Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo
Epinephelus itajara, conocido como Mero guasa, es la especie más grande de la familia Epinephelidae y se encuentra en peligro crítico de extinción. Esta especie es de gran importancia ecológica, cultural y económica, y ha sido objeto de esfuerzos de reproducción en cautiverio en el Oceanario de las...
- Autores:
-
Jácome Castro, Juan Esteban
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75891
- Acceso en línea:
- https://hdl.handle.net/1992/75891
- Palabra clave:
- Mero guasa
Epinephelus itajara
Cría en cautiverio
Genómica
Ensamble
Biología
- Rights
- openAccess
- License
- Attribution-ShareAlike 4.0 International
id |
UNIANDES2_e4edfde04e84ce1d5510e37527590a67 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75891 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo |
title |
Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo |
spellingShingle |
Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo Mero guasa Epinephelus itajara Cría en cautiverio Genómica Ensamble Biología |
title_short |
Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo |
title_full |
Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo |
title_fullStr |
Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo |
title_full_unstemmed |
Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo |
title_sort |
Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo |
dc.creator.fl_str_mv |
Jácome Castro, Juan Esteban |
dc.contributor.advisor.none.fl_str_mv |
Caballero Gaitán, Susana Josefina Duitama Castellanos, Jorge Alexander Martínez, José Gregorio |
dc.contributor.author.none.fl_str_mv |
Jácome Castro, Juan Esteban |
dc.contributor.other.none.fl_str_mv |
Rojas Ruiz, Jaime Alberto Quiroga Camacho, Diego Alejandro Hakim de la Torre, Nadine |
dc.contributor.jury.none.fl_str_mv |
Crawford, Andrew Jackson |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Laboratorio de Ecologia Molecular de Vertebrados Acuaticos |
dc.subject.keyword.spa.fl_str_mv |
Mero guasa Epinephelus itajara Cría en cautiverio Genómica Ensamble |
topic |
Mero guasa Epinephelus itajara Cría en cautiverio Genómica Ensamble Biología |
dc.subject.themes.spa.fl_str_mv |
Biología |
description |
Epinephelus itajara, conocido como Mero guasa, es la especie más grande de la familia Epinephelidae y se encuentra en peligro crítico de extinción. Esta especie es de gran importancia ecológica, cultural y económica, y ha sido objeto de esfuerzos de reproducción en cautiverio en el Oceanario de las Islas del Rosario, Colombia. Sin embargo, su estructura genética, adaptaciones evolutivas y dinámica poblacional son aún poco comprendidas en Colombia. Este estudio presenta un genoma de referencia con pseudocromosomas para E. itajara, obtenido mediante la tecnología de secuenciación PacBio HiFi. El genoma ensamblado tiene un tamaño aproximado de 1.1 Gb, con un contig N50 de 42.69 Mb y un scaffold N50 de 46.83 Mb. Fueron identificados 22,682 genes que codifican para proteínas después de enmascarar el 46% del genoma compuesto por elementos repetitivos. Además, se realizó un análisis de genómica poblacional utilizando 7,706 SNPs de alta calidad para evaluar la estructura genética de las poblaciones en cautiverio. Los resultados revelaron cuatro linajes genéticos diferenciados, con un flujo génico limitado entre ellos. En Colombia se identificaron dos linajes únicos, asociados a las localidades de Bahía Cispatá y Bahía Barbacoas, lo que sugiere un posible aislamiento geográfico. Estos recursos genómicos abren nuevas oportunidades y proporcionan herramientas valiosas para comprender la diversidad genética, la historia evolutiva y los mecanismos reproductivos de E. itajara, así como para diseñar estrategias de conservación, incluyendo programas de reproducción selectiva para aumentar la diversidad genética en cautiverio y guiar los esfuerzos de restauración en su hábitat natural. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-01-31T13:34:56Z |
dc.date.available.none.fl_str_mv |
2025-01-31T13:34:56Z |
dc.date.issued.none.fl_str_mv |
2025-01-26 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75891 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75891 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
South Atlantic Fishery Management Council (SAFMC). Amendment Number 4, Regulatory Impact Review, Initial Regulatory Flexibility Analysis and Environmental Assessment for the Fishery Management Plan for the Snapper Grouper Fishery of the South Atlantic Region; South Atlantic Fishery Management Council: Charleston, SC, USA, 1990; p. 200 Alonge, Michael, et al. "Automated assembly scaffolding elevates a new tomato system for high-throughput genome editing." Genome Biology (2022). https://doi.org/10.1186/s13059-022-02823-7 Andrea Polanco F., Arturo Acero P. y Mónica Almanza. 2017. Epinephelus itajara. Páginas 61-64. En: Chasqui V., L., A. Polanco F., A. Acero P., P.A. Mejía-Falla, A. Navia, L.A. Zapata y J.P. Caldas. (Eds.). 2017. Libro rojo de peces marinos de Colombia. Instituto de Investigaciones Marinas y Costeras Invemar, Ministerio de Ambiente y Desarrollo Sostenible. Serie de Publicaciones Generales de INVEMAR # 93. Santa Marta, Colombia. 552 p. Birney, Ewan, Michele Clamp, and Richard Durbin. "GeneWise and genomewise." Genome research 14.5 (2004): 988-995. Gertz E.M., Yu Y.K., Agarwala R., Schaffer A.A., Altschul S.F. Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol. 2006; 4:41. Juhling F., Putz J., Bernt M., Donath A., Middendorf M., Florentz C., Stadler P.F. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res. 2012; 40:2833–2845. Krzywinski, Martin, et al. "Circos: an information aesthetic for comparative genomics." Genome research 19.9 (2009): 1639-1645. Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25:1754–1760. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25:2078–2079. Meng G, Li Y, Yang C, Liu S. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic acids research. 2019 Jun 20;47(11):e63-. https://doi.org/10.1093/nar/gkz173 Nawrocki E.P., Eddy S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013; 29:2933–2935. Bueno, Leonardo S., et al. "Evidence for spawning aggregations of the endangered Atlantic goliath grouper Epinephelus itajara in southern Brazil." Journal of fish biology 89.1 (2016): 876-889. Bullock, Lewis H., et al. "Age, growth, and reproduction of jewfish Epinephelus itajara in the eastern Gulf of Mexico." Fishery Bulletin 90.2 (1992): 243-249. Cantarel, Brandi L., et al. "MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes." Genome research 18.1 (2008): 188-196. Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., Li H. (2021) Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods, 18:170-175. https://doi.org/10.1038/s41592-020-01056-5 Cheng, H., Jarvis, E.D., Fedrigo, O., Koepfli, K.P., Urban, L., Gemmell, N.J., Li, H. (2022) Haplotype-resolved assembly of diploid genomes without parental data. Nature Biotechnology, 40:1332–1335. https://doi.org/10.1038/s41587-022-01261-x Cheng, H., Asri, M., Lucas, J., Koren, S., Li, H. (2024) Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. Nat Methods, 21:967-970. https://doi.org/10.1038/s41592-024-02269-8 Duitama J, Quintero JC, Cruz DF, et al. (2014). An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Research. 42(6): e44. http://doi.org/10.1093/nar/gkt1381 Gonzalez-Garcia L, Guevara-Barrientos D, Lozano-Arce D et al. (2023). New algorithms for accurate and efficient de novo genome assembly from long DNA sequencing reads. Life Science Alliance 6(5): e202201719. Tello D, Gil J, Loaiza CD, Riascos JJ, Cardozo N, and Duitama J. (2019). NGSEP3: accurate variant calling across species and sequencing protocols. Bioinformatics 35(22): 4716-4723. http://doi.org/10.1093/bioinformatics/btz275 Tello D, Gonzalez-Garcia LN, Gomez J, et al. (2023) NGSEP 4: Efficient and accurate identification of orthogroups and whole-genome alignment.Molecular Ecology Resources 23(3): 712-724. https://doi.org/10.1111/1755-0998.13737 Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9:18. Gremme, Gordon, Sascha Steinbiss, and Stefan Kurtz. "GenomeTools: a comprehensive software library for efficient processing of structured genome annotations." IEEE/ACM transactions on computational biology and bioinformatics 10.3 (2013): 645-656. Ou S, Jiang N. LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons. Mob DNA 2019;10(1):48. Ou S, Jiang N. LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons. Plant Physiol. 2018;176:1410–22. Ou S., Su W., Liao Y., Chougule K., Agda J. R. A., Hellinga A. J., Lugo C. S. B., Elliott T. A., Ware D., Peterson T., Jiang N., Hirsch C. N.and Hufford M. B. (2019). Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline. Genome Biol. 20(1): 275. Shi J, Liang C. Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection. Plant Physiol. 2019;180(4):1803-1815. Su W, Gu X, Peterson T. TIR-Learner, a New Ensemble Method for TIR Transposable Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize Genome. Mol Plant. 2019;12:447–60. Xiong W, He L, Lai J, Dooner HK, Du C. HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc Natl Acad Sci U S A. 2014;111:10263–8. Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265–8. Zhang RG, Li GL, Wang XL et. al. TEsorter: an accurate and fast method to classify LTR retrotransposons in plant genomes. Hortic Res, 2022; 9: uhac017 Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14:2611–2620. Falush, Daniel, Matthew Stephens, and Jonathan K. Pritchard. "Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies." Genetics 164.4 (2003): 1567-1587. Kopelman et al. (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15:1179–1191. Li YL, Liu JX (2018) StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods.Molecular Ecology Resources, 18:176–177. Puechmaille SJ (2016) The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16:608–627. Freitas, Matheus O., et al. "Diet and reproduction of the goliath grouper, Epinephelus itajara (Actinopterygii: Perciformes: Serranidae), in eastern Brazil." Acta Ichthyologica et Piscatoria 45.1 (2015). Frias-Torres, Sarah. "Habitat use of juvenile goliath grouper Epinephelus itajara in the Florida Keys, USA." Endangered Species Research 2 (2006): 1-6. Frias-Torres, Sarah. "Should the Critically Endangered Goliath grouper Epinephelus itajara be culled in Florida?." Oryx 47.1 (2013): 88-95. García, Lury N., et al. "Osmoregulation of juvenile marine goliath grouper (Epinephelus itajara) in low-salinity water." Revista Colombiana de Ciencias Pecuarias 26.2 (2013): 127-135. Guillaume Marcais and Carl Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics (2011) 27(6): 764-770 (first published online January 7, 2011) doi:10.1093/bioinformatics/btr011 Gurevich, Alexey, et al. "QUAST: quality assessment tool for genome assemblies." Bioinformatics 29.8 (2013): 1072-1075. http://doi.org/10.26508/lsa.202201719 Hon, Ting, et al. "Highly accurate long-read HiFi sequencing data for five complex genomes." Scientific data 7.1 (2020): 399. Koenig, Christopher C., et al. "Diel, lunar, and seasonal spawning patterns of the Atlantic goliath grouper, Epinephelus itajara, off Florida, United States." Bulletin of Marine Science 93.2 (2017): 391-406. Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012, 9:357-359. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10:R25. Langmead B, Wilks C., Antonescu V., Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics. bty648. Li, Shuisheng, et al. "Mechanisms of sex differentiation and sex reversal in hermaphrodite fish as revealed by the Epinephelus coioides genome." Molecular Ecology Resources 23.4 (2023): 920-932. Madden, Thomas. "The BLAST sequence analysis tool." The NCBI handbook 2.5 (2013): 425-436. Mann, David A., et al. "Goliath grouper Epinephelus itajara sound production and movement patterns on aggregation sites." Endangered Species Research 7.3 (2009): 229-236. Modi, Alessandra, et al. "The Illumina sequencing protocol and the NovaSeq 6000 system." Bacterial Pangenomics: methods and protocols. New York, NY: springer US, 2021. 15-42. Muhammadar, Abdullah A., et al. "Growth, survival and feed conversion of juvenile tiger grouper Epinephelus fuscoguttatus in different salinity regimes." Aquaculture, Aquarium, Conservation & Legislation 7.4 (2014): 241-247. Murie, Debra J., et al. "Age, growth, and functional gonochorism with a twist of diandric protogyny in Goliath Grouper from the Atlantic coast of Florida." Fishes 8.8 (2023): 412. Nankervis, Leo, et al. "Advances in practical feed formulation and adoption for hybrid grouper (Epinephelus fuscoguttatus♀× E. lanceolatus♂) aquaculture." Reviews in Aquaculture 14.1 (2022): 288-307. Palm, H. W., et al. "Epinephelus fuscoguttatus mariculture in Indonesia: Implications from fish parasite infections." Regional Studies in Marine Science 2 (2015): 54-70. Pina-Amargós, F., and G. González-Sansón. "Movement patterns of goliath grouper Epinephelus itajara around southeast Cuba: implications for conservation." Endangered Species Research 7.3 (2009): 243-247. Silva-Oliveira, G. C., Rêgo, P. S. D., Schneider, H., Sampaio, I., & Vallinoto, M. (2008). Genetic characterisation of populations of the critically endangered Goliath grouper (Epinephelus itajara, Serranidae) from the Northern Brazilian coast through analyses of mtDNA. Genetics and Molecular Biology, 31, 988-995. Silva, O. (2017). vcf2PCA [Repositorio de GitHub]. GitHub. https://github.com/ODiogoSilva/vcf2PCA Simão, Felipe A., et al. "BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs." Bioinformatics 31.19 (2015): 3210-3212. Shifu Chen. 2023. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2: e107. https://doi.org/10.1002/imt2.107 Tarailo‐Graovac, Maja, and Nansheng Chen. "Using RepeatMasker to identify repetitive elements in genomic sequences." Current protocols in bioinformatics 25.1 (2009): 4-10. Vurture, Gregory W., et al. "GenomeScope: fast reference-free genome profiling from short reads." Bioinformatics 33.14 (2017): 2202-2204. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017. Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34:3094-3100. doi:10.1093/bioinformatics/bty191 Picard Toolkit.” 2019. Broad Institute, GitHub Repository. https://broadinstitute.github.io/picard/; Broad Institute The Variant Call Format and VCFtools, Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric Banks, Mark A. DePristo, Robert Handsaker, Gerton Lunter, Gabor Marth, Stephen T. Sherry, Gilean McVean, Richard Durbin and 1000 Genomes Project Analysis Group, Bioinformatics, 2011 http://dx.doi.org/10.1093/bioinformatics/btr330 Lischer HEL and Excoffier L (2012) PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28: 298-299. Venkat Bandi, and Carl Gutwin. 2020. Interactive Exploration of Genomic Conservation. In Proceedings of the 46th Graphics Interface Conference on Proceedings of Graphics Interface 2020 (GI’20). Canadian Human-Computer Communications Society, Waterloo, CAN. Huerlimann, R., Roux, N., Maeda, K., Pilieva, P., Miura, S., Chen, H. C., ... & Ravasi, T. (2024). The transcriptional landscape underlying larval development and metamorphosis in the Malabar grouper (Epinephelus malabaricus). Elife, 13, RP94573. Zhou, Q., Gao, H., Zhang, Y., Fan, G., Xu, H., Zhai, J., ... & Chen, S. (2019). A chromosome‐level genome assembly of the giant grouper (Epinephelus lanceolatus) provides insights into its innate immunity and rapid growth. Molecular ecology resources, 19(5), 1322-1332. Zhang, W., Yang, Y., Hua, S., Ruan, Q., Li, D., Wang, L., ... & Meng, Z. (2024). Chromosome-level genome assembly and annotation of the yellow grouper, Epinephelus awoara. Scientific Data, 11(1), 151. Cheng, M., Tian, Y., Li, Z., Wang, L., Wu, Y., Zhang, J., ... & Zhai, J. (2019). The complete mitochondrial genome of the hybrid offspring Epinephelus fuscoguttatus♀× Epinephelus tukula♂. Mitochondrial DNA Part B, 4(2), 2717-2718. Amenyogbe, E., Chen, G., & Wang, Z. (2020). Identification, characterization, and expressions profile analysis of growth hormone receptors (GHR1 and GHR2) in Hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus polyphekadion ♂). Genomics, 112(1), 1–9. https://doi. org/10.1016/j.ygeno.2019.05.012 Yang, Y., Wang, T., Chen, J., Wu, L., Wu, X., Zhang, W., ... & Liu, X. (2022). Whole‐genome sequencing of brown‐marbled grouper (Epinephelus fuscoguttatus) provides insights into adaptive evolution and growth differences. Molecular Ecology Resources, 22(2), 711-723. Damasceno J.S., Siccha-Ramirez R., Morales M.J.A., Oliveira C., Torres R.A., Costa E.N., Silva-Oliveira G.C., Vallinoto M., Machado L.F., Tosta V.C., Farro A.P.C., Hostim-Silva M. 2015. Mitochondrial DNA evidences reflect an incipient population structure in Atlantic goliath grouper (Epinephelus itajara, Epinephelidae) in Brazil. Sci. Mar. 79(4): 000-000. doi: http://dx.doi.org/10.3989/scimar.04203.20A Benevides, E. A., Vallinoto, M. N. S., Fetter Filho, A. F. H., De Souza, J. R. B., Silva-Oliveira, G., Freitas, M. O., ... & Torres, R. A. (2014). When physical oceanography meets population genetics: The case study of the genetic/evolutionary discontinuity in the endangered goliath grouper (Epinephelus itajara; Perciformes: Epinephelidae) with comments on the conservation of the species. Biochemical Systematics and Ecology, 56, 255-266. Claro R., García-Cagide A., Sierra L.M., García-Arteaga J.P. 1990. Características biológico-pesqueras de la cherna criolla, Epinephelus striatus (Bloch) (Pisces: Serranidae) en la plataforma cubana. Ciencias Biológicas 23: 23–43. Brulé T., Renan X., Colás-Marrufo T., Hauyon Y., TuzSulub A.N., Déniel C. 2003. Reproduction in the protogynous black grouper (Mycteroperca bonaci (Poey)) from the southern Gulf of Mexico. Fishery Bulletin 101 (3): 463–475. Bertoncini, A.A.; Aguilar-Perera, A.; Barreiros, J.; Craig, M.T.; Ferreira, B.P.; Koenig, C. The IUCN Red List of Threatened Species 2018: Epinephelus itajara; IUCN: Gland, Switzerland, 2018; p. e.T195409A46957794. IUCN. IUCN Red List of Threatened Animals; IUCN: Gland, Switzerland, 1996. Vaz-Perreira R, Torres RA, Freitas M, Gerhardinger LC, Hostim M (2007) Prospecção genômica (mtDNA) para ‘barcoding taxonomy’ em espécies da família Serranidae (Actinopterygii: Perciformes): buscando a identidade genética de Epinephelus itajara (Mero). Proc XVII Encontro Brasileiro de Ictiologia, p 540 Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic acids research, 49(W1), W293-W296. Craig, M. T., Graham, R. T., Torres, R. A., Hyde, J. R., Freitas, M. O., Ferreira, B. P., ... & Robertson, D. R. (2009). How many species of goliath grouper are there? Cryptic genetic divergence in a threatened marine fish and the resurrection of a geopolitical species. Endangered Species Research, 7(3), 167-174. Craig, M. T., Sadovy, M. T., & Heemstra, P. C. (2011). Groupers of the world: A field and market guide. Grahamstown, South Africa: NISC (Pty) Ltd (National Inquiry Services Centre). Artero, C., Murie, D. J., Koenig, C. C., Berzins, R., Bouchon, C., & Lampert, L. (2015). Age, growth, and mortality of the Atlantic goliath grouper Epinephelus itajara in French Guiana. Endangered Species Research, 28(3), 275-287. Brule, T., Colas-Marrufo, T., Perez-Díaz, E., & Déniel, C. (2018). Biology, exploitation and management of groupers (Serranidae, Epinephelinae, Epinephelini) and snappers (Lutjanidae, Lutjaninae, Lutjanus) in the Gulf of Mexico. Environmental analysis of the Gulf of Mexico. Harte Research Institute for Gulf of Mexico Studies, Special Publication Series, (1), 137-179. Sadovy, Y., & Eklund, A. M. (1999). Synopsis of biological data on the Nassau grouper, Epinephelus striatus (Bloch, 1792), and the jewfish, E. itajara (Lichtenstein, 1822). |
dc.rights.en.fl_str_mv |
Attribution-ShareAlike 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
30 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Biología |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Ciencias Biológicas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/2b918568-0cb3-45e5-bcca-0791553f1de2/download https://repositorio.uniandes.edu.co/bitstreams/87dbfb56-2790-499d-b1ab-45425e32146a/download https://repositorio.uniandes.edu.co/bitstreams/a9257632-f005-45d2-8b4c-c0d27a3bb06f/download https://repositorio.uniandes.edu.co/bitstreams/1eaa8bc7-5d59-49e1-957f-2faba0e4bc9d/download https://repositorio.uniandes.edu.co/bitstreams/5c542241-21e8-4421-8a99-b872bc13e17d/download https://repositorio.uniandes.edu.co/bitstreams/a24b2375-13e2-4193-bb8c-493793cbf11f/download https://repositorio.uniandes.edu.co/bitstreams/daee6e55-2f86-4771-8af2-0bfe4378f413/download https://repositorio.uniandes.edu.co/bitstreams/4f647951-01a1-47a8-adae-b9e099770911/download |
bitstream.checksum.fl_str_mv |
6c162107ee049e9a75156d486f2d7ffb 488711ada401eb9e634fd3f0b4f09ea2 84a900c9dd4b2a10095a94649e1ce116 ae9e573a68e7f92501b6913cc846c39f 7e166b9ef79c27fec4e97c619af87d9b 89cb1753b32efd814283ddefddd533c9 166ded3bafa12ec490a715de467696fd e61dfed35fc26fb287f4825110db2a48 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927651405660160 |
spelling |
Caballero Gaitán, Susana Josefinavirtual::22950-1Duitama Castellanos, Jorge Alexandervirtual::22951-1Martínez, José GregorioJácome Castro, Juan EstebanRojas Ruiz, Jaime AlbertoQuiroga Camacho, Diego AlejandroHakim de la Torre, NadineCrawford, Andrew JacksonFacultad de Ciencias::Laboratorio de Ecologia Molecular de Vertebrados Acuaticos2025-01-31T13:34:56Z2025-01-31T13:34:56Z2025-01-26https://hdl.handle.net/1992/75891instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Epinephelus itajara, conocido como Mero guasa, es la especie más grande de la familia Epinephelidae y se encuentra en peligro crítico de extinción. Esta especie es de gran importancia ecológica, cultural y económica, y ha sido objeto de esfuerzos de reproducción en cautiverio en el Oceanario de las Islas del Rosario, Colombia. Sin embargo, su estructura genética, adaptaciones evolutivas y dinámica poblacional son aún poco comprendidas en Colombia. Este estudio presenta un genoma de referencia con pseudocromosomas para E. itajara, obtenido mediante la tecnología de secuenciación PacBio HiFi. El genoma ensamblado tiene un tamaño aproximado de 1.1 Gb, con un contig N50 de 42.69 Mb y un scaffold N50 de 46.83 Mb. Fueron identificados 22,682 genes que codifican para proteínas después de enmascarar el 46% del genoma compuesto por elementos repetitivos. Además, se realizó un análisis de genómica poblacional utilizando 7,706 SNPs de alta calidad para evaluar la estructura genética de las poblaciones en cautiverio. Los resultados revelaron cuatro linajes genéticos diferenciados, con un flujo génico limitado entre ellos. En Colombia se identificaron dos linajes únicos, asociados a las localidades de Bahía Cispatá y Bahía Barbacoas, lo que sugiere un posible aislamiento geográfico. Estos recursos genómicos abren nuevas oportunidades y proporcionan herramientas valiosas para comprender la diversidad genética, la historia evolutiva y los mecanismos reproductivos de E. itajara, así como para diseñar estrategias de conservación, incluyendo programas de reproducción selectiva para aumentar la diversidad genética en cautiverio y guiar los esfuerzos de restauración en su hábitat natural.PADI FoundationPregrado30 páginasapplication/pdfspaUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San BernardoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMero guasaEpinephelus itajaraCría en cautiverioGenómicaEnsambleBiologíaSouth Atlantic Fishery Management Council (SAFMC). Amendment Number 4, Regulatory Impact Review, Initial Regulatory Flexibility Analysis and Environmental Assessment for the Fishery Management Plan for the Snapper Grouper Fishery of the South Atlantic Region; South Atlantic Fishery Management Council: Charleston, SC, USA, 1990; p. 200Alonge, Michael, et al. "Automated assembly scaffolding elevates a new tomato system for high-throughput genome editing." Genome Biology (2022). https://doi.org/10.1186/s13059-022-02823-7Andrea Polanco F., Arturo Acero P. y Mónica Almanza. 2017. Epinephelus itajara. Páginas 61-64. En: Chasqui V., L., A. Polanco F., A. Acero P., P.A. Mejía-Falla, A. Navia, L.A. Zapata y J.P. Caldas. (Eds.). 2017. Libro rojo de peces marinos de Colombia. Instituto de Investigaciones Marinas y Costeras Invemar, Ministerio de Ambiente y Desarrollo Sostenible. Serie de Publicaciones Generales de INVEMAR # 93. Santa Marta, Colombia. 552 p.Birney, Ewan, Michele Clamp, and Richard Durbin. "GeneWise and genomewise." Genome research 14.5 (2004): 988-995.Gertz E.M., Yu Y.K., Agarwala R., Schaffer A.A., Altschul S.F. Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol. 2006; 4:41.Juhling F., Putz J., Bernt M., Donath A., Middendorf M., Florentz C., Stadler P.F. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res. 2012; 40:2833–2845.Krzywinski, Martin, et al. "Circos: an information aesthetic for comparative genomics." Genome research 19.9 (2009): 1639-1645.Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25:1754–1760.Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25:2078–2079.Meng G, Li Y, Yang C, Liu S. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic acids research. 2019 Jun 20;47(11):e63-. https://doi.org/10.1093/nar/gkz173Nawrocki E.P., Eddy S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013; 29:2933–2935.Bueno, Leonardo S., et al. "Evidence for spawning aggregations of the endangered Atlantic goliath grouper Epinephelus itajara in southern Brazil." Journal of fish biology 89.1 (2016): 876-889.Bullock, Lewis H., et al. "Age, growth, and reproduction of jewfish Epinephelus itajara in the eastern Gulf of Mexico." Fishery Bulletin 90.2 (1992): 243-249.Cantarel, Brandi L., et al. "MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes." Genome research 18.1 (2008): 188-196.Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., Li H. (2021) Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods, 18:170-175. https://doi.org/10.1038/s41592-020-01056-5Cheng, H., Jarvis, E.D., Fedrigo, O., Koepfli, K.P., Urban, L., Gemmell, N.J., Li, H. (2022) Haplotype-resolved assembly of diploid genomes without parental data. Nature Biotechnology, 40:1332–1335. https://doi.org/10.1038/s41587-022-01261-xCheng, H., Asri, M., Lucas, J., Koren, S., Li, H. (2024) Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. Nat Methods, 21:967-970. https://doi.org/10.1038/s41592-024-02269-8Duitama J, Quintero JC, Cruz DF, et al. (2014). An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Research. 42(6): e44. http://doi.org/10.1093/nar/gkt1381Gonzalez-Garcia L, Guevara-Barrientos D, Lozano-Arce D et al. (2023). New algorithms for accurate and efficient de novo genome assembly from long DNA sequencing reads. Life Science Alliance 6(5): e202201719.Tello D, Gil J, Loaiza CD, Riascos JJ, Cardozo N, and Duitama J. (2019). NGSEP3: accurate variant calling across species and sequencing protocols. Bioinformatics 35(22): 4716-4723. http://doi.org/10.1093/bioinformatics/btz275Tello D, Gonzalez-Garcia LN, Gomez J, et al. (2023) NGSEP 4: Efficient and accurate identification of orthogroups and whole-genome alignment.Molecular Ecology Resources 23(3): 712-724. https://doi.org/10.1111/1755-0998.13737Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9:18.Gremme, Gordon, Sascha Steinbiss, and Stefan Kurtz. "GenomeTools: a comprehensive software library for efficient processing of structured genome annotations." IEEE/ACM transactions on computational biology and bioinformatics 10.3 (2013): 645-656.Ou S, Jiang N. LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons. Mob DNA 2019;10(1):48.Ou S, Jiang N. LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons. Plant Physiol. 2018;176:1410–22.Ou S., Su W., Liao Y., Chougule K., Agda J. R. A., Hellinga A. J., Lugo C. S. B., Elliott T. A., Ware D., Peterson T., Jiang N., Hirsch C. N.and Hufford M. B. (2019). Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline. Genome Biol. 20(1): 275.Shi J, Liang C. Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection. Plant Physiol. 2019;180(4):1803-1815.Su W, Gu X, Peterson T. TIR-Learner, a New Ensemble Method for TIR Transposable Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize Genome. Mol Plant. 2019;12:447–60.Xiong W, He L, Lai J, Dooner HK, Du C. HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc Natl Acad Sci U S A. 2014;111:10263–8.Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265–8.Zhang RG, Li GL, Wang XL et. al. TEsorter: an accurate and fast method to classify LTR retrotransposons in plant genomes. Hortic Res, 2022; 9: uhac017Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14:2611–2620.Falush, Daniel, Matthew Stephens, and Jonathan K. Pritchard. "Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies." Genetics 164.4 (2003): 1567-1587.Kopelman et al. (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15:1179–1191.Li YL, Liu JX (2018) StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods.Molecular Ecology Resources, 18:176–177.Puechmaille SJ (2016) The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16:608–627.Freitas, Matheus O., et al. "Diet and reproduction of the goliath grouper, Epinephelus itajara (Actinopterygii: Perciformes: Serranidae), in eastern Brazil." Acta Ichthyologica et Piscatoria 45.1 (2015).Frias-Torres, Sarah. "Habitat use of juvenile goliath grouper Epinephelus itajara in the Florida Keys, USA." Endangered Species Research 2 (2006): 1-6.Frias-Torres, Sarah. "Should the Critically Endangered Goliath grouper Epinephelus itajara be culled in Florida?." Oryx 47.1 (2013): 88-95.García, Lury N., et al. "Osmoregulation of juvenile marine goliath grouper (Epinephelus itajara) in low-salinity water." Revista Colombiana de Ciencias Pecuarias 26.2 (2013): 127-135.Guillaume Marcais and Carl Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics (2011) 27(6): 764-770 (first published online January 7, 2011) doi:10.1093/bioinformatics/btr011Gurevich, Alexey, et al. "QUAST: quality assessment tool for genome assemblies." Bioinformatics 29.8 (2013): 1072-1075. http://doi.org/10.26508/lsa.202201719Hon, Ting, et al. "Highly accurate long-read HiFi sequencing data for five complex genomes." Scientific data 7.1 (2020): 399.Koenig, Christopher C., et al. "Diel, lunar, and seasonal spawning patterns of the Atlantic goliath grouper, Epinephelus itajara, off Florida, United States." Bulletin of Marine Science 93.2 (2017): 391-406.Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012, 9:357-359.Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10:R25.Langmead B, Wilks C., Antonescu V., Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics. bty648.Li, Shuisheng, et al. "Mechanisms of sex differentiation and sex reversal in hermaphrodite fish as revealed by the Epinephelus coioides genome." Molecular Ecology Resources 23.4 (2023): 920-932.Madden, Thomas. "The BLAST sequence analysis tool." The NCBI handbook 2.5 (2013): 425-436.Mann, David A., et al. "Goliath grouper Epinephelus itajara sound production and movement patterns on aggregation sites." Endangered Species Research 7.3 (2009): 229-236.Modi, Alessandra, et al. "The Illumina sequencing protocol and the NovaSeq 6000 system." Bacterial Pangenomics: methods and protocols. New York, NY: springer US, 2021. 15-42.Muhammadar, Abdullah A., et al. "Growth, survival and feed conversion of juvenile tiger grouper Epinephelus fuscoguttatus in different salinity regimes." Aquaculture, Aquarium, Conservation & Legislation 7.4 (2014): 241-247.Murie, Debra J., et al. "Age, growth, and functional gonochorism with a twist of diandric protogyny in Goliath Grouper from the Atlantic coast of Florida." Fishes 8.8 (2023): 412.Nankervis, Leo, et al. "Advances in practical feed formulation and adoption for hybrid grouper (Epinephelus fuscoguttatus♀× E. lanceolatus♂) aquaculture." Reviews in Aquaculture 14.1 (2022): 288-307.Palm, H. W., et al. "Epinephelus fuscoguttatus mariculture in Indonesia: Implications from fish parasite infections." Regional Studies in Marine Science 2 (2015): 54-70.Pina-Amargós, F., and G. González-Sansón. "Movement patterns of goliath grouper Epinephelus itajara around southeast Cuba: implications for conservation." Endangered Species Research 7.3 (2009): 243-247.Silva-Oliveira, G. C., Rêgo, P. S. D., Schneider, H., Sampaio, I., & Vallinoto, M. (2008). Genetic characterisation of populations of the critically endangered Goliath grouper (Epinephelus itajara, Serranidae) from the Northern Brazilian coast through analyses of mtDNA. Genetics and Molecular Biology, 31, 988-995.Silva, O. (2017). vcf2PCA [Repositorio de GitHub]. GitHub. https://github.com/ODiogoSilva/vcf2PCASimão, Felipe A., et al. "BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs." Bioinformatics 31.19 (2015): 3210-3212.Shifu Chen. 2023. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2: e107. https://doi.org/10.1002/imt2.107Tarailo‐Graovac, Maja, and Nansheng Chen. "Using RepeatMasker to identify repetitive elements in genomic sequences." Current protocols in bioinformatics 25.1 (2009): 4-10.Vurture, Gregory W., et al. "GenomeScope: fast reference-free genome profiling from short reads." Bioinformatics 33.14 (2017): 2202-2204.Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017.Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34:3094-3100. doi:10.1093/bioinformatics/bty191Picard Toolkit.” 2019. Broad Institute, GitHub Repository. https://broadinstitute.github.io/picard/; Broad InstituteThe Variant Call Format and VCFtools, Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric Banks, Mark A. DePristo, Robert Handsaker, Gerton Lunter, Gabor Marth, Stephen T. Sherry, Gilean McVean, Richard Durbin and 1000 Genomes Project Analysis Group, Bioinformatics, 2011 http://dx.doi.org/10.1093/bioinformatics/btr330Lischer HEL and Excoffier L (2012) PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28: 298-299.Venkat Bandi, and Carl Gutwin. 2020. Interactive Exploration of Genomic Conservation. In Proceedings of the 46th Graphics Interface Conference on Proceedings of Graphics Interface 2020 (GI’20). Canadian Human-Computer Communications Society, Waterloo, CAN. Huerlimann, R., Roux, N., Maeda, K., Pilieva, P., Miura, S., Chen, H. C., ... & Ravasi, T. (2024). The transcriptional landscape underlying larval development and metamorphosis in the Malabar grouper (Epinephelus malabaricus). Elife, 13, RP94573.Zhou, Q., Gao, H., Zhang, Y., Fan, G., Xu, H., Zhai, J., ... & Chen, S. (2019). A chromosome‐level genome assembly of the giant grouper (Epinephelus lanceolatus) provides insights into its innate immunity and rapid growth. Molecular ecology resources, 19(5), 1322-1332.Zhang, W., Yang, Y., Hua, S., Ruan, Q., Li, D., Wang, L., ... & Meng, Z. (2024). Chromosome-level genome assembly and annotation of the yellow grouper, Epinephelus awoara. Scientific Data, 11(1), 151.Cheng, M., Tian, Y., Li, Z., Wang, L., Wu, Y., Zhang, J., ... & Zhai, J. (2019). The complete mitochondrial genome of the hybrid offspring Epinephelus fuscoguttatus♀× Epinephelus tukula♂. Mitochondrial DNA Part B, 4(2), 2717-2718.Amenyogbe, E., Chen, G., & Wang, Z. (2020). Identification, characterization, and expressions profile analysis of growth hormone receptors (GHR1 and GHR2) in Hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus polyphekadion ♂). Genomics, 112(1), 1–9. https://doi. org/10.1016/j.ygeno.2019.05.012Yang, Y., Wang, T., Chen, J., Wu, L., Wu, X., Zhang, W., ... & Liu, X. (2022). Whole‐genome sequencing of brown‐marbled grouper (Epinephelus fuscoguttatus) provides insights into adaptive evolution and growth differences. Molecular Ecology Resources, 22(2), 711-723.Damasceno J.S., Siccha-Ramirez R., Morales M.J.A., Oliveira C., Torres R.A., Costa E.N., Silva-Oliveira G.C., Vallinoto M., Machado L.F., Tosta V.C., Farro A.P.C., Hostim-Silva M. 2015. Mitochondrial DNA evidences reflect an incipient population structure in Atlantic goliath grouper (Epinephelus itajara, Epinephelidae) in Brazil. Sci. Mar. 79(4): 000-000. doi: http://dx.doi.org/10.3989/scimar.04203.20ABenevides, E. A., Vallinoto, M. N. S., Fetter Filho, A. F. H., De Souza, J. R. B., Silva-Oliveira, G., Freitas, M. O., ... & Torres, R. A. (2014). When physical oceanography meets population genetics: The case study of the genetic/evolutionary discontinuity in the endangered goliath grouper (Epinephelus itajara; Perciformes: Epinephelidae) with comments on the conservation of the species. Biochemical Systematics and Ecology, 56, 255-266.Claro R., García-Cagide A., Sierra L.M., García-Arteaga J.P. 1990. Características biológico-pesqueras de la cherna criolla, Epinephelus striatus (Bloch) (Pisces: Serranidae) en la plataforma cubana. Ciencias Biológicas 23: 23–43.Brulé T., Renan X., Colás-Marrufo T., Hauyon Y., TuzSulub A.N., Déniel C. 2003. Reproduction in the protogynous black grouper (Mycteroperca bonaci (Poey)) from the southern Gulf of Mexico. Fishery Bulletin 101 (3): 463–475.Bertoncini, A.A.; Aguilar-Perera, A.; Barreiros, J.; Craig, M.T.; Ferreira, B.P.; Koenig, C. The IUCN Red List of Threatened Species 2018: Epinephelus itajara; IUCN: Gland, Switzerland, 2018; p. e.T195409A46957794.IUCN. IUCN Red List of Threatened Animals; IUCN: Gland, Switzerland, 1996.Vaz-Perreira R, Torres RA, Freitas M, Gerhardinger LC, Hostim M (2007) Prospecção genômica (mtDNA) para ‘barcoding taxonomy’ em espécies da família Serranidae (Actinopterygii: Perciformes): buscando a identidade genética de Epinephelus itajara (Mero). Proc XVII Encontro Brasileiro de Ictiologia, p 540Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic acids research, 49(W1), W293-W296.Craig, M. T., Graham, R. T., Torres, R. A., Hyde, J. R., Freitas, M. O., Ferreira, B. P., ... & Robertson, D. R. (2009). How many species of goliath grouper are there? Cryptic genetic divergence in a threatened marine fish and the resurrection of a geopolitical species. Endangered Species Research, 7(3), 167-174.Craig, M. T., Sadovy, M. T., & Heemstra, P. C. (2011). Groupers of the world: A field and market guide. Grahamstown, South Africa: NISC (Pty) Ltd (National Inquiry Services Centre).Artero, C., Murie, D. J., Koenig, C. C., Berzins, R., Bouchon, C., & Lampert, L. (2015). Age, growth, and mortality of the Atlantic goliath grouper Epinephelus itajara in French Guiana. Endangered Species Research, 28(3), 275-287.Brule, T., Colas-Marrufo, T., Perez-Díaz, E., & Déniel, C. (2018). Biology, exploitation and management of groupers (Serranidae, Epinephelinae, Epinephelini) and snappers (Lutjanidae, Lutjaninae, Lutjanus) in the Gulf of Mexico. Environmental analysis of the Gulf of Mexico. Harte Research Institute for Gulf of Mexico Studies, Special Publication Series, (1), 137-179.Sadovy, Y., & Eklund, A. M. (1999). Synopsis of biological data on the Nassau grouper, Epinephelus striatus (Bloch, 1792), and the jewfish, E. itajara (Lichtenstein, 1822).201923774Publication0000-0002-9285-3873virtual::22950-10000-0002-9285-3873https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000686603virtual::22950-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00006866031735065d-7c92-4011-b244-8e579ec9f57cvirtual::22950-107e4ae59-26ee-4988-9701-129fa965d270virtual::22951-11735065d-7c92-4011-b244-8e579ec9f57c1735065d-7c92-4011-b244-8e579ec9f57cvirtual::22950-107e4ae59-26ee-4988-9701-129fa965d270virtual::22951-1ORIGINAL201923774_ForAutEntTesisTraGraSisBib_202420.pdf201923774_ForAutEntTesisTraGraSisBib_202420.pdfHIDEapplication/pdf216809https://repositorio.uniandes.edu.co/bitstreams/2b918568-0cb3-45e5-bcca-0791553f1de2/download6c162107ee049e9a75156d486f2d7ffbMD51Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo.pdfConservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo.pdfapplication/pdf1820337https://repositorio.uniandes.edu.co/bitstreams/87dbfb56-2790-499d-b1ab-45425e32146a/download488711ada401eb9e634fd3f0b4f09ea2MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/a9257632-f005-45d2-8b4c-c0d27a3bb06f/download84a900c9dd4b2a10095a94649e1ce116MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/1eaa8bc7-5d59-49e1-957f-2faba0e4bc9d/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXT201923774_ForAutEntTesisTraGraSisBib_202420.pdf.txt201923774_ForAutEntTesisTraGraSisBib_202420.pdf.txtExtracted texttext/plain1720https://repositorio.uniandes.edu.co/bitstreams/5c542241-21e8-4421-8a99-b872bc13e17d/download7e166b9ef79c27fec4e97c619af87d9bMD55Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo.pdf.txtConservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo.pdf.txtExtracted texttext/plain63252https://repositorio.uniandes.edu.co/bitstreams/a24b2375-13e2-4193-bb8c-493793cbf11f/download89cb1753b32efd814283ddefddd533c9MD57THUMBNAIL201923774_ForAutEntTesisTraGraSisBib_202420.pdf.jpg201923774_ForAutEntTesisTraGraSisBib_202420.pdf.jpgGenerated Thumbnailimage/jpeg11042https://repositorio.uniandes.edu.co/bitstreams/daee6e55-2f86-4771-8af2-0bfe4378f413/download166ded3bafa12ec490a715de467696fdMD56Conservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo.pdf.jpgConservando el gigante del Caribe: Ensamblaje denovo del Genoma del Mero Guasa (Epinephelus itajara) y su estructura poblacional, en el PNN Corales del Rosario y de San Bernardo.pdf.jpgGenerated Thumbnailimage/jpeg7389https://repositorio.uniandes.edu.co/bitstreams/4f647951-01a1-47a8-adae-b9e099770911/downloade61dfed35fc26fb287f4825110db2a48MD581992/75891oai:repositorio.uniandes.edu.co:1992/758912025-03-05 09:38:15.783http://creativecommons.org/licenses/by-sa/4.0/Attribution-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |