Enhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy

Super-resolution microscopy has transformed bioimaging by enabling nanoscale visualization of cellular structures. This thesis introduces PulseSTORM, a software application designed to streamline the quantitative analysis of Stochastic Optical Reconstruction Microscopy (STORM) and filament datasets....

Full description

Autores:
Salgado Manrique, Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75307
Acceso en línea:
https://hdl.handle.net/1992/75307
Palabra clave:
STORM
SMLM
ROI
Stretching open active contours
Point spread function
Fluorescent dye
Core-shell silica nanoparticles
Filament
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_f4c063bc71d995f725543718fe42c888
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75307
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Enhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy
title Enhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy
spellingShingle Enhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy
STORM
SMLM
ROI
Stretching open active contours
Point spread function
Fluorescent dye
Core-shell silica nanoparticles
Filament
Ingeniería
title_short Enhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy
title_full Enhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy
title_fullStr Enhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy
title_full_unstemmed Enhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy
title_sort Enhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy
dc.creator.fl_str_mv Salgado Manrique, Alejandro
dc.contributor.advisor.none.fl_str_mv Ávila Bernal, Alba Graciela
dc.contributor.author.none.fl_str_mv Salgado Manrique, Alejandro
dc.contributor.jury.none.fl_str_mv López Jiménez, Jorge Alfredo
dc.subject.keyword.eng.fl_str_mv STORM
topic STORM
SMLM
ROI
Stretching open active contours
Point spread function
Fluorescent dye
Core-shell silica nanoparticles
Filament
Ingeniería
dc.subject.keyword.none.fl_str_mv SMLM
ROI
Stretching open active contours
Point spread function
Fluorescent dye
Core-shell silica nanoparticles
Filament
dc.subject.themes.spa.fl_str_mv Ingeniería
description Super-resolution microscopy has transformed bioimaging by enabling nanoscale visualization of cellular structures. This thesis introduces PulseSTORM, a software application designed to streamline the quantitative analysis of Stochastic Optical Reconstruction Microscopy (STORM) and filament datasets. PulseSTORM integrates tools like ThunderSTORM, Ridge Detection, and SOAX into a modular platform for robust post-processing analysis. The research addresses the need for a comprehensive, user-friendly tool to analyze blinking statistics and filament structures, combining preprocessing, batch processing, and an analytics dashboard. Validation experiments with Cy5, C’dots, and aC’dots confirmed the accuracy of the software, with results aligning closely with literature values and offering actionable insights for sample preparation. PulseSTORM sets a foundation for advancing super-resolution microscopy, with future goals including direct integration with ThunderSTORM, optimization of computational performance, and exploration of recovery yield metrics. Beyond bioimaging, its potential extends to semiconductor defect detection, bridging biological and industrial applications.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-12-14
dc.date.accessioned.none.fl_str_mv 2025-01-09T20:10:29Z
dc.date.available.none.fl_str_mv 2025-01-09T20:10:29Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75307
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75307
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv M. Lelek, M. Gyparaki, G. Beliu et al., “Single-molecule localization microscopy,” Nat Rev Methods Primers, vol. 1, p. 39, 2021.
M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat Methods, vol. 3, no. 10, pp. 793–795, Oct 2006.
J. Xu, H. Ma, and Y. Liu, “Stochastic optical reconstruction microscopy (storm),” Curr Protoc Cytom, vol. 81, pp. 12.46.1–12.46.27, 2017.
L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super- resolution fluorescence microscopy,” The Journal of Cell Biology, vol. 190, no. 2, pp. 165–175, 2010.
J. A. Erstling, N. Naguib, J. A. Hinckley, R. Lee, G. B. Tallman, L. Tsaur, D. Tang, and U. B. Wiesner, “Antibody functionalization of ultrasmall fluorescent core–shell aluminosilicate nanoparticle probes for advanced intracellular labeling and optical super resolution microscopy,” Chemistry of Materials, vol. 35, no. 3, 2023.
M. Ovesn´y, P. Kˇr´ıˇzek, J. Borkovec, Z. ˇSvindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plugin for palm and storm data analysis and super-resolution imaging,” Bioinformatics, vol. 30, no. 16, pp. 2389–2390, 2014.
J. Schnitzbauer, M. Strauss, and T. e. a. Schlichthaerle, “Super-resolution microscopy with dna-paint,” Nature Protocols, vol. 12, pp. 1198–1228, 2017.
D. T. Nguyen, S. Mun, H. Park, U. Jeong, G. ho Kim, S. Lee, C.-S. Jun, M. M. Sung, and D. Kim, “Super-resolution fluorescence imaging for semiconductor nanoscale metrology and inspection,” Nano Letters, vol. 22, no. 24, pp. 10 080–10 087, December 2022. [Online]. Available: https://doi.org/10.1021/acs.nanolett.2c03848
M. Renz, “Fluorescence microscopy—a historical and technical perspective,” Cytometry Part A, vol. 83, pp. 767–779, 2013.68
S. Bradbury and P. Evennett, Fluorescence Microscopy. Oxford, United Kingdom: BIOS Scientific Publishers, Ltd., 1996.
S. M. Hickey, B. Ung, C. Bader, R. Brooks, J. Lazniewska, I. R. D. Johnson, A. Sorvina, J. Logan, C. Martini, C. R. Moore, L. Karageorgos, M. J. Sweetman, and D. A. Brooks, “Fluorescence microscopy-an outline of hardware, biological handling, and fluorophore considerations,” Cells, vol. 11, no. 1, p. 35, 2021.
D. Tosi, M. Sypabekova, A. Bekmurzayeva, C. Molardi, and K. Dukenbayev, “11 - evaluation of sensors,” in Optical Fiber Biosensors, D. Tosi, M. Sypabekova, A. Bekmurzayeva, C. Molardi, and K. Dukenbayev, Eds. Academic Press, 2022, pp. 283–291. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ B9780128194676000111
I. M. Khater, I. R. Nabi, and G. Hamarneh, “A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods,” Patterns, vol. 1, no. 3, p. 100038, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S266638992030043X
H. Shroff, H. White, and E. Betzig, “Photoactivated localization microscopy (palm) of adhesion complexes,” Curr Protoc Cell Biol, pp.4.21.1–4.21.28, Mar 2013.
R. Schmidt, T. Weihs, C. A. Wurm, I. Jansen, J. Rehman, S. J. Sahl, and S. W. Hell, “Minflux nanometer-scale 3d imaging and microsecond- range tracking on a common fluorescence microscope,” Nature Communications, vol. 12, 2021.
J. Valli, A. Garcia-Burgos, L. Rooney, B. Vale de Melo E Oliveira, R. Duncan, and C. Rickman, “Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique,” J Biol Chem, vol. 297, no. 1, p. 100791, 2021.
K. K. H. Chung, Z. Zhang, P. Kidd, Y. Zhang, N. D. Williams, B. Rollins, Y. Yang, C. Lin, D. Baddeley, and J. Bewersdorf, “Fluo- rogenic dna-paint for faster, low-background super-resolution imaging,” Nature Methods, vol. 19, pp. 554–559, 2022.
J. A. Erstling, J. A. Hinckley, N. Bag, J. Hersh, G. B. Feuer, R. Lee, H. F. Malarkey, F. Yu, K. Ma, B. A. Baird, and U. B. Wiesner, “Ul- trasmall, bright, and photostable fluorescent core–shell aluminosilicate nanoparticles for live-cell optical super-resolution microscopy,” Advanced Materials, vol. 33, 2021. 69
G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat Methods, vol. 8, pp. 1027–1036, 2011. [Online]. Available: http://www.ncbi.nlm.nih.gov/ pubmed/22056676
E. Herz, H. Ow, D. Bonner, A. Burns, and U. Wiesner, “Dye structure optical property correlations in near-infrared fluorescent core-shell silica nanoparticles,” Journal of Materials Chemistry, vol. 19, no. 35, pp. 6341–6347, 2009.
D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy,” Physical Review Letters, vol. 29, no. 11, pp. 705–708, 1972.
Syga, D. Spakman, C. Punter et al., “Method for immobilization of living and synthetic cells for high-resolution imaging and single-particle tracking,” Scientific Reports, vol. 8, p. 13789, 2018.
C. Santos, C.-W. Chang, M.-A. Mycek, and R. Cardullo, “Frap, flim, and fret: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy,” Molecular reproduction and development, vol. 82, 05 2015.
A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nature Methods, vol. 11, no. 3, pp. 267–279, 2014.
S. Wolter, A. L¨oschberger, and T. e. a. Holm, “rapidstorm: accurate, fast open-source software for localization microscopy,” Nature Methods, vol. 9, pp. 1040–1041, 2012.
J. Ries, “Smap: a modular super-resolution microscopy analysis plat- form for smlm data,” Nature Methods, vol. 17, pp. 870–872, 2020.
S. Malkusch and M. Heilemann, “Extracting quantitative information from single-molecule super-resolution imaging data with lama – local- ization microscopy analyzer,” Scientific Reports, vol. 6, p. 34486, 2016.
N. Brede and M. Lakadamyali, “Graspj: an open source, real-time anal-ysis package for super-resolution imaging,” Optics and Nanotechnology, vol. 1, p. 11, 2012.
“The wavelet transform in signal and image processing,” in Frontiers in Computing Technologies for Manufacturing Applications, ser. Springer Series in Advanced Manufacturing. London: Springer, 2007. 70
S. Lee, J. Y. Shin, A. Lee, and C. Bustamante, “Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (palm),” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 43, pp. 17 436–17 441, 2012.
K. E. Binkley and C. Griffin, “Imaging analysis of photoswitching fluorophores using single-molecule microscopy,” SMU Journal of Undergraduate Research, vol. 6, no. 2, p. Article 1, 2021. [Online]. Available: https://doi.org/10.25172/jour.6.2.1
K. Im, S. Mareninov, M. F. P. Diaz, and W. H. Yong, “An introduction to performing immunofluorescence staining,” in Methods in Molecular Biology. Humana Press, New York, NY, 2019, vol. 1897, pp. 299–311.
J. A. Erstling, N. Naguib, J. A. Hinckley, R. Lee, G. B. Feuer, J. F. Tallman, L. Tsaur, D. Tang, and U. B. Wiesner, “Antibody functionalization of ultrasmall fluorescent core–shell aluminosilicatenanoparticle probes for advanced intracellular labeling and optical super resolution microscopy,” Chemistry of Materials, vol. 35, no. 3, pp. 1047–1061, 2023. [Online]. Available: https://doi.org/10.1021/acs.chemmater.2c02963
R. Graf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” in Microscopy Techniques, ser. Advances in Biochemical Engineering/Biotechnology. Springer, 2005, vol. 95, pp. 1–13.
C. Steger, “An unbiased detector of curvilinear structures,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 2, pp.113–125, 1998.
S. Richerson, A. P. Condurache, J. Lohmeyer, K. Schultz, and P. Ganske,“An initial approach to segmentation and analysis of nerve cells usingridge detection,” in 2008 IEEE Southwest Symposium on Image Analysis and Interpretation, 2008, pp. 113–116.
A. Martinez-Sanchez, I. Garcia, and J.-J. Fernandez, “A ridge-based framework for segmentation of 3d electron microscopy datasets,” Journal of Structural Biology, vol. 181, no. 1, pp. 61–70, 2013.
M. Robert, J. Bonnaure, M. Paindavoine, and S. Hafdi, “Design of an image processing integrated circuit for real time edge detection,” in Proceedings Euro ASIC ’92, 1992, pp. 280–283.
T. Wagner, M. Hiner, and Xraynaud, “thorstenwagner/ij-ridgedetection: Ridge detection 1.4.0,” 2017. [Online]. Available: https://zenodo.org/record/84587471
M. B. Smith, H. Li, T. Shen, X. Huang, E. Yusuf, and D. Vavylonis, “Segmentation and tracking of cytoskeletal filaments using open active contours,” Cytoskeleton, 2010.
T. Xu, D. Vavylonis, F.-C. Tsai, G. H. Koenderink, W. Nie, E. Yusuf, K. C. Lee, J.-Q. Wu, and X. Huang, “Soax: A software for quantification of 3d biopolymer networks,” Scientific Reports, vol. 5, p. 9081, 2015.
J. Hembrow, M. J. Deeks, and D. M. Richards, “Automatic extraction of actin networks in plants,” PLOS Computational Biology, vol. 19, no. 8, p. e1011407, 2023.
K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, and G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nature Methods, vol. 5, no. 8, pp. 695–702, 2008.
S. C. Wilschefski and M. R. Baxter, “Inductively coupled plasma mass spectrometry: Introduction to analytical aspects,” Clinical Biochemistry Reviews, vol. 40, no. 3, pp. 115–133, 2019.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 89 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/b83f1cb8-0dec-46ee-a1f6-ed89f4a24c7c/download
https://repositorio.uniandes.edu.co/bitstreams/66b2fced-f5c4-4d03-bdb4-77e81041cac8/download
https://repositorio.uniandes.edu.co/bitstreams/026f0c45-ebf6-4a36-9767-93655887e400/download
https://repositorio.uniandes.edu.co/bitstreams/8f177e86-6059-41c1-8932-22cbb49ab763/download
https://repositorio.uniandes.edu.co/bitstreams/a55ac337-f587-4f0b-946d-b5da390a75a6/download
https://repositorio.uniandes.edu.co/bitstreams/e08224d4-1d21-4ccf-b1af-8cb6767a3e47/download
https://repositorio.uniandes.edu.co/bitstreams/a61d2423-daf7-4c32-bc0b-af6c62d8655d/download
https://repositorio.uniandes.edu.co/bitstreams/a34d7b10-ab3a-41cd-b9df-447b541fd6a4/download
bitstream.checksum.fl_str_mv ae9e573a68e7f92501b6913cc846c39f
a3d3bdf2ba5d44cfdc58d7ede1316184
da3142ffb16363c3febaa2fa0aa93267
4460e5956bc1d1639be9ae6146a50347
2a89fa764303b67925c25fed621d51bd
5a450c516019615cda22c859d74e8a18
fef65fa411113450ab40f567315480b6
57b0ab5973553a00b8a1c5576f2467f4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927721975873536
spelling Ávila Bernal, Alba Gracielavirtual::21893-1Salgado Manrique, AlejandroLópez Jiménez, Jorge Alfredo2025-01-09T20:10:29Z2025-01-09T20:10:29Z2024-12-14https://hdl.handle.net/1992/75307instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Super-resolution microscopy has transformed bioimaging by enabling nanoscale visualization of cellular structures. This thesis introduces PulseSTORM, a software application designed to streamline the quantitative analysis of Stochastic Optical Reconstruction Microscopy (STORM) and filament datasets. PulseSTORM integrates tools like ThunderSTORM, Ridge Detection, and SOAX into a modular platform for robust post-processing analysis. The research addresses the need for a comprehensive, user-friendly tool to analyze blinking statistics and filament structures, combining preprocessing, batch processing, and an analytics dashboard. Validation experiments with Cy5, C’dots, and aC’dots confirmed the accuracy of the software, with results aligning closely with literature values and offering actionable insights for sample preparation. PulseSTORM sets a foundation for advancing super-resolution microscopy, with future goals including direct integration with ThunderSTORM, optimization of computational performance, and exploration of recovery yield metrics. Beyond bioimaging, its potential extends to semiconductor defect detection, bridging biological and industrial applications.PregradoNanotecnología89 páginasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Enhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopyTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPSTORMSMLMROIStretching open active contoursPoint spread functionFluorescent dyeCore-shell silica nanoparticlesFilamentIngenieríaM. Lelek, M. Gyparaki, G. Beliu et al., “Single-molecule localization microscopy,” Nat Rev Methods Primers, vol. 1, p. 39, 2021.M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat Methods, vol. 3, no. 10, pp. 793–795, Oct 