Development and implementation of an open source quadruped robot
This work presents an open-source quadruped robot, Naranjelio, featuring a 3Dprinted structure, cost-effective servo motors, and an onboard IMU and Raspberry Pi for real-time feedback. A ROS2-based control environment enables motion generation, data logging, and user interaction, while an Isaac Sim...
- Autores:
-
Correal Murillo, Nicolas
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75538
- Acceso en línea:
- https://hdl.handle.net/1992/75538
- Palabra clave:
- Robótica
Analisis de movimiento
Diseño robotico
Cuadrupedo
Aprendizaje por refuerzo
Robotics
Movement analysis
Robot design
Quadruped
Reinforcement learning
Isaac Sim
ROS2
Ingeniería
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
UNIANDES2_e66e169f58f7e7467d3d8517afc30783 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75538 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Development and implementation of an open source quadruped robot |
dc.title.alternative.none.fl_str_mv |
Desarrollo e implementacion de un robot cuadrupedo open source |
title |
Development and implementation of an open source quadruped robot |
spellingShingle |
Development and implementation of an open source quadruped robot Robótica Analisis de movimiento Diseño robotico Cuadrupedo Aprendizaje por refuerzo Robotics Movement analysis Robot design Quadruped Reinforcement learning Isaac Sim ROS2 Ingeniería |
title_short |
Development and implementation of an open source quadruped robot |
title_full |
Development and implementation of an open source quadruped robot |
title_fullStr |
Development and implementation of an open source quadruped robot |
title_full_unstemmed |
Development and implementation of an open source quadruped robot |
title_sort |
Development and implementation of an open source quadruped robot |
dc.creator.fl_str_mv |
Correal Murillo, Nicolas |
dc.contributor.advisor.none.fl_str_mv |
Ávila Bernal, Alba Graciela |
dc.contributor.author.none.fl_str_mv |
Correal Murillo, Nicolas |
dc.contributor.jury.none.fl_str_mv |
Segura Quijano, Fredy Enrique |
dc.subject.keyword.spa.fl_str_mv |
Robótica Analisis de movimiento Diseño robotico Cuadrupedo Aprendizaje por refuerzo |
topic |
Robótica Analisis de movimiento Diseño robotico Cuadrupedo Aprendizaje por refuerzo Robotics Movement analysis Robot design Quadruped Reinforcement learning Isaac Sim ROS2 Ingeniería |
dc.subject.keyword.eng.fl_str_mv |
Robotics Movement analysis Robot design Quadruped Reinforcement learning |
dc.subject.keyword.none.fl_str_mv |
Isaac Sim ROS2 |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
This work presents an open-source quadruped robot, Naranjelio, featuring a 3Dprinted structure, cost-effective servo motors, and an onboard IMU and Raspberry Pi for real-time feedback. A ROS2-based control environment enables motion generation, data logging, and user interaction, while an Isaac Sim integration supports reinforcement learning exploration. A key contribution is the Quadruped Gait (E)Stability (QGE) metric, which combines acceleration and angular velocity data to yield a 0-1 gait quality score. Experimental results demonstrate Naranjelio's ability to carry payloads up to 66% of its own mass, though with reduced range of motion. Crucially, QGE quantifies these performance trade-offs, guiding iterative refinements in both structure and control for more robust, reliable gait. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-01-21T19:06:04Z |
dc.date.available.none.fl_str_mv |
2025-01-21T19:06:04Z |
dc.date.issued.none.fl_str_mv |
2025-01-19 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75538 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75538 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
4DLab - 3D Filament. url: 4dlab.com.co (visited on 10/22/2024). RAE ASALE and RAE. estable | Diccionario de la lengua española. es. url: https://dle.rae.es/estable (visited on 10/22/2024). Jose Hugo Barron-Zambrano, Cesar Torres-Huitzil, and Bernard Girau. Hardware Implementation of a CPG-Based Locomotion Control for Quadruped Robots. en. In: Artificial Neural Networks – ICANN 2010. Ed. by Konstantinos Diamantaras, Wlodek Duch, and Lazaros S. Iliadis. Berlin, Heidelberg: Springer, 2010, pp. 276–285. isbn: 978-3-642-15822-3. doi: 10.1007/978-3-642-15822-3_35. Dario Bellicoso et al. Advances in Real-World Applications for Legged Robots. In: Journal of Field Robotics (Oct. 2018). doi: 10.1002/rob.21839. Zeeshan Bhatti et al. Gait Analysis and Biomechanics of Quadruped Motion for Procedural Animation and Robotic Simulation. In: 10 (Dec. 2017), p. 7. Visible Body. Joints and Ligaments | Learn Skeleton Anatomy. en. url: https://www.visiblebody.com/learn/skeleton/joints-and-ligaments (visited on 10/22/2024). James Bruton. XRobots/openDog. original-date: 2018-05-31T09:16:09Z. Oct. 2024. url: https://github.com/XRobots/openDog (visited on 10/22/2024). Dog Leg Anatomy in Human Speak | Ortho Dog. en-US. Section: Sit. Stay. Heal. June 2020. url: https://orthodog.com/article/dog-leg-anatomy/ (visited on 10/22/2024). Getting Started with Gazebo? – Gazebo ionic documentation. url: https://gazebosim.org/docs/latest/getstarted/ (visited on 10/22/2024). Isaac Sim Requirements – Omniverse IsaacSim latest documentation. url: https://docs.omniverse.nvidia.com/isaacsim/latest/installation/requirements.html (visited on 10/22/2024). Zhongjin Ju et al. Investigating Stability Outcomes Across Diverse Gait Patterns in Quadruped Robots: A Comparative Analysis. In: IEEE Robotics and Automation Letters 9.1 (Jan. 2024). Conference Name: IEEE Robotics and Automation Letters, pp. 795–802. issn: 2377-3766. doi: 10.1109/LRA.2023.3338064. url: https://ieeexplore.ieee.org/abstract/document/10336368 (visited on 10/22/2024). Toshinori Kitamura. syuntoku14/fusion2urdf. original-date: 2018-07-09T16:11:02Z. Oct. 2024. url: https://github.com/syuntoku14/fusion2urdf (visited on 10/22/2024). Svetoslav Kuzmanov. SvetoslavKuzmanov/altimu10v5. original-date: 2017-04-15T19:30:48Z. May 2024. url: https://github.com/SvetoslavKuzmanov/altimu10v5 (visited on 10/22/2024). Zhaolu Li et al. Modeling of Walking-Gait Parameters and Walking Strategy for Quadruped Robots. en. In: Applied Sciences 13.12 (Jan. 2023). Number: 12 Publisher: Multidisciplinary Digital Publishing Institute, p. 6876. issn: 2076-3417. doi: 10.3390/app13126876. url: https://www.mdpi.com/2076-3417/13/12/6876 (visited on 10/22/2024). Steven Macenski et al. Robot Operating System 2: Design, architecture, and uses in the wild. In: Science Robotics 7.66 (May 2022). Publisher: American Association for the Advancement of Science, eabm6074. doi: 10.1126/scirobotics.abm6074. url: https://www.science.org/doi/abs/10.1126/scirobotics.abm6074 (visited on 10/22/2024). Pete Milett. Brushless Vs Brushed DC Motors: When and Why to Choose One Over the Other | Article | MPS. url: https://www.monolithicpower.com/en/learning/resources/brushless-vs-brushed-dc-motors (visited on 10/22/2024). ODrive S1. en-US. url: https://odriverobotics.com/shop/odrive-s1 (visited on 10/22/2024). Robot Dog B1_Robot Dog function introduction | Unitree Robotics. url: https://www.unitree.com/b1/ (visited on 10/22/2024). Nikita Rudin et al. Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning. en. Sept. 2021. url: https://arxiv.org/abs/2109.11978v3 (visited on 10/22/2024). Spot. en-US. url: https://bostondynamics.com/products/spot/ (visited on 10/22/2024). Niko Sünderhauf et al. Special issue on deep learning in robotics. en. In: The International Journal of Robotics Research 37.4-5 (Apr. 2018). Publisher: SAGE Publications Ltd STM, pp. 403–404. issn: 0278-3649. doi: 10.1177/0278364918769189. url: https://doi.org/10.1177/0278364918769189 (visited on 10/22/2024). Niko Sünderhauf et al. The limits and potentials of deep learning for robotics. en. In: The International Journal of Robotics Research 37.4-5 (Apr. 2018). Publisher: SAGE Publications Ltd STM, pp. 405–420. issn: 0278-3649. doi: 10.1177/0278364918770733. url: https://doi.org/10.1177/0278364918770733 (visited on 10/22/2024). Baolin Tian et al. Whole-Body Control for Autonomous Landing of Unmanned Helicopter Equipped With Antagonistic Cable-Driven Legged Landing Gear. In: IEEE Robotics and Automation Letters 9.5 (May 2024). Conference Name: IEEE Robotics and Automation Letters, pp. 4455–4462. issn: 2377-3766. doi: 10.1109/LRA.2024.3380925. url: https://ieeexplore.ieee.org/document/10478177 (visited on 10/22/2024). urdf - ROS Wiki. url: http://wiki.ros.org/urdf (visited on 10/22/2024). Yerbert. Yerbert/DingoQuadruped. original-date: 2023-03-16T09:09:38Z. Oct. 2024. url: https://github.com/Yerbert/DingoQuadruped (visited on 10/22/2024). |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
60 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería Electrónica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/40096ea0-387f-49c6-9dd6-b5b20f13e25c/download https://repositorio.uniandes.edu.co/bitstreams/d1fb8a3b-2d10-4f55-84c2-354d92cf5c3c/download https://repositorio.uniandes.edu.co/bitstreams/7539149e-ea2b-4907-904f-c807867512a9/download https://repositorio.uniandes.edu.co/bitstreams/907e2a0a-19c7-49ac-b498-a44ef1a1a844/download https://repositorio.uniandes.edu.co/bitstreams/5ba52e27-0ce4-4d28-8653-4b2e92509bcd/download https://repositorio.uniandes.edu.co/bitstreams/ca568ab3-3e62-493c-933b-b2b280d2b6a6/download https://repositorio.uniandes.edu.co/bitstreams/0df53cfe-4b04-4b9c-91b0-8f424b48afbc/download https://repositorio.uniandes.edu.co/bitstreams/3ff51b1b-2942-4f81-973f-63d508c812f0/download |
bitstream.checksum.fl_str_mv |
a1ed7bec04b638bb3b531c8df9764361 b79c82aee083cb2c28983114d4e21363 934f4ca17e109e0a05eaeaba504d7ce4 ae9e573a68e7f92501b6913cc846c39f bbf2484cd1e6051958e0382f69152a76 7e088bf78102befc06b7765a01834aa0 5431b412ef4b313770dd4286466c1bb9 4d92bb68fada7b95a55ad8911ea4f392 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927724220874752 |
spelling |
Ávila Bernal, Alba Gracielavirtual::22214-1Correal Murillo, NicolasSegura Quijano, Fredy Enriquevirtual::22215-12025-01-21T19:06:04Z2025-01-21T19:06:04Z2025-01-19https://hdl.handle.net/1992/75538instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This work presents an open-source quadruped robot, Naranjelio, featuring a 3Dprinted structure, cost-effective servo motors, and an onboard IMU and Raspberry Pi for real-time feedback. A ROS2-based control environment enables motion generation, data logging, and user interaction, while an Isaac Sim integration supports reinforcement learning exploration. A key contribution is the Quadruped Gait (E)Stability (QGE) metric, which combines acceleration and angular velocity data to yield a 0-1 gait quality score. Experimental results demonstrate Naranjelio's ability to carry payloads up to 66% of its own mass, though with reduced range of motion. Crucially, QGE quantifies these performance trade-offs, guiding iterative refinements in both structure and control for more robust, reliable gait.Este trabajo presenta un robot cuadrúpedo de código abierto, Naranjelio, que cuenta con una estructura impresa en 3D, servomotores y una IMU integrada junto con una Raspberry Pi para retroalimentación en tiempo real. Un entorno de control basado en ROS2 permite la generación de movimientos, registro de datos e interacción con el usuario, mientras que una integración con Isaac Sim facilita la exploración mediante aprendizaje por refuerzo. Una contribución clave es la métrica de Estabilidad del Paso de Cuadrúpedo (QGE, Quadruped Gait (E)Stability), que combina datos de aceleración y velocidad angular para ofrecer una puntuación de calidad de paso en una escala de 0 a 1. Los resultados experimentales demuestran la capacidad de Naranjelio para transportar cargas de hasta el 66% adicional a su propio peso, aunque con una reducción en el rango de movimiento. De manera crucial, el QGE cuantifica estos compromisos de rendimiento, orientando a sugerir mejoras iterativas tanto en la estructura como en el control para lograr un paso más robusto y fiable.Pregrado60 páginasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Development and implementation of an open source quadruped robotDesarrollo e implementacion de un robot cuadrupedo open sourceTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPRobóticaAnalisis de movimientoDiseño roboticoCuadrupedoAprendizaje por refuerzoRoboticsMovement analysisRobot designQuadrupedReinforcement learningIsaac SimROS2Ingeniería4DLab - 3D Filament. url: 4dlab.com.co (visited on 10/22/2024).RAE ASALE and RAE. estable | Diccionario de la lengua española. es. url: https://dle.rae.es/estable (visited on 10/22/2024).Jose Hugo Barron-Zambrano, Cesar Torres-Huitzil, and Bernard Girau. Hardware Implementation of a CPG-Based Locomotion Control for Quadruped Robots. en. In: Artificial Neural Networks – ICANN 2010. Ed. by Konstantinos Diamantaras, Wlodek Duch, and Lazaros S. Iliadis. Berlin, Heidelberg: Springer, 2010, pp. 276–285. isbn: 978-3-642-15822-3. doi: 10.1007/978-3-642-15822-3_35.Dario Bellicoso et al. Advances in Real-World Applications for Legged Robots. In: Journal of Field Robotics (Oct. 2018). doi: 10.1002/rob.21839.Zeeshan Bhatti et al. Gait Analysis and Biomechanics of Quadruped Motion for Procedural Animation and Robotic Simulation. In: 10 (Dec. 2017), p. 7.Visible Body. Joints and Ligaments | Learn Skeleton Anatomy. en. url: https://www.visiblebody.com/learn/skeleton/joints-and-ligaments (visited on 10/22/2024).James Bruton. XRobots/openDog. original-date: 2018-05-31T09:16:09Z. Oct. 2024. url: https://github.com/XRobots/openDog (visited on 10/22/2024).Dog Leg Anatomy in Human Speak | Ortho Dog. en-US. Section: Sit. Stay. Heal. June 2020. url: https://orthodog.com/article/dog-leg-anatomy/ (visited on 10/22/2024).Getting Started with Gazebo? – Gazebo ionic documentation. url: https://gazebosim.org/docs/latest/getstarted/ (visited on 10/22/2024).Isaac Sim Requirements – Omniverse IsaacSim latest documentation. url: https://docs.omniverse.nvidia.com/isaacsim/latest/installation/requirements.html (visited on 10/22/2024).Zhongjin Ju et al. Investigating Stability Outcomes Across Diverse Gait Patterns in Quadruped Robots: A Comparative Analysis. In: IEEE Robotics and Automation Letters 9.1 (Jan. 2024). Conference Name: IEEE Robotics and Automation Letters, pp. 795–802. issn: 2377-3766. doi: 10.1109/LRA.2023.3338064. url: https://ieeexplore.ieee.org/abstract/document/10336368 (visited on 10/22/2024).Toshinori Kitamura. syuntoku14/fusion2urdf. original-date: 2018-07-09T16:11:02Z. Oct. 2024. url: https://github.com/syuntoku14/fusion2urdf (visited on 10/22/2024).Svetoslav Kuzmanov. SvetoslavKuzmanov/altimu10v5. original-date: 2017-04-15T19:30:48Z. May 2024. url: https://github.com/SvetoslavKuzmanov/altimu10v5 (visited on 10/22/2024).Zhaolu Li et al. Modeling of Walking-Gait Parameters and Walking Strategy for Quadruped Robots. en. In: Applied Sciences 13.12 (Jan. 2023). Number: 12 Publisher: Multidisciplinary Digital Publishing Institute, p. 6876. issn: 2076-3417. doi: 10.3390/app13126876. url: https://www.mdpi.com/2076-3417/13/12/6876 (visited on 10/22/2024).Steven Macenski et al. Robot Operating System 2: Design, architecture, and uses in the wild. In: Science Robotics 7.66 (May 2022). Publisher: American Association for the Advancement of Science, eabm6074. doi: 10.1126/scirobotics.abm6074. url: https://www.science.org/doi/abs/10.1126/scirobotics.abm6074 (visited on 10/22/2024).Pete Milett. Brushless Vs Brushed DC Motors: When and Why to Choose One Over the Other | Article | MPS. url: https://www.monolithicpower.com/en/learning/resources/brushless-vs-brushed-dc-motors (visited on 10/22/2024).ODrive S1. en-US. url: https://odriverobotics.com/shop/odrive-s1 (visited on 10/22/2024).Robot Dog B1_Robot Dog function introduction | Unitree Robotics. url: https://www.unitree.com/b1/ (visited on 10/22/2024).Nikita Rudin et al. Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning. en. Sept. 2021. url: https://arxiv.org/abs/2109.11978v3 (visited on 10/22/2024).Spot. en-US. url: https://bostondynamics.com/products/spot/ (visited on 10/22/2024).Niko Sünderhauf et al. Special issue on deep learning in robotics. en. In: The International Journal of Robotics Research 37.4-5 (Apr. 2018). Publisher: SAGE Publications Ltd STM, pp. 403–404. issn: 0278-3649. doi: 10.1177/0278364918769189. url: https://doi.org/10.1177/0278364918769189 (visited on 10/22/2024).Niko Sünderhauf et al. The limits and potentials of deep learning for robotics. en. In: The International Journal of Robotics Research 37.4-5 (Apr. 2018). Publisher: SAGE Publications Ltd STM, pp. 405–420. issn: 0278-3649. doi: 10.1177/0278364918770733. url: https://doi.org/10.1177/0278364918770733 (visited on 10/22/2024).Baolin Tian et al. Whole-Body Control for Autonomous Landing of Unmanned Helicopter Equipped With Antagonistic Cable-Driven Legged Landing Gear. In: IEEE Robotics and Automation Letters 9.5 (May 2024). Conference Name: IEEE Robotics and Automation Letters, pp. 4455–4462. issn: 2377-3766. doi: 10.1109/LRA.2024.3380925. url: https://ieeexplore.ieee.org/document/10478177 (visited on 10/22/2024).urdf - ROS Wiki. url: http://wiki.ros.org/urdf (visited on 10/22/2024).Yerbert. Yerbert/DingoQuadruped. original-date: 2023-03-16T09:09:38Z. Oct. 2024. url: https://github.com/Yerbert/DingoQuadruped (visited on 10/22/2024).202020926Publicationhttps://scholar.google.es/citations?user=129kehEAAAAJvirtual::22214-1https://scholar.google.es/citations?user=xw2k1CIAAAAJvirtual::22215-10000-0003-1241-2080virtual::22214-10000-0001-7757-1432virtual::22215-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000291455virtual::22214-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000051497virtual::22215-12c797848-319e-4e41-bff1-22879e5086d1virtual::22214-12c797848-319e-4e41-bff1-22879e5086d1virtual::22214-17684cb09-6991-4ac4-aff9-b29fe065439fvirtual::22215-17684cb09-6991-4ac4-aff9-b29fe065439fvirtual::22215-1ORIGINALDevelopment and implementation of an open source quadruped robot.pdfDevelopment and implementation of an open source quadruped robot.pdfapplication/pdf13860184https://repositorio.uniandes.edu.co/bitstreams/40096ea0-387f-49c6-9dd6-b5b20f13e25c/downloada1ed7bec04b638bb3b531c8df9764361MD52autorizacion tesis completa.pdfautorizacion tesis completa.pdfHIDEapplication/pdf329119https://repositorio.uniandes.edu.co/bitstreams/d1fb8a3b-2d10-4f55-84c2-354d92cf5c3c/downloadb79c82aee083cb2c28983114d4e21363MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/7539149e-ea2b-4907-904f-c807867512a9/download934f4ca17e109e0a05eaeaba504d7ce4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/907e2a0a-19c7-49ac-b498-a44ef1a1a844/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTDevelopment and implementation of an open source quadruped robot.pdf.txtDevelopment and implementation of an open source quadruped robot.pdf.txtExtracted texttext/plain100927https://repositorio.uniandes.edu.co/bitstreams/5ba52e27-0ce4-4d28-8653-4b2e92509bcd/downloadbbf2484cd1e6051958e0382f69152a76MD56autorizacion tesis completa.pdf.txtautorizacion tesis completa.pdf.txtExtracted texttext/plain1963https://repositorio.uniandes.edu.co/bitstreams/ca568ab3-3e62-493c-933b-b2b280d2b6a6/download7e088bf78102befc06b7765a01834aa0MD58THUMBNAILDevelopment and implementation of an open source quadruped robot.pdf.jpgDevelopment and implementation of an open source quadruped robot.pdf.jpgGenerated Thumbnailimage/jpeg6151https://repositorio.uniandes.edu.co/bitstreams/0df53cfe-4b04-4b9c-91b0-8f424b48afbc/download5431b412ef4b313770dd4286466c1bb9MD57autorizacion tesis completa.pdf.jpgautorizacion tesis completa.pdf.jpgGenerated Thumbnailimage/jpeg10745https://repositorio.uniandes.edu.co/bitstreams/3ff51b1b-2942-4f81-973f-63d508c812f0/download4d92bb68fada7b95a55ad8911ea4f392MD591992/75538oai:repositorio.uniandes.edu.co:1992/755382025-03-05 10:04:05.209http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |