leonina,” 2005, Blackwell Publishing Ltd. doi: 10.1111/j.1365-2907.2005.00055.x.M. A. Hindell et al., “Circumpolar habitat use in the southern elephant seal: Implications for foraging success and population trajectories,” Ecosphere, vol. 7, no. 5, May 2016, doi: 10.1002/ecs2.1213.S. Ambroso, J. Salazar, J. M. Gili, and R. Z. Guardiola, “Life in extreme conditions: The paradox of antarctic marine biodiversity,” Metode, vol. 2019, no. 9, pp. 69–75, 2019, doi: 10.7203/metode.9.11324.A. Clarke, R. B. Aronson, J. Alistair Crame, J. M. Gili, and D. B. Blake, “Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf,” Dec. 2004. doi: 10.1017/S0954102004002329.“Mirounga leonina: Hofmeyr, G.J.G.,” Dec. 12, 2014. doi: 10.2305/IUCN.UK.2015-4.RLTS.T13583A45227247.en.M. De Bruyn, B. L. Hall, L. F. Chauke, C. Baroni, P. L. Koch, and A. R. Hoelzel, “Rapid response of a marine mammal species to holocene climate and habitat change,” PLoS Genet, vol. 5, no. 7, Jul. 2009, doi: 10.1371/journal.pgen.1000554.L. J. Corrigan et al., “Population differentiation in the context of Holocene climate change for a migratory marine species, the southern elephant seal,” J Evol Biol, vol. 29, no. 9, pp. 1667–1679, Sep. 2016, doi: 10.1111/jeb.12870.W. Bogdanowicz, M. Pilot, M. Gajewska, E. Suchecka, and M. Golachowski, “Genetic diversity in a moulting colony of southern elephant seals in comparison with breeding colonies,” Mar Ecol Prog Ser, vol. 478, pp. 287–300, Mar. 2013, doi: 10.3354/meps10196.J. van den Hoff, C. R. McMahon, G. R. Simpkins, M. A. Hindell, R. Alderman, and H. R. Burton, “Bottom-up regulation of a pole-ward migratory predator population,” Proceedings of the Royal Society B: Biological Sciences, vol. 281, no. 1782, Mar. 2014, doi: 10.1098/rspb.2013.2842.R. Lewis, T. C. O’Connell, M. Lewis, C. Campagna, and A. R. Hoelzel, “Sex-specific foraging strategies and resource partitioning in the southern elephant seal (Mirounga leonina),” Proceedings of the Royal Society B: Biological Sciences, vol. 273, no. 1603, pp. 2901–2907, Nov. 2006, doi: 10.1098/rspb.2006.3642.C. Baroni and B. L. Hall, “A new Holocene relative sea-level curve for Terra Nova Bay, Victoria Land, Antarctica,” J Quat Sci, vol. 19, no. 4, pp. 377–396, May 2004, doi: 10.1002/jqs.825.J. Acevedo et al., “Review of the current distribution of southern elephant seals in the eastern South Pacific,” N Z J Mar Freshwater Res, vol. 50, no. 2, pp. 240–258, Apr. 2016, doi: 10.1080/00288330.2015.1132746.D. Tirira, “Observación de mamíferos marinos durante XIV Expedición Científica Antártica Ecuatoriana,” Sangolqui, Jun. 2010.J. J. Alava et al., “Southern Elephant Seals (Mirounga leonina) in the Galapagos Islands and the Eastern Tropical Pacific Amid Ocean Environmental Changes: Towards a Habitat Suitability Index,” Aquat Mamm, vol. 48, no. 5, pp. 418–431, 2022, doi: 10.1578/AM.48.5.2022.418.M. Taig-Johnston, M. K. Strom, K. Calhoun, K. Nowak, L. A. Ebensperger, and L. Hayes, “The ecological value of long-term studies of birds and mammals in Central America, South America and Antarctica,” Sep. 06, 2017, BioMed Central Ltd. doi: 10.1186/s40693-017-0070-5.R. W. Slade, C. Moritz, A. Rus Hoelzel, and H. R. Burton, “Molecular Population Genetics of the Southern Elephant Seal Mirounga leonina,” 1998. [Online]. Available: https://academic.oup.com/genetics/article/149/4/1945/6034264H. Bornemann, M. Kreyscher, S. RAMDOHRl, T. Martinz, A. Carlinp, and J. PLoTZI, “Antarctic Science 12 (If: 3-15 (2000) 0 British Antarctic Survey Printed in the United Kingdom Southern elephant seal movements and Antarctic sea