AI-Assisted learning: intelligent tutoring system for the introduction to programming course

This thesis presents the development of an AI-powered intelligent tutoring system to address challenges in the Introduction to Programming course at Universidad de los Andes. Using the Lean Startup methodology, we developed a virtual assistant that connects to the Senecode database to provide person...

Full description

Autores:
Osorio Cárdenas, Daniel
Guatibonza Briceño, Pablo Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75502
Acceso en línea:
https://hdl.handle.net/1992/75502
Palabra clave:
Intelligent tutoring system
Chatbot
Artificial intelligence
AI
Education
Programming
AI agents
Agents
Retrieval-Augmented Generation
Inteligencia artificial
IA
Educación
Programación
LangGraph
RAG
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_eb2594278e42214fa0752c5b4e07ee7b
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75502
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv AI-Assisted learning: intelligent tutoring system for the introduction to programming course
title AI-Assisted learning: intelligent tutoring system for the introduction to programming course
spellingShingle AI-Assisted learning: intelligent tutoring system for the introduction to programming course
Intelligent tutoring system
Chatbot
Artificial intelligence
AI
Education
Programming
AI agents
Agents
Retrieval-Augmented Generation
Inteligencia artificial
IA
Educación
Programación
LangGraph
RAG
Ingeniería
title_short AI-Assisted learning: intelligent tutoring system for the introduction to programming course
title_full AI-Assisted learning: intelligent tutoring system for the introduction to programming course
title_fullStr AI-Assisted learning: intelligent tutoring system for the introduction to programming course
title_full_unstemmed AI-Assisted learning: intelligent tutoring system for the introduction to programming course
title_sort AI-Assisted learning: intelligent tutoring system for the introduction to programming course
dc.creator.fl_str_mv Osorio Cárdenas, Daniel
Guatibonza Briceño, Pablo Alejandro
dc.contributor.advisor.none.fl_str_mv Manrique Piramanrique, Rubén Francisco
dc.contributor.author.none.fl_str_mv Osorio Cárdenas, Daniel
Guatibonza Briceño, Pablo Alejandro
dc.subject.keyword.eng.fl_str_mv Intelligent tutoring system
Chatbot
Artificial intelligence
AI
Education
Programming
AI agents
Agents
Retrieval-Augmented Generation
topic Intelligent tutoring system
Chatbot
Artificial intelligence
AI
Education
Programming
AI agents
Agents
Retrieval-Augmented Generation
Inteligencia artificial
IA
Educación
Programación
LangGraph
RAG
Ingeniería
dc.subject.keyword.spa.fl_str_mv Inteligencia artificial
IA
Educación
Programación
dc.subject.keyword.none.fl_str_mv LangGraph
RAG
dc.subject.themes.spa.fl_str_mv Ingeniería
description This thesis presents the development of an AI-powered intelligent tutoring system to address challenges in the Introduction to Programming course at Universidad de los Andes. Using the Lean Startup methodology, we developed a virtual assistant that connects to the Senecode database to provide personalized support to students. Senecode is an online platform where students in the course can practice coding exercises in Python and receive automated feedback. The system included a feedback agent to evaluate the student’s code and a RAG agent to guide the students through relevant topics. We evaluated the system’s impact on student learning outcomes and engagement through iterative testing and refinement based on user feedback.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-20T19:41:46Z
dc.date.available.none.fl_str_mv 2025-01-20T19:41:46Z
dc.date.issued.none.fl_str_mv 2025-01-20
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75502
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75502
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Helen Crompton and Diane Burke. 2023. Artificial intelligence in higher education: the state of the field. International Journal of Educational Technology in Higher Education, 20(1):22.
Paul Denny, Stephen MacNeil, Jaromir Savelka, Leo Porter, and Andrew Luxton-Reilly. 2024. Desirable Characteristics for AI Teaching Assistants in Programming Education. In Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1, pages 408–414, Milan Italy. ACM.
Rida Indah Fariani, Kasiyah Junus, and Harry Budi Santoso. 2023. A Systematic Literature Review on Personalised Learning in the Higher Education Context. Technology, Knowledge and Learning, 28(2):449–476.
Enkelejda Kasneci, Kathrin Sessler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, Stephan Krusche, Gitta Kutyniok, Tilman Michaeli, Claudia Nerdel, Jürgen Pfeffer, Oleksandra Poquet, Michael Sailer, Albrecht Schmidt, Tina Seidel, Matthias Stadler, Jochen Weller, Jochen Kuhn, and Gjergji Kasneci. 2023. ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103:102274.
Sophia Krause-Levy, Rachel S. Lim, Ismael Villegas Molina, Yingjun Cao, and Leo Porter. 2022. An Exploration of Student-Tutor Interactions in Computing. In Proceedings of the 27th ACM Conference on Innovation and Technology in Computer Science Education Vol. 1, ITiCSE ’22, pages 435–441, New York, NY, USA. Association for Computing Machinery.
Lazar Krstić, Veljko Aleksić, and Marija Krstić. 2022. Artificial Intelligence in Education: A Review. In Proceedings TIE 2022, pages 223–228. University of Kragujevac, Faculty of Technical Sciences Čačak.
Mohammad Amin Kuhail, Nazik Alturki, Salwa Alramlawi, and Kholood Alhejori. 2023. Interacting with educational chatbots: A systematic review. Education and Information Technologies, 28(1):973–1018.
Lasha Labadze, Maya Grigolia, and Lela Machaidze. 2023. Role of AI chatbots in education: systematic literature review. International Journal of Educational Technology in Higher Education, 20(1):56.
Mark Liffiton, Brad Sheese, Jaromir Savelka, and Paul Denny. 2023. CodeHelp: Using Large Language Models with Guardrails for Scalable Support in Programming Classes. ArXiv:2308.06921 [cs].
Dani Mahaini. 2024. Generative AI in Computer Science Education: A Study on Academic Performance. Publisher: University of Twente.
Chinedu Wilfred Okonkwo and Abejide Ade-Ibijola. 2021. Chatbots applications in education: A systematic review. Computers and Education: Artificial Intelligence, 2:100033.
Maciej Pankiewicz and Ryan Baker. 2023. Large Language Models (GPT) for automating feedback on programming assignments.
Olga Petrovska, Lee Clift, Faron Moller, and Rebecca Pearsall. 2024. Incorporating Generative AI into Software Development Education. In Proceedings of the 8th Conference on Computing Education Practice, pages 37–40, Durham United Kingdom. ACM.
José Quiroga Pérez, Thanasis Daradoumis, and Joan Manuel Marquès Puig. 2020. Rediscovering the use of chatbots in education: A systematic literature review. Computer Applications in Engineering Education, 28(6):1549–1565. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.22326.
Eric Ries. 2011. The Lean Startup, 1st edition. Penguin Random House LLC.
Brad Sheese, Mark Liffiton, Jaromir Savelka, and Paul Denny. 2024. Patterns of Student Help-Seeking When Using a Large Language Model-Powered Programming Assistant. In Proceedings of the 26th Australasian Computing Education Conference, pages 49–57. ArXiv:2310.16984 [cs].
Borsci Simone, Malizia Alessio, Schmettow Martin, van der Velde Frank, Tariverdiyeva Gunay, Balaji Divyaa, and Alan Chamberlain. 2022. The Chatbot Usability Scale: the Design and Pilot of a Usability Scale for Interaction with AI-Based Conversational Agents. Personal and Ubiquitous Computing, 26(1):95–119. Num Pages: 95-119 Place: London, Netherlands Publisher: Springer Nature B.V.
Aaron J. Smith, Kristy Elizabeth Boyer, Jeffrey Forbes, Sarah Heckman, and Ketan Mayer-Patel. 2017. My Digital Hand: A Tool for Scaling Up One-to-One Peer Teaching in Support of Computer Science Learning. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’17, pages 549–554, New York, NY, USA. Association for Computing Machinery.
Fati Tahiru. 2021. AI in Education: A Systematic Literature Review. Journal of Cases on Information Technology (JCIT), 23(1):1–20. Publisher: IGI Global Scientific Publishing.
Sebastian Wollny, Jan Schneider, Daniele Di Mitri, Joshua Weidlich, Marc Rittberger, and Hendrik Drachsler. 2021. Are We There Yet? - A Systematic Literature Review on Chatbots in Education. Frontiers in Artificial Intelligence, 4. Publisher: Frontiers.
Zhiyi Xu. 2024. AI in education: Enhancing learning experiences and student outcomes. Applied and Computational Engineering, 51:104–111.
Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. 2024. Corrective Retrieval Augmented Generation. ArXiv:2401.15884.
Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language Models. ArXiv:2210.03629 [cs].
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 16 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería de Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/77635595-097f-4919-88f2-2e716100a5c2/download
https://repositorio.uniandes.edu.co/bitstreams/4f98717f-b185-4f20-b282-19b774e6f765/download
https://repositorio.uniandes.edu.co/bitstreams/90353532-b10b-4beb-8649-02947bd71e9c/download
https://repositorio.uniandes.edu.co/bitstreams/7eaf029a-3892-4e29-b7e2-32f3bf2b2092/download
https://repositorio.uniandes.edu.co/bitstreams/ac7ba44a-ffa3-4397-94ad-7ca96a89f947/download
https://repositorio.uniandes.edu.co/bitstreams/56857d58-e2cd-4ac1-b9b2-628cc503e439/download
https://repositorio.uniandes.edu.co/bitstreams/666f412f-53af-4763-b42d-85b40a97a5b6/download
https://repositorio.uniandes.edu.co/bitstreams/f14f6c36-cab8-4984-9a4a-9a0c19153086/download
bitstream.checksum.fl_str_mv 6119d807f9d6fbbb9bc55900b17eeba0
8e756057a8530e67c02d747b058828ea
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
9962894fb07372ae8d1a09646f194dbd
530d320eb9a3b695b3582e4fc981c68e
1e132e308334b024640fe4a464ff6458
9d6e885c46582d09b4e531c382e1a054
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927848310407168
spelling Manrique Piramanrique, Rubén Franciscovirtual::22226-1Osorio Cárdenas, DanielGuatibonza Briceño, Pablo Alejandro2025-01-20T19:41:46Z2025-01-20T19:41:46Z2025-01-20https://hdl.handle.net/1992/75502instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This thesis presents the development of an AI-powered intelligent tutoring system to address challenges in the Introduction to Programming course at Universidad de los Andes. Using the Lean Startup methodology, we developed a virtual assistant that connects to the Senecode database to provide personalized support to students. Senecode is an online platform where students in the course can practice coding exercises in Python and receive automated feedback. The system included a feedback agent to evaluate the student’s code and a RAG agent to guide the students through relevant topics. We evaluated the system’s impact on student learning outcomes and engagement through iterative testing and refinement based on user feedback.Esta tesis presenta el desarrollo de un sistema de tutoría inteligente impulsado por IA para abordar los desafíos en el curso de Introducción a la Programación de la Universidad de los Andes. Utilizando la metodología Lean Startup, desarrollamos un asistente virtual que se conecta a la base de datos de Senecode para proporcionar soporte personalizado a los estudiantes. Senecode es una plataforma en línea donde los estudiantes del curso pueden practicar ejercicios de programación en Python y recibir retroalimentación automatizada. El sistema incluye un agente de retroalimentación para evaluar el código del estudiante y un agente RAG para guiar a los estudiantes a través de temas relevantes. Evaluamos el impacto del sistema en los resultados de aprendizaje y la participación de los estudiantes mediante pruebas iterativas y refinamientos basados en la retroalimentación de los usuarios.Pregrado16 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2AI-Assisted learning: intelligent tutoring system for the introduction to programming courseTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPIntelligent tutoring systemChatbotArtificial intelligenceAIEducationProgrammingAI agentsAgentsRetrieval-Augmented GenerationInteligencia artificialIAEducaciónProgramaciónLangGraphRAGIngenieríaHelen Crompton and Diane Burke. 2023. Artificial intelligence in higher education: the state of the field. International Journal of Educational Technology in Higher Education, 20(1):22.Paul Denny, Stephen MacNeil, Jaromir Savelka, Leo Porter, and Andrew Luxton-Reilly. 2024. Desirable Characteristics for AI Teaching Assistants in Programming Education. In Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1, pages 408–414, Milan Italy. ACM.Rida Indah Fariani, Kasiyah Junus, and Harry Budi Santoso. 2023. A Systematic Literature Review on Personalised Learning in the Higher Education Context. Technology, Knowledge and Learning, 28(2):449–476.Enkelejda Kasneci, Kathrin Sessler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, Stephan Krusche, Gitta Kutyniok, Tilman Michaeli, Claudia Nerdel, Jürgen Pfeffer, Oleksandra Poquet, Michael Sailer, Albrecht Schmidt, Tina Seidel, Matthias Stadler, Jochen Weller, Jochen Kuhn, and Gjergji Kasneci. 2023. ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103:102274.Sophia Krause-Levy, Rachel S. Lim, Ismael Villegas Molina, Yingjun Cao, and Leo Porter. 2022. An Exploration of Student-Tutor Interactions in Computing. In Proceedings of the 27th ACM Conference on Innovation and Technology in Computer Science Education Vol. 1, ITiCSE ’22, pages 435–441, New York, NY, USA. Association for Computing Machinery.Lazar Krstić, Veljko Aleksić, and Marija Krstić. 2022. Artificial Intelligence in Education: A Review. In Proceedings TIE 2022, pages 223–228. University of Kragujevac, Faculty of Technical Sciences Čačak.Mohammad Amin Kuhail, Nazik Alturki, Salwa Alramlawi, and Kholood Alhejori. 2023. Interacting with educational chatbots: A systematic review. Education and Information Technologies, 28(1):973–1018.Lasha Labadze, Maya Grigolia, and Lela Machaidze. 2023. Role of AI chatbots in education: systematic literature review. International Journal of Educational Technology in Higher Education, 20(1):56.Mark Liffiton, Brad Sheese, Jaromir Savelka, and Paul Denny. 2023. CodeHelp: Using Large Language Models with Guardrails for Scalable Support in Programming Classes. ArXiv:2308.06921 [cs].Dani Mahaini. 2024. Generative AI in Computer Science Education: A Study on Academic Performance. Publisher: University of Twente.Chinedu Wilfred Okonkwo and Abejide Ade-Ibijola. 2021. Chatbots applications in education: A systematic review. Computers and Education: Artificial Intelligence, 2:100033.Maciej Pankiewicz and Ryan Baker. 2023. Large Language Models (GPT) for automating feedback on programming assignments.Olga Petrovska, Lee Clift, Faron Moller, and Rebecca Pearsall. 2024. Incorporating Generative AI into Software Development Education. In Proceedings of the 8th Conference on Computing Education Practice, pages 37–40, Durham United Kingdom. ACM.José Quiroga Pérez, Thanasis Daradoumis, and Joan Manuel Marquès Puig. 2020. Rediscovering the use of chatbots in education: A systematic literature review. Computer Applications in Engineering Education, 28(6):1549–1565. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.22326.Eric Ries. 2011. The Lean Startup, 1st edition. Penguin Random House LLC.Brad Sheese, Mark Liffiton, Jaromir Savelka, and Paul Denny. 2024. Patterns of Student Help-Seeking When Using a Large Language Model-Powered Programming Assistant. In Proceedings of the 26th Australasian Computing Education Conference, pages 49–57. ArXiv:2310.16984 [cs].Borsci Simone, Malizia Alessio, Schmettow Martin, van der Velde Frank, Tariverdiyeva Gunay, Balaji Divyaa, and Alan Chamberlain. 2022. The Chatbot Usability Scale: the Design and Pilot of a Usability Scale for Interaction with AI-Based Conversational Agents. Personal and Ubiquitous Computing, 26(1):95–119. Num Pages: 95-119 Place: London, Netherlands Publisher: Springer Nature B.V.Aaron J. Smith, Kristy Elizabeth Boyer, Jeffrey Forbes, Sarah Heckman, and Ketan Mayer-Patel. 2017. My Digital Hand: A Tool for Scaling Up One-to-One Peer Teaching in Support of Computer Science Learning. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’17, pages 549–554, New York, NY, USA. Association for Computing Machinery.Fati Tahiru. 2021. AI in Education: A Systematic Literature Review. Journal of Cases on Information Technology (JCIT), 23(1):1–20. Publisher: IGI Global Scientific Publishing.Sebastian Wollny, Jan Schneider, Daniele Di Mitri, Joshua Weidlich, Marc Rittberger, and Hendrik Drachsler. 2021. Are We There Yet? - A Systematic Literature Review on Chatbots in Education. Frontiers in Artificial Intelligence, 4. Publisher: Frontiers.Zhiyi Xu. 2024. AI in education: Enhancing learning experiences and student outcomes. Applied and Computational Engineering, 51:104–111.Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. 2024. Corrective Retrieval Augmented Generation. ArXiv:2401.15884.Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language Models. ArXiv:2210.03629 [cs].202022996202014393Publication9f6e12e0-098e-4548-ab81-75552e8385e7virtual::22226-19f6e12e0-098e-4548-ab81-75552e8385e7virtual::22226-1ORIGINALIntelligent_Tutoring_System_for_the_Introduction_to_Programming_Course.pdfIntelligent_Tutoring_System_for_the_Introduction_to_Programming_Course.pdfapplication/pdf1447278https://repositorio.uniandes.edu.co/bitstreams/77635595-097f-4919-88f2-2e716100a5c2/download6119d807f9d6fbbb9bc55900b17eeba0MD52autorizacion_tesis_firmada.pdfautorizacion_tesis_firmada.pdfHIDEapplication/pdf216678https://repositorio.uniandes.edu.co/bitstreams/4f98717f-b185-4f20-b282-19b774e6f765/download8e756057a8530e67c02d747b058828eaMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/90353532-b10b-4beb-8649-02947bd71e9c/download4460e5956bc1d1639be9ae6146a50347MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/7eaf029a-3892-4e29-b7e2-32f3bf2b2092/downloadae9e573a68e7f92501b6913cc846c39fMD55TEXTIntelligent_Tutoring_System_for_the_Introduction_to_Programming_Course.pdf.txtIntelligent_Tutoring_System_for_the_Introduction_to_Programming_Course.pdf.txtExtracted texttext/plain58364https://repositorio.uniandes.edu.co/bitstreams/ac7ba44a-ffa3-4397-94ad-7ca96a89f947/download9962894fb07372ae8d1a09646f194dbdMD56autorizacion_tesis_firmada.pdf.txtautorizacion_tesis_firmada.pdf.txtExtracted texttext/plain1176https://repositorio.uniandes.edu.co/bitstreams/56857d58-e2cd-4ac1-b9b2-628cc503e439/download530d320eb9a3b695b3582e4fc981c68eMD58THUMBNAILIntelligent_Tutoring_System_for_the_Introduction_to_Programming_Course.pdf.jpgIntelligent_Tutoring_System_for_the_Introduction_to_Programming_Course.pdf.jpgGenerated Thumbnailimage/jpeg15299https://repositorio.uniandes.edu.co/bitstreams/666f412f-53af-4763-b42d-85b40a97a5b6/download1e132e308334b024640fe4a464ff6458MD57autorizacion_tesis_firmada.pdf.jpgautorizacion_tesis_firmada.pdf.jpgGenerated Thumbnailimage/jpeg10966https://repositorio.uniandes.edu.co/bitstreams/f14f6c36-cab8-4984-9a4a-9a0c19153086/download9d6e885c46582d09b4e531c382e1a054MD591992/75502oai:repositorio.uniandes.edu.co:1992/755022025-03-05 10:03:00.378http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K