Analysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent

This document is a continuation of the work “Analysis of Case 1 of the 5th High Lift Prediction Workshop with Ansys Fluent” and presents the use of the ANSYS Fluent software to estimate the drag, lift, and pitching moment coefficients for different angles of attack for the High Lift Common Research...

Full description

Autores:
Amaya Carreño, Juan David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75680
Acceso en línea:
https://hdl.handle.net/1992/75680
Palabra clave:
CFD
Navier-Stokes equations
RANS
Fluid dynamics
Aerodynamics
HLPW
Drag coefficient
Lift coefficient
Pitching moment coefficient
Ingeniería
Rights
openAccess
License
Attribution-NoDerivatives 4.0 International
id UNIANDES2_ed12a1178f150e5755660b8982607cd3
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75680
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Analysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent
title Analysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent
spellingShingle Analysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent
CFD
Navier-Stokes equations
RANS
Fluid dynamics
Aerodynamics
HLPW
Drag coefficient
Lift coefficient
Pitching moment coefficient
Ingeniería
title_short Analysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent
title_full Analysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent
title_fullStr Analysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent
title_full_unstemmed Analysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent
title_sort Analysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent
dc.creator.fl_str_mv Amaya Carreño, Juan David
dc.contributor.advisor.none.fl_str_mv López Mejía, Omar Dario
dc.contributor.author.none.fl_str_mv Amaya Carreño, Juan David
dc.contributor.jury.none.fl_str_mv López Mejía, Omar Darío
dc.subject.keyword.eng.fl_str_mv CFD
Navier-Stokes equations
RANS
Fluid dynamics
Aerodynamics
HLPW
Drag coefficient
Lift coefficient
Pitching moment coefficient
topic CFD
Navier-Stokes equations
RANS
Fluid dynamics
Aerodynamics
HLPW
Drag coefficient
Lift coefficient
Pitching moment coefficient
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description This document is a continuation of the work “Analysis of Case 1 of the 5th High Lift Prediction Workshop with Ansys Fluent” and presents the use of the ANSYS Fluent software to estimate the drag, lift, and pitching moment coefficients for different angles of attack for the High Lift Common Research Model Wing Body (CRM-HL-WB) geometry of Test Case #1 of the Fifth High Lift Prediction Workshop (HLPW-5) of the American Institute of Aeronautics and Astronautics and the National Aeronautics and Space Administration.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-27T16:54:11Z
dc.date.available.none.fl_str_mv 2025-01-27T16:54:11Z
dc.date.issued.none.fl_str_mv 2025-01-27
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75680
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75680
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv N. Santacruz-Mejía. “Analysis of Case 1 of the 5th High Lift Prediction Workshop with Ansys Fluent”. In: (2023). url: https://repositorio.uniandes.edu.co/home.
A. Jameson, L. Martinelli, and J. C. Vassberg. “Using Computational Fluid Dynamics For Aerodynamics - A Critical Assessment”. In: 23rd International Congress of Aeronautical Sciences. Paper ICAS 2002 1.10.1. Toronto, Canada, Sept. 2002. url: http://aero-comlab.stanford.edu/Papers/jameson_ICAS_2002.pdf.
P. R. Spalart and D. R. Bogue. “The role of CFD in aerodynamics, off-design”. In: The Aeronautical Journal 107.1072 (2003), pp. 323–329. doi: 10.1017/S0001924000013634.
J. Slotnick et al. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences. Tech. rep. CR-2014-218178. Hampton, Virginia, USA: National Aeronautics and Space Administration (NASA), Mar. 2014. url: https://ntrs.nasa.gov/api/citations/20140003093/downloads/20140003093.pdf.
C. L. Rumsey, E. Lee-Rausch, and Slotnick J. P. “Lessons Learned and Future Goals of the High Lift Prediction Workshops”. In: AVT-246 Specialists Meeting on Progress and Challenges in Validation Testing for Computational Fluid Dynamics. MP-AVT-246-20. Sept. 2016. url: https://www.sto.nato.int/publications/_layouts/WordViewerFrame.aspx?d=F92293ad0414943ef810c30b1e0059132m9763b748b5b84ed281e774f44f2fd97bm169041a4425441a684fa5ac85bcfd96cm&source=https%3A%2F%2Fwww%2Esto%2Enato%2Eint%2Fpublications%2FSTO%2520Meeting%2520Proceedings% 2FForms%2FAll%2520MPs%2Easpx%3FFolderCTID%3D0x0120D5200078F9E87043356C409A0D30823AFA16F602008CF184CAB7588E468F5E9FA364E05BA5%26View%3D%7B72ed425f%2Dc31f%2D451c%2Da545%2D41122bba61a7%7D%26RootFolder%3D%252Fpublications%252FSTO%2520Meeting%2520Proceedings%252FSTO%252DMP%252DAVT%252D246%26TreeField%3DFolders%26TreeValue%3DSTO%252DMP%252DAVT%252D246%26ProcessQStringToCAML%3D1%26SortField%3DDocIcon%26SortDir%3DAsc%23mainContent.
National Aeronautics and Space Administration (NASA). The 5th AIAA CFD High Lift Prediction Workshop (HLPW-5). Oct. 2024. url: https://hiliftpw.larc.nasa.gov/.
M. A. Vargas-Torres. “Modelo computacional 2.5D de un sistema de alta sustentación”. In: (2023). url: https://repositorio.uniandes.edu.co/home.
J. D. Álvarez-Plata. “CFD comparison between fully turbulent and transition models on High-Lift Systems”. In: (2019).
J. D. Álvarez et al. “Comparison between fully turbulent and transition models on the prediction of the aerodynamics of a High-Lift configuration”. In: AIAA Aviation 2019 Forum. Paper AIAA 2019-2920. Dallas, Texas, USA, June 2019. doi: 10.2514/6.2019-2920.
J. D. Ramírez-Ramírez. “Computational Prediction of the aerodynamic performance of JAXA Standard High-Lift Configuration Model”. In: (2017). url: https://repositorio.uniandes.edu.co/home.
J. A. Escobar et al. “Detached-Eddy Simulation of a Wide-Body Commercial Aircraft in High-Lift Configuration”. In: 52.4 (2015). doi: https://doi.org/10.2514/1.C033164.
J. D. Alarcón-López. “Predicción de CFD de un perfil aerodinámico 2D en configuración de alta sustentación con SU2”. In: (2022). url: https://repositorio.uniandes.edu.co/home.
S. E. Díaz-Martínez. “Predicción por CFD del desempeño de una configuración de alta sustentación para ángulos de ataque cercanos a entrada en pérdida”. In: (2020). url: https://repositorio.uniandes.edu.co/home.
D. U. Cruz-Cruz. “Simulación de los efectos aerodinámicos de la góndola y el pilón en una configuración de alta sustentación”. In: (2019). url: https://repositorio.uniandes.edu.co/home.
J. D. Rodríguez-Hidalgo. “Simulación de una sección del modelo CRM-HL de alta sustentación”. In: (2021). url: https://repositorio.uniandes.edu.co/home.
G. A. Cuerzo-Rengifo. “Simulación del modelo JAXA de alta sustentación para distintos ángulos de ataque y métodos de inicialización”. In: (2019). url: https://repositorio.uniandes.edu.co/home.
J. A. Escobar et al. “Detached Eddy Simulation of the DLR-F11 wing/body Configuration as a Contribution to the 2nd AIAA High Lift Prediction Workshop”. In: 32nd AIAA Applied Aerodynamics Conference. Paper AIAA 2014-2398. Atlanta, Georgia, USA, June 2014. doi: 10.2514/6.2014-2398.
National Aeronautics and Space Administration (NASA). Fifth High-Lift Prediction Workshop (HLPW-5): Fixed-Grid Reynolds-Averaged Navier-Stokes (RANS). Technical Focus Group (TFG). url: https://hiliftpw.larc.nasa.gov/Workshop5/WorkshopPresentations/HLPW5-RANS-TFG.pdf.
National Aeronautics and Space Administration (NASA). Mach Number: Role in Compressible Flows. url: https://www.grc.nasa.gov/www/BGH/machrole.html.
J. D. Anderson Jr. and C. P. Cadou. “Normal Shock Waves and Related Topics”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 8, p. 590.
ANSYS Inc. 1.2 Continuity and Momentum Equations. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node11.htm.
ANSYS Inc. 5.2.1 Heat Transfer Theory. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node107.htm.
ANSYS Inc. Conservation of Energy Equation. url: https://innovationspace.ansys.com/courses/wp-content/uploads/sites/5/2020/06/Governing-Equations-of-Fluid-Dynamics-Lesson5-Conservation-of-Energy-Handout.pdf.
H. K. Versteeg and W. Malalasekera. “Turbulence and its modelling”. In: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. 2nd ed. Pearson, 2007. Chap. 3, p. 41.
National Aeronautics and Space Administration (NASA). Equation of State (Ideal Gas). url: https://www.grc.nasa.gov/www/k-12/airplane/eqstat.html.
M. J. Moran et al. “Evaluating Properties”. In: Fundamentals of Engineering Thermodynamics. 9th ed. Wiley, 2018. Chap. 3, p. 90.
ANSYS Inc. 4.3.2 Transport Equation for the Spalart-Allmaras Model. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node50.htm.
P. R. Spalart and S. R. Allmaras. “A one-equation turbulence model for aerodynamic flows”. In: AIAA 30th Aerospace Sciences Meeting and Exhibi. AIAA-92-0439. Reno, Nevada, USA, Jan. 1992. doi: 10.2514/6.1992-439.
ANSYS Inc. 4.3.3 Modeling the Turbulent Viscosity. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node51.htm.
ANSYS Inc. 4.3.4 Modeling the Turbulent Production. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node52.htm.
ANSYS Inc. 4.3.5 Modeling the Turbulent Destruction. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node53.htm.
ANSYS Inc. 4.3.6 Model Constants. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node54.htm.
ANSYS Inc. 4.2.3 Boussinesq Approach vs. Reynolds Stress Transport Models. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node47.htm.
ANSYS Inc. 8.4.2 Viscosity as a Function of Temperature. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node294.htm.
CFD Online. Sutherland’s law. url: https://www.cfd-online.com/Wiki/Sutherland%27s_law.
J. D. Anderson Jr. and C. P. Cadou. “Aerodynamics: Some Introductory Thoughts”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 1, p. 19.
J. D. Anderson Jr. and C. P. Cadou. “Aerodynamics: Some Introductory Thoughts”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 1, p. 20.
National Aeronautics and Space Administration (NASA). What is Lift? url: https://www.grc. nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/lift1.html.
National Aeronautics and Space Administration (NASA). What is Drag? url: https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/what-is-drag/.
J. D. Anderson Jr. and C. P. Cadou. “Aerodynamics: Some Introductory Thoughts”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 1, p. 32.
J. D. Anderson Jr. and C. P. Cadou. “Aerodynamics: Some Introductory Thoughts”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 1, p. 23.
J. D. Anderson Jr. and C. P. Cadou. “Incompressible Flow over Airfoils”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 4, p. 369.
F. M. White and H. Xue. “Flow Past Immersed Bodies”. In: Fluid Mechanics. 9th ed. McGraw Hill, 2021. Chap. 7, p. 505.
J. J. Bertin and R. M. Cummings. “Dynamics of an Incompressible, Inviscid Flow Field”. In: Aerodynamics for Engineers. 6th ed. Pearson, 2014. Chap. 3, p. 145.
L. J. Clancy. “Characteristics of Low-speed Aerofoils”. In: Aerodynamics. London, England: Pitman, 1978. Chap. 5, p. 58.
J. J. Bertin and R. M. Cummings. “Dynamics of an Incompressible, Inviscid Flow Field”. In: Aerodynamics for Engineers. 6th ed. Pearson, 2014. Chap. 3, p. 106.
L. J. Clancy. “Bernoulli’s Theorem”. In: Aerodynamics. London, England: Pitman, 1978. Chap. 3, p. 22.
L. J. Clancy. “Viscous Flow and Boundary Layers”. In: Aerodynamics. London, England: Pitman, 1978. Chap. 9, pp. 200–201.
National Aeronautics and Space Administration (NASA). Speed of Sound. url: https://www.grc.nasa.gov/www/k-12/BGP/sound.html.
National Aeronautics and Space Administration (NASA). Mach Number. url: https://www.grc.nasa.gov/www/k-12/airplane/mach.html.
National Aeronautics and Space Administration (NASA). Reynolds Number. url: https://www.grc.nasa.gov/www/k-12/airplane/reynolds.html.
M. J. Moran et al. “Evaluating Properties”. In: Fundamentals of Engineering Thermodynamics. 9th ed. Wiley, 2018. Chap. 3, pp. 92–93.
Y. A. C¸ engel, M. A. Boles, and M. Kano˘glu. “Thermodynamic Property Relations”. In: Thermodynamics: An Engineering Approach. 10th ed. McGraw Hill, 2024. Chap. 13, pp. 627–629.
M. J. Moran et al. “Evaluating Properties”. In: Fundamentals of Engineering Thermodynamics. 9th ed. Wiley, 2018. Chap. 3, pp. 80–82.
Y. A. C¸ engel and A. J. Ghajar. “Fundamentals of Convection”. In: Heat and Mass Transfer: Fundamentals & Applications. 6th ed. McGraw Hill, 2020. Chap. 6, p. 402.
Fluid Mechanics 101. [CFD] Relaxation in CFD (Part 1) - Explicit Relaxation, Under-Relaxation Factor. url: https://www.youtube.com/watch?v=GSsv2ncNJN8.
SimScale. CFD Numerics: Relaxation Factors. url: https://www.simscale.com/docs/simulationsetup/numerics/relaxation-factors/.
ANSYS Inc. 26.3.2 Setting Under-Relaxation Factors. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node786.htm.
National Aeronautics and Space Administration (NASA). GEOMETRY FILES - 5th AIAA CFD High Lift Prediction Workshop. url: https://hiliftpw.larc.nasa.gov/Workshop5/geometries.html.
National Aeronautics and Space Administration (NASA). GRIDS DOWNLOAD PAGE, CASE 1 - 5th AIAA CFD High Lift Prediction Workshop. url: https://hiliftpw.larc.nasa.gov/Workshop5/grids_downloads_case1.html.
National Aeronautics and Space Administration (NASA). GRIDS - 5th AIAA CFD High Lift Prediction Workshop. url: https://hiliftpw.larc.nasa.gov/Workshop5/grids.html.
National Aeronautics and Space Administration (NASA). 5th AIAA CFD High Lift Prediction Workshop - Official Test Cases. url: https://hiliftpw.larc.nasa.gov/Workshop5/Documents/HLPW5_Test_Cases_v1.9.pdf.
M. Sereez. README 1.R.04. url: https://hlpw5.s3.amazonaws.com/hlpw5_grids/wing_body/1.R.04/README_1.R.04.txt.
National Aeronautics and Space Administration (NASA). DATA SUBMITTAL FORMS & POSTPROCESSING INFO - 5th AIAA CFD High Lift Prediction Workshop. url: https://hiliftpw.larc.nasa.gov/Workshop5/DataForm.html.
National Aeronautics and Space Administration (NASA). Pressure Belt Planes bodycoordsonly. url: https://hiliftpw.larc.nasa.gov/Workshop5/Documents/Pressure_Belt_Planes_bodycoordsonly.pdf.
National Aeronautics and Space Administration (NASA). Pressure Belt Planes fuselage. url: https: //hiliftpw.larc.nasa.gov/Workshop5/Documents/Pressure_Belt_Planes_fuselage.pdf.
L. J. Clancy. “Characteristics of Low-speed Aerofoils”. In: Aerodynamics. London, England: Pitman, 1978. Chap. 5, pp. 73–76.
dc.rights.en.fl_str_mv Attribution-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 68 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Mecánica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Mecánica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/c75beac0-0127-409d-b6e3-9302f12b0481/download
https://repositorio.uniandes.edu.co/bitstreams/14192c98-f57a-4979-9e40-851e1ec0a67b/download
https://repositorio.uniandes.edu.co/bitstreams/94892bae-d00c-4b0b-af58-64cb088b1a0e/download
https://repositorio.uniandes.edu.co/bitstreams/d3aecd37-b0f4-4f84-b027-42696b855e4b/download
https://repositorio.uniandes.edu.co/bitstreams/0dbe1a12-1ca3-4c9e-9966-9412954a3bad/download
https://repositorio.uniandes.edu.co/bitstreams/76129e86-248a-488e-83fd-43275ca0cb32/download
https://repositorio.uniandes.edu.co/bitstreams/9ea4f472-c0dd-47d9-a6fe-f7ee620b625c/download
https://repositorio.uniandes.edu.co/bitstreams/205eb075-3e4e-4378-90cc-28b20bb19ca3/download
bitstream.checksum.fl_str_mv cc97a566887d3dab4577406078718d28
3a35993ef8cb4853b3c12897579cbced
f7d494f61e544413a13e6ba1da2089cd
ae9e573a68e7f92501b6913cc846c39f
ef225743be29c928f4a8269ffccd310c
d5b176a78be67d49e7a8677ee3ac9708
45523151317ebe5cbd79f3025db59d0e
1a81055d308a78e84275ee4a6406fb29
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927681669660672
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autoresAttribution-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López Mejía, Omar Dariovirtual::22627-1Amaya Carreño, Juan DavidLópez Mejía, Omar Darío2025-01-27T16:54:11Z2025-01-27T16:54:11Z2025-01-27https://hdl.handle.net/1992/75680instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This document is a continuation of the work “Analysis of Case 1 of the 5th High Lift Prediction Workshop with Ansys Fluent” and presents the use of the ANSYS Fluent software to estimate the drag, lift, and pitching moment coefficients for different angles of attack for the High Lift Common Research Model Wing Body (CRM-HL-WB) geometry of Test Case #1 of the Fifth High Lift Prediction Workshop (HLPW-5) of the American Institute of Aeronautics and Astronautics and the National Aeronautics and Space Administration.Pregrado68 páginasapplication/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaAnalysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS FluentTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPCFDNavier-Stokes equationsRANSFluid dynamicsAerodynamicsHLPWDrag coefficientLift coefficientPitching moment coefficientIngenieríaN. Santacruz-Mejía. “Analysis of Case 1 of the 5th High Lift Prediction Workshop with Ansys Fluent”. In: (2023). url: https://repositorio.uniandes.edu.co/home.A. Jameson, L. Martinelli, and J. C. Vassberg. “Using Computational Fluid Dynamics For Aerodynamics - A Critical Assessment”. In: 23rd International Congress of Aeronautical Sciences. Paper ICAS 2002 1.10.1. Toronto, Canada, Sept. 2002. url: http://aero-comlab.stanford.edu/Papers/jameson_ICAS_2002.pdf.P. R. Spalart and D. R. Bogue. “The role of CFD in aerodynamics, off-design”. In: The Aeronautical Journal 107.1072 (2003), pp. 323–329. doi: 10.1017/S0001924000013634.J. Slotnick et al. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences. Tech. rep. CR-2014-218178. Hampton, Virginia, USA: National Aeronautics and Space Administration (NASA), Mar. 2014. url: https://ntrs.nasa.gov/api/citations/20140003093/downloads/20140003093.pdf.C. L. Rumsey, E. Lee-Rausch, and Slotnick J. P. “Lessons Learned and Future Goals of the High Lift Prediction Workshops”. In: AVT-246 Specialists Meeting on Progress and Challenges in Validation Testing for Computational Fluid Dynamics. MP-AVT-246-20. Sept. 2016. url: https://www.sto.nato.int/publications/_layouts/WordViewerFrame.aspx?d=F92293ad0414943ef810c30b1e0059132m9763b748b5b84ed281e774f44f2fd97bm169041a4425441a684fa5ac85bcfd96cm&source=https%3A%2F%2Fwww%2Esto%2Enato%2Eint%2Fpublications%2FSTO%2520Meeting%2520Proceedings% 2FForms%2FAll%2520MPs%2Easpx%3FFolderCTID%3D0x0120D5200078F9E87043356C409A0D30823AFA16F602008CF184CAB7588E468F5E9FA364E05BA5%26View%3D%7B72ed425f%2Dc31f%2D451c%2Da545%2D41122bba61a7%7D%26RootFolder%3D%252Fpublications%252FSTO%2520Meeting%2520Proceedings%252FSTO%252DMP%252DAVT%252D246%26TreeField%3DFolders%26TreeValue%3DSTO%252DMP%252DAVT%252D246%26ProcessQStringToCAML%3D1%26SortField%3DDocIcon%26SortDir%3DAsc%23mainContent.National Aeronautics and Space Administration (NASA). The 5th AIAA CFD High Lift Prediction Workshop (HLPW-5). Oct. 2024. url: https://hiliftpw.larc.nasa.gov/.M. A. Vargas-Torres. “Modelo computacional 2.5D de un sistema de alta sustentación”. In: (2023). url: https://repositorio.uniandes.edu.co/home.J. D. Álvarez-Plata. “CFD comparison between fully turbulent and transition models on High-Lift Systems”. In: (2019).J. D. Álvarez et al. “Comparison between fully turbulent and transition models on the prediction of the aerodynamics of a High-Lift configuration”. In: AIAA Aviation 2019 Forum. Paper AIAA 2019-2920. Dallas, Texas, USA, June 2019. doi: 10.2514/6.2019-2920.J. D. Ramírez-Ramírez. “Computational Prediction of the aerodynamic performance of JAXA Standard High-Lift Configuration Model”. In: (2017). url: https://repositorio.uniandes.edu.co/home.J. A. Escobar et al. “Detached-Eddy Simulation of a Wide-Body Commercial Aircraft in High-Lift Configuration”. In: 52.4 (2015). doi: https://doi.org/10.2514/1.C033164.J. D. Alarcón-López. “Predicción de CFD de un perfil aerodinámico 2D en configuración de alta sustentación con SU2”. In: (2022). url: https://repositorio.uniandes.edu.co/home.S. E. Díaz-Martínez. “Predicción por CFD del desempeño de una configuración de alta sustentación para ángulos de ataque cercanos a entrada en pérdida”. In: (2020). url: https://repositorio.uniandes.edu.co/home.D. U. Cruz-Cruz. “Simulación de los efectos aerodinámicos de la góndola y el pilón en una configuración de alta sustentación”. In: (2019). url: https://repositorio.uniandes.edu.co/home.J. D. Rodríguez-Hidalgo. “Simulación de una sección del modelo CRM-HL de alta sustentación”. In: (2021). url: https://repositorio.uniandes.edu.co/home.G. A. Cuerzo-Rengifo. “Simulación del modelo JAXA de alta sustentación para distintos ángulos de ataque y métodos de inicialización”. In: (2019). url: https://repositorio.uniandes.edu.co/home.J. A. Escobar et al. “Detached Eddy Simulation of the DLR-F11 wing/body Configuration as a Contribution to the 2nd AIAA High Lift Prediction Workshop”. In: 32nd AIAA Applied Aerodynamics Conference. Paper AIAA 2014-2398. Atlanta, Georgia, USA, June 2014. doi: 10.2514/6.2014-2398.National Aeronautics and Space Administration (NASA). Fifth High-Lift Prediction Workshop (HLPW-5): Fixed-Grid Reynolds-Averaged Navier-Stokes (RANS). Technical Focus Group (TFG). url: https://hiliftpw.larc.nasa.gov/Workshop5/WorkshopPresentations/HLPW5-RANS-TFG.pdf.National Aeronautics and Space Administration (NASA). Mach Number: Role in Compressible Flows. url: https://www.grc.nasa.gov/www/BGH/machrole.html.J. D. Anderson Jr. and C. P. Cadou. “Normal Shock Waves and Related Topics”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 8, p. 590.ANSYS Inc. 1.2 Continuity and Momentum Equations. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node11.htm.ANSYS Inc. 5.2.1 Heat Transfer Theory. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node107.htm.ANSYS Inc. Conservation of Energy Equation. url: https://innovationspace.ansys.com/courses/wp-content/uploads/sites/5/2020/06/Governing-Equations-of-Fluid-Dynamics-Lesson5-Conservation-of-Energy-Handout.pdf.H. K. Versteeg and W. Malalasekera. “Turbulence and its modelling”. In: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. 2nd ed. Pearson, 2007. Chap. 3, p. 41.National Aeronautics and Space Administration (NASA). Equation of State (Ideal Gas). url: https://www.grc.nasa.gov/www/k-12/airplane/eqstat.html.M. J. Moran et al. “Evaluating Properties”. In: Fundamentals of Engineering Thermodynamics. 9th ed. Wiley, 2018. Chap. 3, p. 90.ANSYS Inc. 4.3.2 Transport Equation for the Spalart-Allmaras Model. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node50.htm.P. R. Spalart and S. R. Allmaras. “A one-equation turbulence model for aerodynamic flows”. In: AIAA 30th Aerospace Sciences Meeting and Exhibi. AIAA-92-0439. Reno, Nevada, USA, Jan. 1992. doi: 10.2514/6.1992-439.ANSYS Inc. 4.3.3 Modeling the Turbulent Viscosity. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node51.htm.ANSYS Inc. 4.3.4 Modeling the Turbulent Production. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node52.htm.ANSYS Inc. 4.3.5 Modeling the Turbulent Destruction. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node53.htm.ANSYS Inc. 4.3.6 Model Constants. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node54.htm.ANSYS Inc. 4.2.3 Boussinesq Approach vs. Reynolds Stress Transport Models. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node47.htm.ANSYS Inc. 8.4.2 Viscosity as a Function of Temperature. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node294.htm.CFD Online. Sutherland’s law. url: https://www.cfd-online.com/Wiki/Sutherland%27s_law.J. D. Anderson Jr. and C. P. Cadou. “Aerodynamics: Some Introductory Thoughts”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 1, p. 19.J. D. Anderson Jr. and C. P. Cadou. “Aerodynamics: Some Introductory Thoughts”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 1, p. 20.National Aeronautics and Space Administration (NASA). What is Lift? url: https://www.grc. nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/lift1.html.National Aeronautics and Space Administration (NASA). What is Drag? url: https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/what-is-drag/.J. D. Anderson Jr. and C. P. Cadou. “Aerodynamics: Some Introductory Thoughts”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 1, p. 32.J. D. Anderson Jr. and C. P. Cadou. “Aerodynamics: Some Introductory Thoughts”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 1, p. 23.J. D. Anderson Jr. and C. P. Cadou. “Incompressible Flow over Airfoils”. In: Fundamentals of Aerodynamics. 7th ed. McGraw Hill, 2024. Chap. 4, p. 369.F. M. White and H. Xue. “Flow Past Immersed Bodies”. In: Fluid Mechanics. 9th ed. McGraw Hill, 2021. Chap. 7, p. 505.J. J. Bertin and R. M. Cummings. “Dynamics of an Incompressible, Inviscid Flow Field”. In: Aerodynamics for Engineers. 6th ed. Pearson, 2014. Chap. 3, p. 145.L. J. Clancy. “Characteristics of Low-speed Aerofoils”. In: Aerodynamics. London, England: Pitman, 1978. Chap. 5, p. 58.J. J. Bertin and R. M. Cummings. “Dynamics of an Incompressible, Inviscid Flow Field”. In: Aerodynamics for Engineers. 6th ed. Pearson, 2014. Chap. 3, p. 106.L. J. Clancy. “Bernoulli’s Theorem”. In: Aerodynamics. London, England: Pitman, 1978. Chap. 3, p. 22.L. J. Clancy. “Viscous Flow and Boundary Layers”. In: Aerodynamics. London, England: Pitman, 1978. Chap. 9, pp. 200–201.National Aeronautics and Space Administration (NASA). Speed of Sound. url: https://www.grc.nasa.gov/www/k-12/BGP/sound.html.National Aeronautics and Space Administration (NASA). Mach Number. url: https://www.grc.nasa.gov/www/k-12/airplane/mach.html.National Aeronautics and Space Administration (NASA). Reynolds Number. url: https://www.grc.nasa.gov/www/k-12/airplane/reynolds.html.M. J. Moran et al. “Evaluating Properties”. In: Fundamentals of Engineering Thermodynamics. 9th ed. Wiley, 2018. Chap. 3, pp. 92–93.Y. A. C¸ engel, M. A. Boles, and M. Kano˘glu. “Thermodynamic Property Relations”. In: Thermodynamics: An Engineering Approach. 10th ed. McGraw Hill, 2024. Chap. 13, pp. 627–629.M. J. Moran et al. “Evaluating Properties”. In: Fundamentals of Engineering Thermodynamics. 9th ed. Wiley, 2018. Chap. 3, pp. 80–82.Y. A. C¸ engel and A. J. Ghajar. “Fundamentals of Convection”. In: Heat and Mass Transfer: Fundamentals & Applications. 6th ed. McGraw Hill, 2020. Chap. 6, p. 402.Fluid Mechanics 101. [CFD] Relaxation in CFD (Part 1) - Explicit Relaxation, Under-Relaxation Factor. url: https://www.youtube.com/watch?v=GSsv2ncNJN8.SimScale. CFD Numerics: Relaxation Factors. url: https://www.simscale.com/docs/simulationsetup/numerics/relaxation-factors/.ANSYS Inc. 26.3.2 Setting Under-Relaxation Factors. url: https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node786.htm.National Aeronautics and Space Administration (NASA). GEOMETRY FILES - 5th AIAA CFD High Lift Prediction Workshop. url: https://hiliftpw.larc.nasa.gov/Workshop5/geometries.html.National Aeronautics and Space Administration (NASA). GRIDS DOWNLOAD PAGE, CASE 1 - 5th AIAA CFD High Lift Prediction Workshop. url: https://hiliftpw.larc.nasa.gov/Workshop5/grids_downloads_case1.html.National Aeronautics and Space Administration (NASA). GRIDS - 5th AIAA CFD High Lift Prediction Workshop. url: https://hiliftpw.larc.nasa.gov/Workshop5/grids.html.National Aeronautics and Space Administration (NASA). 5th AIAA CFD High Lift Prediction Workshop - Official Test Cases. url: https://hiliftpw.larc.nasa.gov/Workshop5/Documents/HLPW5_Test_Cases_v1.9.pdf.M. Sereez. README 1.R.04. url: https://hlpw5.s3.amazonaws.com/hlpw5_grids/wing_body/1.R.04/README_1.R.04.txt.National Aeronautics and Space Administration (NASA). DATA SUBMITTAL FORMS & POSTPROCESSING INFO - 5th AIAA CFD High Lift Prediction Workshop. url: https://hiliftpw.larc.nasa.gov/Workshop5/DataForm.html.National Aeronautics and Space Administration (NASA). Pressure Belt Planes bodycoordsonly. url: https://hiliftpw.larc.nasa.gov/Workshop5/Documents/Pressure_Belt_Planes_bodycoordsonly.pdf.National Aeronautics and Space Administration (NASA). Pressure Belt Planes fuselage. url: https: //hiliftpw.larc.nasa.gov/Workshop5/Documents/Pressure_Belt_Planes_fuselage.pdf.L. J. Clancy. “Characteristics of Low-speed Aerofoils”. In: Aerodynamics. London, England: Pitman, 1978. Chap. 5, pp. 73–76.201816977Publicationhttps://scholar.google.es/citations?user=OT7CoaAAAAAJvirtual::22627-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000253413virtual::22627-1c8d383a8-3d03-42c9-aae7-4cb590ecb21avirtual::22627-1c8d383a8-3d03-42c9-aae7-4cb590ecb21avirtual::22627-1ORIGINALAnalysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent.pdfAnalysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent.pdfapplication/pdf11912248https://repositorio.uniandes.edu.co/bitstreams/c75beac0-0127-409d-b6e3-9302f12b0481/downloadcc97a566887d3dab4577406078718d28MD51Formato de Autorización y Entrega de Tesis al Sistema de Bibliotecas.pdfFormato de Autorización y Entrega de Tesis al Sistema de Bibliotecas.pdfHIDEapplication/pdf335194https://repositorio.uniandes.edu.co/bitstreams/14192c98-f57a-4979-9e40-851e1ec0a67b/download3a35993ef8cb4853b3c12897579cbcedMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/94892bae-d00c-4b0b-af58-64cb088b1a0e/downloadf7d494f61e544413a13e6ba1da2089cdMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/d3aecd37-b0f4-4f84-b027-42696b855e4b/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTAnalysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent.pdf.txtAnalysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent.pdf.txtExtracted texttext/plain100970https://repositorio.uniandes.edu.co/bitstreams/0dbe1a12-1ca3-4c9e-9966-9412954a3bad/downloadef225743be29c928f4a8269ffccd310cMD55Formato de Autorización y Entrega de Tesis al Sistema de Bibliotecas.pdf.txtFormato de Autorización y Entrega de Tesis al Sistema de Bibliotecas.pdf.txtExtracted texttext/plain2016https://repositorio.uniandes.edu.co/bitstreams/76129e86-248a-488e-83fd-43275ca0cb32/downloadd5b176a78be67d49e7a8677ee3ac9708MD57THUMBNAILAnalysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent.pdf.jpgAnalysis of Case 1 from the 5th High Lift Prediction Workshop for multiple angles of attack using ANSYS Fluent.pdf.jpgGenerated Thumbnailimage/jpeg6774https://repositorio.uniandes.edu.co/bitstreams/9ea4f472-c0dd-47d9-a6fe-f7ee620b625c/download45523151317ebe5cbd79f3025db59d0eMD56Formato de Autorización y Entrega de Tesis al Sistema de Bibliotecas.pdf.jpgFormato de Autorización y Entrega de Tesis al Sistema de Bibliotecas.pdf.jpgGenerated Thumbnailimage/jpeg10864https://repositorio.uniandes.edu.co/bitstreams/205eb075-3e4e-4378-90cc-28b20bb19ca3/download1a81055d308a78e84275ee4a6406fb29MD581992/75680oai:repositorio.uniandes.edu.co:1992/756802025-03-05 10:08:34.894http://creativecommons.org/licenses/by-nd/4.0/Attribution-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K