2006.J. Xu, H. Ma, and Y. Liu, “Stochastic optical reconstruction microscopy (storm),” Curr Protoc Cytom, vol. 81, pp. 12.46.1–12.46.27, 2017.L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super- resolution fluorescence microscopy,” The Journal of Cell Biology, vol. 190, no. 2, pp. 165–175, 2010.J. A. Erstling, N. Naguib, J. A. Hinckley, R. Lee, G. B. Tallman, L. Tsaur, D. Tang, and U. B. Wiesner, “Antibody functionalization of ultrasmall fluorescent core–shell aluminosilicate nanoparticle probes for advanced intracellular labeling and optical super resolution microscopy,” Chemistry of Materials, vol. 35, no. 3, 2023.M. Ovesn´y, P. Kˇr´ıˇzek, J. Borkovec, Z. ˇSvindrych, and G. M. Hagen, “Thunderstorm: a comprehensive imagej plugin for palm and storm data analysis and super-resolution imaging,” Bioinformatics, vol. 30, no. 16, pp. 2389–2390, 2014.J. Schnitzbauer, M. Strauss, and T. e. a. Schlichthaerle, “Super-resolution microscopy with dna-paint,” Nature Protocols, vol. 12, pp. 1198–1228, 2017.D. T. Nguyen, S. Mun, H. Park, U. Jeong, G. ho Kim, S. Lee, C.-S. Jun, M. M. Sung, and D. Kim, “Super-resolution fluorescence imaging for semiconductor nanoscale metrology and inspection,” Nano Letters, vol. 22, no. 24, pp. 10 080–10 087, December 2022. [Online]. Available: https://doi.org/10.1021/acs.nanolett.2c03848M. Renz, “Fluorescence microscopy—a historical and technical perspective,” Cytometry Part A, vol. 83, pp. 767–779, 2013.68S. Bradbury and P. Evennett, Fluorescence Microscopy. Oxford, United Kingdom: BIOS Scientific Publishers, Ltd., 1996.S. M. Hickey, B. Ung, C. Bader, R. Brooks, J. Lazniewska, I. R. D. Johnson, A. Sorvina, J. Logan, C. Martini, C. R. Moore, L. Karageorgos, M. J. Sweetman, and D. A. Brooks, “Fluorescence microscopy-an outline of hardware, biological handling, and fluorophore considerations,” Cells, vol. 11, no. 1, p. 35, 2021.D. Tosi, M. Sypabekova, A. Bekmurzayeva, C. Molardi, and K. Dukenbayev, “11 - evaluation of sensors,” in Optical Fiber Biosensors, D. Tosi, M. Sypabekova, A. Bekmurzayeva, C. Molardi, and K. Dukenbayev, Eds. Academic Press, 2022, pp. 283–291. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ B9780128194676000111I. M. Khater, I. R. Nabi, and G. Hamarneh, “A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods,” Patterns, vol. 1, no. 3, p. 100038, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S266638992030043XH. Shroff, H. White, and E. Betzig, “Photoactivated localization microscopy (palm) of adhesion complexes,” Curr Protoc Cell Biol, pp.4.21.1–4.21.28, Mar 2013.R. Schmidt, T. Weihs, C. A. Wurm, I. Jansen, J. Rehman, S. J. Sahl, and S. W. Hell, “Minflux nanometer-scale 3d imaging and microsecond- range tracking on a common fluorescence microscope,” Nature Communications, vol. 12, 2021.J. Valli, A. Garcia-Burgos, L. Rooney, B. Vale de Melo E Oliveira, R. Duncan, and C. Rickman, “Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique,” J Biol Chem, vol. 297, no. 1, p. 100791, 2021.K. K. H. Chung, Z. Zhang, P. Kidd, Y. Zhang, N. D. Williams, B. Rollins, Y. Yang, C. Lin, D. Baddeley, and J. Bewersdorf, “Fluo- rogenic dna-paint for faster, low-background super-resolution imaging,” Nature Methods, vol. 19, pp. 554–559, 2022.J. A. Erstling, J. A. Hinckley, N. Bag, J. Hersh, G. B. Feuer, R. Lee, H. F. Malarkey, F. Yu, K. Ma, B. A. Baird, and U. B. Wiesner, “Ul- trasmall, bright, and photostable fluorescent core–shell aluminosilicate nanoparticles for live-cell optical super-resolution microscopy,” Advanced Materials, vol. 33, 2021. 69G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat Methods, vol. 8, pp. 1027–1036, 2011. [Online]. Available: http://www.ncbi.nlm.nih.gov/ pubmed/22056676E. Herz, H. Ow, D. Bonner, A. Burns, and U. Wiesner, “Dye structure optical property correlations in near-infrared fluorescent core-shell silica nanoparticles,” Journal of Materials Chemistry, vol. 19, no. 35, pp. 6341–6347, 2009.D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy,” Physical Review Letters, vol. 29, no. 11, pp. 705–708, 1972.Syga, D. Spakman, C. Punter et al., “Method for immobilization of living and synthetic cells for high-resolution imaging and single-particle tracking,” Scientific Reports, vol. 8, p. 13789, 2018.C. Santos, C.-W. Chang, M.-A. Mycek, and R. Cardullo, “Frap, flim, and fret: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy,” Molecular reproduction and development, vol. 82, 05 2015.A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nature Methods, vol. 11, no. 3, pp. 267–279, 2014.S. Wolter, A. L¨oschberger, and T. e. a. Holm, “rapidstorm: accurate, fast open-source software for localization microscopy,” Nature Methods, vol. 9, pp. 1040–1041, 2012.J. Ries, “Smap: a modular super-resolution microscopy analysis plat- form for smlm data,” Nature Methods, vol. 17, pp. 870–872, 2020.S. Malkusch and M. Heilemann, “Extracting quantitative information from single-molecule super-resolution imaging data with lama – local- ization microscopy analyzer,” Scientific Reports, vol. 6, p. 34486, 2016.N. Brede and M. Lakadamyali, “Graspj: an open source, real-time anal-ysis package for super-resolution imaging,” Optics and Nanotechnology, vol. 1, p. 11, 2012.“The wavelet transform in signal and image processing,” in Frontiers in Computing Technologies for Manufacturing Applications, ser. Springer Series in Advanced Manufacturing. London: Springer, 2007. 70S. Lee, J. Y. Shin, A. Lee, and C. Bustamante, “Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (palm),” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 43, pp. 17 436–17 441, 2012.K. E. Binkley and C. Griffin, “Imaging analysis of photoswitching fluorophores using single-molecule microscopy,” SMU Journal of Undergraduate Research, vol. 6, no. 2, p. Article 1, 2021. [Online]. Available: https://doi.org/10.25172/jour.6.2.1K. Im, S. Mareninov, M. F. P. Diaz, and W. H. Yong, “An introduction to performing immunofluorescence staining,” in Methods in Molecular Biology. Humana Press, New York, NY, 2019, vol. 1897, pp. 299–311.J. A. Erstling, N. Naguib, J. A. Hinckley, R. Lee, G. B. Feuer, J. F. Tallman, L. Tsaur, D. Tang, and U. B. Wiesner, “Antibody functionalization of ultrasmall fluorescent core–shell aluminosilicatenanoparticle probes for advanced intracellular labeling and optical super resolution microscopy,” Chemistry of Materials, vol. 35, no. 3, pp. 1047–1061, 2023. [Online]. Available: https://doi.org/10.1021/acs.chemmater.2c02963R. Graf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” in Microscopy Techniques, ser. Advances in Biochemical Engineering/Biotechnology. Springer, 2005, vol. 95, pp. 1–13.C. Steger, “An unbiased detector of curvilinear structures,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 2, pp.113–125, 1998.S. Richerson, A. P. Condurache, J. Lohmeyer, K. Schultz, and P. Ganske,“An initial approach to segmentation and analysis of nerve cells usingridge detection,” in 2008 IEEE Southwest Symposium on Image Analysis and Interpretation, 2008, pp. 113–116.A. Martinez-Sanchez, I. Garcia, and J.-J. Fernandez, “A ridge-based framework for segmentation of 3d electron microscopy datasets,” Journal of Structural Biology, vol. 181, no. 1, pp. 61–70, 2013.M. Robert, J. Bonnaure, M. Paindavoine, and S. Hafdi, “Design of an image processing integrated circuit for real time edge detection,” in Proceedings Euro ASIC ’92, 1992, pp. 280–283.T. Wagner, M. Hiner, and Xraynaud, “thorstenwagner/ij-ridgedetection: Ridge detection 1.4.0,” 2017. [Online]. Available: https://zenodo.org/record/84587471M. B. Smith, H. Li, T. Shen, X. Huang, E. Yusuf, and D. Vavylonis, “Segmentation and tracking of cytoskeletal filaments using open active contours,” Cytoskeleton, 2010.T. Xu, D. Vavylonis, F.-C. Tsai, G. H. Koenderink, W. Nie, E. Yusuf, K. C. Lee, J.-Q. Wu, and X. Huang, “Soax: A software for quantification of 3d biopolymer networks,” Scientific Reports, vol. 5, p. 9081, 2015.J. Hembrow, M. J. Deeks, and D. M. Richards, “Automatic extraction of actin networks in plants,” PLOS Computational Biology, vol. 19, no. 8, p. e1011407, 2023.K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, and G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nature Methods, vol. 5, no. 8, pp. 695–702, 2008.S. C. Wilschefski and M. R. Baxter, “Inductively coupled plasma mass spectrometry: Introduction to analytical aspects,” Clinical Biochemistry Reviews, vol. 40, no. 3, pp. 115–133, 2019.201923134Publicationhttps://scholar.google.es/citations?user=129kehEAAAAJvirtual::21893-1https://scholar.google.es/citations?user=129kehEAAAAJ0000-0003-1241-2080virtual::21893-10000-0003-1241-2080https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000291455virtual::21893-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00002914552c797848-319e-4e41-bff1-22879e5086d1virtual::21893-12c797848-319e-4e41-bff1-22879e5086d12c797848-319e-4e41-bff1-22879e5086d1virtual::21893-1LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/b83f1cb8-0dec-46ee-a1f6-ed89f4a24c7c/downloadae9e573a68e7f92501b6913cc846c39fMD51ORIGINALEnhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy.pdfEnhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy.pdfapplication/pdf9219173https://repositorio.uniandes.edu.co/bitstreams/66b2fced-f5c4-4d03-bdb4-77e81041cac8/downloada3d3bdf2ba5d44cfdc58d7ede1316184MD53autorizacion tesis electronica (1).pdfautorizacion tesis electronica (1).pdfHIDEapplication/pdf311997https://repositorio.uniandes.edu.co/bitstreams/026f0c45-ebf6-4a36-9767-93655887e400/downloadda3142ffb16363c3febaa2fa0aa93267MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/8f177e86-6059-41c1-8932-22cbb49ab763/download4460e5956bc1d1639be9ae6146a50347MD55TEXTEnhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy.pdf.txtEnhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy.pdf.txtExtracted texttext/plain100772https://repositorio.uniandes.edu.co/bitstreams/a55ac337-f587-4f0b-946d-b5da390a75a6/download2a89fa764303b67925c25fed621d51bdMD56autorizacion tesis electronica (1).pdf.txtautorizacion tesis electronica (1).pdf.txtExtracted texttext/plain2006https://repositorio.uniandes.edu.co/bitstreams/e08224d4-1d21-4ccf-b1af-8cb6767a3e47/download5a450c516019615cda22c859d74e8a18MD58THUMBNAILEnhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy.pdf.jpgEnhancing aC'dots analysis through STORM imaging: development of advanced computational tools for super-resolution microscopy.pdf.jpgGenerated Thumbnailimage/jpeg5592https://repositorio.uniandes.edu.co/bitstreams/a61d2423-daf7-4c32-bc0b-af6c62d8655d/downloadfef65fa411113450ab40f567315480b6MD57autorizacion tesis electronica (1).pdf.jpgautorizacion tesis electronica (1).pdf.jpgGenerated Thumbnailimage/jpeg10844https://repositorio.uniandes.edu.co/bitstreams/a34d7b10-ab3a-41cd-b9df-447b541fd6a4/download57b0ab5973553a00b8a1c5576f2467f4MD591992/75307oai:repositorio.uniandes.edu.co:1992/753072025-01-10 03:05:34.023http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K