ice,” 2000, [Online]. Available: http://www.awi-bremerhaven.delecology1A. Fabiani, A. R. Hoelzel, F. Galimberti, and M. M. C. Muelbert, “Long-range paternal gene flow in the southern elephant seal,” Science (1979), vol. 299, no. 5607, p. 676, Jan. 2003, doi: 10.1126/science.299.5607.676.C. A. Tosh et al., “Adult male southern elephant seals from king george Island utilize the Weddell sea,” Antarct Sci, vol. 21, no. 2, pp. 113–121, Apr. 2009, doi: 10.1017/S0954102008001557.L. Lanusse, J. Sánchez, J. Negrete, M. Lizarralde, and S. Poljak, “Elephant seals (Mirounga leonina) at Potter Peninsula, King George Island, Antarctica: genetic variation of the breeding colony and gene flow with other colonies,” Polar Biol, vol. 45, no. 3, pp. 395–403, Mar. 2022, doi: 10.1007/s00300-021-02996-0.J. A. Gil-Delgado et al., “Minimum population size estimates demonstrate an increase in southern elephant seals (Mirounga leonina) on Livingston Island, maritime Antarctica,” Polar Biol, vol. 36, no. 4, pp. 607–610, Apr. 2013, doi: 10.1007/s00300-012-1280-6.S. Caballero et al., “Phylogeography, genetic diversity and population structure of common bottlenose dolphins in the Wider Caribbean inferred from analyses of mitochondrial DNA control region sequences and microsatellite loci: Conservation and management implications,” Anim Conserv, vol. 15, no. 1, pp. 95–112, Feb. 2012, doi: 10.1111/j.1469-1795.2011.00493.x.A. Gullberg and B. Widegren, “Cetacean Mitochondrial DNA Control Region: Sequences of All Extant Baleen Whales and Two Sperm Whale Species ’ @iir.” [Online]. Available: https://academic.oup.com/mbe/article/10/5/960/1037514M. Y. Stoeckle, M. Das Mishu, and Z. Charlop-Powers, “Gofish: A versatile nested PCR strategy for environmental DNA assays for marine vertebrates,” PLoS One, vol. 13, no. 12, Dec. 2018, doi: 10.1371/journal.pone.0198717.P. J. Allen, W. Amos, P. P. Pomeroy, and andS D. T W I S S, “Microsatellite variation in grey seals ( H u l k h e r u s g y p s ) shows evidence of genetic differentiation between two British breeding colonies,” 1995.C. S. Davies, T. S. Gelatt, D. Sniff, and C. Strobeck, “Dinucleotide microsatellite markers from the Antarctic seals and their use in other Pinnipeds,” Mol Ecol Notes, vol. 2, pp. 203–208, 2002, doi: 10.1046/j.1471-8286.D. R. & M. W. P. Maddison, “Macclade: analysis of phylogeny and character evolution,” 2000, Sunderland: Sinauer.L. Excoffier, P. E. Smouse, and J. M. Quattro, “Analysis of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data,” 1992. [Online]. Available: https://academic.oup.com/genetics/article/131/2/479/6007328J. W. Leigh and D. Bryant, “POPART: Full-feature software for haplotype network construction,” Methods Ecol Evol, vol. 6, no. 9, pp. 1110–1116, Sep. 2015, doi: 10.1111/2041-210X.12410.M. P. De Arruda, E. C. Gonçalves, M. P. C. Schneider, A. L. Da Costa Da Silva, and E. Morielle-Versute, “An alternative genotyping method using dye-labeled universal primer to reduce unspecific amplifications,” Mol Biol Rep, vol. 37, no. 4, pp. 2031–2036, Apr. 2010, doi: 10.1007/s11033-009-9655-7.C. Van Oosterhout, W. F. Hutchinson, D. P. M. Wills, and P. Shipley, “MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data,” Mol Ecol Notes, vol. 4, no. 3, pp. 535–538, Sep. 2004, doi: 10.1111/j.1471-8286.2004.00684.x.J. K. Pritchard, M. Stephens, and P. Donnelly, “Inference of Population Structure Using Multilocus Genotype Data,” 2000. [Online]. Available: http://www.stats.ox.ac.uk/pritch/home.html.G. Evanno, S. Regnaut, and J. Goudet, “Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study,” Mol Ecol, vol. 14, no. 8, pp. 2611–2620, Jul. 2005, doi: 10.1111/j.1365-294X.2005.02553.x.S. T. Kalinowski, A. P. Wagner, and M. L. Taper, “ML-RELATE: A computer program for maximum likelihood estimation of relatedness and relationship,” Mol Ecol Notes, vol. 6, no. 2, pp. 576–579, Jun. 2006, doi: 10.1111/j.1471-8286.2006.01256.x.M. Barrero, “MODELOS DE DISTRIBUCIÓN GEOGRÁFICA DEL ELEFANTE MARINO DEL SUR (MIROUNGA LEONINA) EN AMBIENTES TERRESTRES Y MARINOS,” Repositorio Institucional Universidad Rey Juan Carlos, 2024.M. P. Chapuis and A. Estoup, “Microsatellite null alleles and estimation of population differentiation,” Mol Biol Evol, vol. 24, no. 3, pp. 621–631, Mar. 2007, doi: 10.1093/molbev/msl191.D. Falush, M. Stephens, and J. K. Pritchard, “Inference of population structure using multilocus genotype data: Dominant markers and null alleles,” Mol Ecol Notes, vol. 7, no. 4, pp. 574–578, Jul. 2007, doi: 10.1111/j.1471-8286.2007.01758.x.W. Yafeng et al., “Null alleles in microsatellite markers,” Biodiversity Science, vol. 21, no. 1, pp. 117–126, Dec. 2013, doi: 10.3724/sp.j.1003.2013.10133.E. E. Dakin and J. C. Avise, “Microsatellite null alleles in parentage analysis,” Nov. 2004. doi: 10.1038/sj.hdy.6800545.202011965Publication0000-0002-9285-3873virtual::22872-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000686603virtual::22872-11735065d-7c92-4011-b244-8e579ec9f57cvirtual::22872-11735065d-7c92-4011-b244-8e579ec9f57cvirtual::22872-1ORIGINAL202011965_ForAutEntTesis_TraGraSisBib_202420.pdf202011965_ForAutEntTesis_TraGraSisBib_202420.pdfHIDEapplication/pdf257109https://repositorio.uniandes.edu.co/bitstreams/3e526282-1c3c-42ca-8086-2f53debe3bf6/download7ee5d5109725eecd36d706c2d2486be0MD51Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula.pdfGenetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula.pdfapplication/pdf1246081https://repositorio.uniandes.edu.co/bitstreams/7e202f66-78da-4cde-a075-d8fe22538f76/download5903902705e1991fca6f0a28d12abf2bMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/9e24789d-68cf-43bb-a5c1-49f7519992de/download4460e5956bc1d1639be9ae6146a50347MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/ab9e3340-5424-41ee-8996-f61d9bab673a/downloadae9e573a68e7f92501b6913cc846c39fMD55TEXT202011965_ForAutEntTesis_TraGraSisBib_202420.pdf.txt202011965_ForAutEntTesis_TraGraSisBib_202420.pdf.txtExtracted texttext/plain2093https://repositorio.uniandes.edu.co/bitstreams/f09fa775-0ecb-430f-b82f-500c8ebe78f6/download04866397c2e343fc7b3a52f4a2b86981MD56Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula.pdf.txtGenetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula.pdf.txtExtracted texttext/plain36269https://repositorio.uniandes.edu.co/bitstreams/171f6826-6d82-4ed2-a3a1-20c50e106015/downloadd64975c70c3dfd06cb5317002e727eafMD58THUMBNAIL202011965_ForAutEntTesis_TraGraSisBib_202420.pdf.jpg202011965_ForAutEntTesis_TraGraSisBib_202420.pdf.jpgGenerated Thumbnailimage/jpeg10908https://repositorio.uniandes.edu.co/bitstreams/9e395b7d-b167-4ef8-9294-d38a73ba38cf/download45a7327b3ee515ddcd56f0db6a1faa9eMD57Genetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula.pdf.jpgGenetic diversity and population structure of southern elephant seal (Mirounga leonina) on Livingston Island. Antarctic Peninsula.pdf.jpgGenerated Thumbnailimage/jpeg6202https://repositorio.uniandes.edu.co/bitstreams/afbfeaf9-a295-4176-bce0-3e099a2b6daf/download3bbe00229f57c44f9a07ac64b38b9896MD591992/75850oai:repositorio.uniandes.edu.co:1992/758502025-03-05 09:38:31.405http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |