Dinámica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio

En este trabajo, se estudiaron y analizaron diversas propiedades del compuesto La(5/8-x)Pr_xCa(3/8)MnO_3 (LPCMO), una variante de manganita reconocida por su amplia gama de fases magnéticas que influyen significativamente en las características de transporte del material. Se sintetizaron tres muestr...

Full description

Autores:
Amaya Bohórquez, Joan Sebastian
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75360
Acceso en línea:
https://hdl.handle.net/1992/75360
Palabra clave:
LPCMO
Manganitas
Fases magnéticas
Ferromagnético metálico
Antifferomagnético aislante
Histéresis
Temperatura de Curie
FORC
Percolación
Coexistencia de fases
Física
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_df0618bc309fc63a6a45695b537c107b
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75360
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Dinámica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio
title Dinámica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio
spellingShingle Dinámica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio
LPCMO
Manganitas
Fases magnéticas
Ferromagnético metálico
Antifferomagnético aislante
Histéresis
Temperatura de Curie
FORC
Percolación
Coexistencia de fases
Física
title_short Dinámica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio
title_full Dinámica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio
title_fullStr Dinámica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio
title_full_unstemmed Dinámica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio
title_sort Dinámica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio
dc.creator.fl_str_mv Amaya Bohórquez, Joan Sebastian
dc.contributor.advisor.none.fl_str_mv Ramírez Rojas, Juan Gabriel
dc.contributor.author.none.fl_str_mv Amaya Bohórquez, Joan Sebastian
dc.contributor.jury.none.fl_str_mv Hernández Pico, Yenny Rocío
dc.subject.keyword.spa.fl_str_mv LPCMO
Manganitas
Fases magnéticas
Ferromagnético metálico
Antifferomagnético aislante
Histéresis
Temperatura de Curie
FORC
Percolación
Coexistencia de fases
topic LPCMO
Manganitas
Fases magnéticas
Ferromagnético metálico
Antifferomagnético aislante
Histéresis
Temperatura de Curie
FORC
Percolación
Coexistencia de fases
Física
dc.subject.themes.spa.fl_str_mv Física
description En este trabajo, se estudiaron y analizaron diversas propiedades del compuesto La(5/8-x)Pr_xCa(3/8)MnO_3 (LPCMO), una variante de manganita reconocida por su amplia gama de fases magnéticas que influyen significativamente en las características de transporte del material. Se sintetizaron tres muestras con diferentes dopajes: X = 0.35, X = 0.4 y X = 0.45, con el propósito principal de comprender la coexistencia entre las fases ferromagnéticas metálicas (FMM) y antiferromagnéticas aislantes (AFI). La caracterización inició con la difracción de rayos X de la primera muestra, revelando una fase y parámetros de red cristalina que se aproximan a los valores reportados. La caracterización magnética se llevó a cabo mediante curvas de histéresis, exhibiendo un comportamiento ferromagnético debido a la contribución de dominios FMM, y una envolvente influenciada por la fase AFI, generando un bajo campo coercitivo (menor a 200 Oe). Las curvas de magnetización frente a la temperatura permitieron identificar la temperatura de Curie (Tc), además de evidenciar transiciones discontinuas para el dopaje de 0.4. Asimismo, se realizaron diagramas FORC, corroborando las contribuciones identificadas en las curvas de histéresis, y destacando regiones con alta interacción y coercitividad, sugiriendo la existencia de un acoplamiento en la interfaz de los dominios. Las mediciones de resistencia frente a la temperatura y al campo, para el dopaje de 0.4, revelaron transiciones discontinuas tanto aleatorias como bien definidas. Finalmente, se llevó a cabo una simulación computacional utilizando el Random Field Ising Model (RFIM), modificando parámetros análogos a la red cristalina y el dopaje. Esta simulación logró reproducir curvas similares a las de magnetización frente a la temperatura, histéresis y una envolvente superparamagnética debido al antiferromagnetismo.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-06
dc.date.accessioned.none.fl_str_mv 2025-01-13T15:17:52Z
dc.date.available.none.fl_str_mv 2025-01-13T15:17:52Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75360
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75360
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Siming Wang, Juan Gabriel Ramírez, and Ivan K. Schuller. Avalanches in vanadium sesquioxide nanodevices. Phys. Rev. B, 92:085150, Aug 2015.
Elbio Dagotto. Nanoscale phase separation and colossal magnetoresistance: the physics of manganites and related compounds. Springer Science & Business Media, 2003.
Axel Hoffmann, Shriram Ramanathan, Julie Grollier, Andrew D Kent, Marcelo J Rozenberg, Ivan K Schuller, Oleg G Shpyrko, Robert C Dynes, Yeshaiahu Fainman, Alex Frano, et al. Quantum materials for energy-efficient neuromorphic computing: Opportunities and challenges. APL Materials, 10(7), 2022.
Tian Miao, Lina Deng, Wenting Yang, Jinyang Ni, Changlin Zheng, Joanne Etheridge, Shasha Wang, Hao Liu, Hanxuan Lin, Yang Yu, Qian Shi, Peng Cai, Yinyan Zhu, Tieying Yang, Xingmin Zhang, Xingyu Gao, Chuanying Xi, Mingliang Tian, Xiaoshan Wu, Hongjun Xiang, Elbio Dagotto, Lifeng Yin, and Jian Shen. Direct experimental evidence of physical origin of electronic phase separation in manganites. Proceedings of the National Academy of Sciences, 117(13):7090–7094. 2020.
VG Sathe, Anju Ahlawat, R Rawat, and P Chaddah. Effect of strain on the phase separation and devitrification of the magnetic glass state in thin films of La5/8- yPr yCa3/8MnO3 (y = 0.45). Journal of Physics: Condensed Matter, 22(17):176002, 2010.
Yinyan Zhu, Kai Du, Jiebin Niu, Lingfang Lin, Wengang Wei, Hao Liu, Hanxuan Lin, Kai Zhang, Tieying Yang, Yunfang Kou, et al. Chemical ordering suppresses large-scale electronic phase separation in doped manganites. Nature Communications, 7(1):11260, 2016.
David J Griffiths. Introduction to Electrodynamics, 2005.
Charles Kittel. Introduction to Solid State Physics. Wiley, 8th edition, 2004.
Stephen Blundell. Magnetism in Condensed Matter. OUP Oxford, 2001.
Ramon Egli and Michael Winklhofer. Recent developments on processing and interpretation aspects of first-order reversal curves (FORC). Scientific Notes of the Kazan University, Natural Science Series, ISSN: 2542-064X, E-ISSN: 2500-218, http://kpfu.ru/uz-rus/ns, 156:14–53, 01 2014.
Claire Carvallo, Özden Özdemir, and David J. Dunlop. First-order reversal curve (FORC) diagrams of elongated single-domain grains at high and low temperatures. Journal of Geophysical Research, 109, 2004.
Clarence Zener. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev., 82:403–405, May 1951.
Dietrich Stauffer and Ammon Aharony. Introduction to Percolation Theory. CRC Press, 2018.
Thomas Nattermann. Theory of the Random Field Ising Model. In Spin Glasses and Random Fields, pages 277–298. World Scientific, 1998.
Mark R Levy. Chapter 3: Perovskite Perfect Lattice. Cryst. Struct. Defect Prop. Predict. Ceram. Mater, pages 79–114, 2005.
Quantum Dot Materials. What are perovskite materials? https://quantum-solutions.com/blog/what-are-perovskite-materials/, December 19, 2020.
Sang-Wook Cheong, Harold Y Hwang, and Y Tokura. Ferromagnetism vs. charge/orbital ordering in mixed-valent manganites. Colossal Magnetoresistive Oxides, 2000:237–280, 2000.
D. Carranza-Celis, P. Salev, A. C. Basaran, I. K. Schuller, and J. G. Ramirez. Volatil and non-volatil resistive switching in lpcmo. Paper in preparation, 2023.
Mehdi Zarifi, Parviz Kameli, Hossein Ahmadvand, and Hossein Nikmanesh. The consequences of growth modes on the magnetotransport properties of la0.4pr0.3ca0.3mn03/lao films. AIP Advances, 8(11), 2018.
Suman Kumari, Praveen K Siwach, Kamlesh K Maurya, Veer PS Awana, and Hari K Singh. Magnetotransport irreversibility in single crystalline la0.18pr0.40ca0.42mn03 thin films. physica status solidi (b), 256(7):1800617, 2019.
Lizhi Liang, Lei Li, Heng Wu, and Xinhua Zhu. Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures. Nanoscale Research Letters, 9:1–14, 2014.
Juan Antonio Collado, Carlos Frontera, José Luis García-Muñoz, Clemens Ritter, M Brunelli, and Miguel A. G. Aranda. Room temperature structural and microstructural study for the magneto-conducting la5/8-xprxca3/8mn03 (0 x 5/8) series. Chemistry of Materials, 15:167–174, 2003.
Lake Shore Cryotronics. Hardware Reference Manual 7400 Series VSM System, 2014.
Richard J Harrison and Joshua M Feinberg. Forcinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochemistry, Geophysics, Geosystems, 9(5), 2008.
Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm. The American Statistician, 49(4):327–335, 1995.
Juan Sebastián Rodríguez Páez. Simulación de la dinámica de magnetización y propiedades de transporte en la separación de fases en manganitas. Proyecto final - monografía, Universidad de los Andes, Bogotá D.C., Colombia, junio 2022. Profesor Asesor: Juan Gabriel Ramírez Rojas, Ph.D.
Antanas Vaitkus, Andrius Merkys, and Saulius Gražulis. Validation of the Crystallography Open Database using the Crystallographic Information Framework. Journal of Applied Crystallography, 54(2):661–672, Apr 2021.
Miguel Quirós, Saulius Gražulis, Saulė Girdzijauskaitė, Andrius Merkys, and Antanas Vaitkus. Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. Journal of Cheminformatics, 10(1), May 2018.
Andrius Merkys, Antanas Vaitkus, Justas Butkus, Mykolas Okulič-Kazarinas, Visvaldas Kairys, and Saulius Gražulis. COD::CIF::Parser: an error-correcting CIF parser for the Perl language. Journal of Applied Crystallography, 49(1), Feb 2016.
Saulius Gražulis, Adriana Daškevič, Andrius Merkys, Daniel Chateigner, Luca Lutterotti, Miguel Quirós, Nadezhda R. Serebryanaya, Peter Moeck, Robert T. Downs, and Armel Le Bail. Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Research, 40(D1):D420–D427, 2012.
R. T. Downs and M. Hall-Wallace. The American Mineralogist crystal structure database. American Mineralogist, 88:247–250, 2003.
Andrius Merkys, Antanas Vaitkus, Algirdas Grybauskas, Aleksandras Konovalovas, Miguel Quirós, and Saulius Gražulis. Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions. Journal of Cheminformatics, 15(1):25, 2023.
Siming Wang, Juan Gabriel Ramírez, and Ivan K. Schuller. Avalanches in vanadium sesquioxide nanodevices. Physical Review B, 92(8):085150, 2015.
Prabodh Shukla. Hysteresis in the zero-temperature random-field Ising model on directed random graphs. Phys. Rev. E, 98:032144, Sep 2018.
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 66 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/ee41466c-7ceb-4d04-bb96-9ebe1cbff7f9/download
https://repositorio.uniandes.edu.co/bitstreams/f6fe8ebc-bd89-404f-b4e1-c1c3228e48b1/download
https://repositorio.uniandes.edu.co/bitstreams/d8de5a4c-819d-4308-95ae-079078ae3849/download
https://repositorio.uniandes.edu.co/bitstreams/76c635e1-27b2-4a64-812e-71a3fd8f72a2/download
https://repositorio.uniandes.edu.co/bitstreams/307fb435-5ea1-4e60-a531-aa2bf4256e46/download
https://repositorio.uniandes.edu.co/bitstreams/6bc18267-8509-4a3e-a296-b8cf195a1bc7/download
https://repositorio.uniandes.edu.co/bitstreams/9e74d980-1824-4263-9b98-4e00268bdc6c/download
bitstream.checksum.fl_str_mv 86da10505c2792b4a63b88b6c1a7a290
f1bf3a0908a2e4c9f1295abd24607727
ae9e573a68e7f92501b6913cc846c39f
5403b763da06756fb7b9cbb84e302d37
cb3f0a642c4fe366cfa68023b66bd1b8
40bc1b9bf6184397defb58651fcc361c
4d542463a3192c65fc6470333cef0898
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927814132072448
spelling Ramírez Rojas, Juan Gabrielvirtual::21995-1Amaya Bohórquez, Joan SebastianHernández Pico, Yenny Rocío2025-01-13T15:17:52Z2025-01-13T15:17:52Z2023-12-06https://hdl.handle.net/1992/75360instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/En este trabajo, se estudiaron y analizaron diversas propiedades del compuesto La(5/8-x)Pr_xCa(3/8)MnO_3 (LPCMO), una variante de manganita reconocida por su amplia gama de fases magnéticas que influyen significativamente en las características de transporte del material. Se sintetizaron tres muestras con diferentes dopajes: X = 0.35, X = 0.4 y X = 0.45, con el propósito principal de comprender la coexistencia entre las fases ferromagnéticas metálicas (FMM) y antiferromagnéticas aislantes (AFI). La caracterización inició con la difracción de rayos X de la primera muestra, revelando una fase y parámetros de red cristalina que se aproximan a los valores reportados. La caracterización magnética se llevó a cabo mediante curvas de histéresis, exhibiendo un comportamiento ferromagnético debido a la contribución de dominios FMM, y una envolvente influenciada por la fase AFI, generando un bajo campo coercitivo (menor a 200 Oe). Las curvas de magnetización frente a la temperatura permitieron identificar la temperatura de Curie (Tc), además de evidenciar transiciones discontinuas para el dopaje de 0.4. Asimismo, se realizaron diagramas FORC, corroborando las contribuciones identificadas en las curvas de histéresis, y destacando regiones con alta interacción y coercitividad, sugiriendo la existencia de un acoplamiento en la interfaz de los dominios. Las mediciones de resistencia frente a la temperatura y al campo, para el dopaje de 0.4, revelaron transiciones discontinuas tanto aleatorias como bien definidas. Finalmente, se llevó a cabo una simulación computacional utilizando el Random Field Ising Model (RFIM), modificando parámetros análogos a la red cristalina y el dopaje. Esta simulación logró reproducir curvas similares a las de magnetización frente a la temperatura, histéresis y una envolvente superparamagnética debido al antiferromagnetismo.In this work, the various properties of the compound La(5/8-x)Pr_xCa(3/8)MnO_3 (LPCMO), a manganite variant recognized for its wide range of magnetic phases that significantly influence the transport characteristics of the material, were studied and analyzed. Three samples with different doping levels were synthesized: X = 0.35, X = 0.4, and X = 0.45, with the main purpose of understanding the coexistence between ferromagnetic metallic (FMM) and antiferromagnetic insulating (AFI) phases. The characterization began with X-ray diffraction of the first sample, revealing a phase and crystalline lattice parameters that approximate the reported values. The magnetic characterization was carried out through hysteresis curves, exhibiting ferromagnetic behavior due to the contribution of FMM domains, and an envelope influenced by the AFI phase, generating a low coercive field (less than 200 Oe). The magnetization versus temperature curves allowed the identification of the Curie temperature (Tc), in addition to evidencing discontinuous transitions for the doping level of 0.4. Furthermore, FORC diagrams were performed, corroborating the contributions identified in the hysteresis curves, and highlighting regions with high interaction and coercivity, suggesting the existence of coupling at the domain interfaces. The resistance measurements as a function of temperature and field, for the doping level of 0.4, revealed both random and well-defined discontinuous transitions. Finally, a computational simulation using the Random Field Ising Model (RFIM) was carried out, modifying parameters analogous to the crystalline lattice and doping. This simulation managed to reproduce curves similar to those of magnetization versus temperature, hysteresis, and a superparamagnetic envelope due to antiferromagnetism.Pregrado66 páginasapplication/pdfspaUniversidad de los AndesFísicaFacultad de CienciasDepartamento de Físicahttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dinámica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y PraseodimioTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPLPCMOManganitasFases magnéticasFerromagnético metálicoAntifferomagnético aislanteHistéresisTemperatura de CurieFORCPercolaciónCoexistencia de fasesFísicaSiming Wang, Juan Gabriel Ramírez, and Ivan K. Schuller. Avalanches in vanadium sesquioxide nanodevices. Phys. Rev. B, 92:085150, Aug 2015.Elbio Dagotto. Nanoscale phase separation and colossal magnetoresistance: the physics of manganites and related compounds. Springer Science & Business Media, 2003.Axel Hoffmann, Shriram Ramanathan, Julie Grollier, Andrew D Kent, Marcelo J Rozenberg, Ivan K Schuller, Oleg G Shpyrko, Robert C Dynes, Yeshaiahu Fainman, Alex Frano, et al. Quantum materials for energy-efficient neuromorphic computing: Opportunities and challenges. APL Materials, 10(7), 2022.Tian Miao, Lina Deng, Wenting Yang, Jinyang Ni, Changlin Zheng, Joanne Etheridge, Shasha Wang, Hao Liu, Hanxuan Lin, Yang Yu, Qian Shi, Peng Cai, Yinyan Zhu, Tieying Yang, Xingmin Zhang, Xingyu Gao, Chuanying Xi, Mingliang Tian, Xiaoshan Wu, Hongjun Xiang, Elbio Dagotto, Lifeng Yin, and Jian Shen. Direct experimental evidence of physical origin of electronic phase separation in manganites. Proceedings of the National Academy of Sciences, 117(13):7090–7094. 2020.VG Sathe, Anju Ahlawat, R Rawat, and P Chaddah. Effect of strain on the phase separation and devitrification of the magnetic glass state in thin films of La5/8- yPr yCa3/8MnO3 (y = 0.45). Journal of Physics: Condensed Matter, 22(17):176002, 2010.Yinyan Zhu, Kai Du, Jiebin Niu, Lingfang Lin, Wengang Wei, Hao Liu, Hanxuan Lin, Kai Zhang, Tieying Yang, Yunfang Kou, et al. Chemical ordering suppresses large-scale electronic phase separation in doped manganites. Nature Communications, 7(1):11260, 2016.David J Griffiths. Introduction to Electrodynamics, 2005.Charles Kittel. Introduction to Solid State Physics. Wiley, 8th edition, 2004.Stephen Blundell. Magnetism in Condensed Matter. OUP Oxford, 2001.Ramon Egli and Michael Winklhofer. Recent developments on processing and interpretation aspects of first-order reversal curves (FORC). Scientific Notes of the Kazan University, Natural Science Series, ISSN: 2542-064X, E-ISSN: 2500-218, http://kpfu.ru/uz-rus/ns, 156:14–53, 01 2014.Claire Carvallo, Özden Özdemir, and David J. Dunlop. First-order reversal curve (FORC) diagrams of elongated single-domain grains at high and low temperatures. Journal of Geophysical Research, 109, 2004.Clarence Zener. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev., 82:403–405, May 1951.Dietrich Stauffer and Ammon Aharony. Introduction to Percolation Theory. CRC Press, 2018.Thomas Nattermann. Theory of the Random Field Ising Model. In Spin Glasses and Random Fields, pages 277–298. World Scientific, 1998.Mark R Levy. Chapter 3: Perovskite Perfect Lattice. Cryst. Struct. Defect Prop. Predict. Ceram. Mater, pages 79–114, 2005.Quantum Dot Materials. What are perovskite materials? https://quantum-solutions.com/blog/what-are-perovskite-materials/, December 19, 2020.Sang-Wook Cheong, Harold Y Hwang, and Y Tokura. Ferromagnetism vs. charge/orbital ordering in mixed-valent manganites. Colossal Magnetoresistive Oxides, 2000:237–280, 2000.D. Carranza-Celis, P. Salev, A. C. Basaran, I. K. Schuller, and J. G. Ramirez. Volatil and non-volatil resistive switching in lpcmo. Paper in preparation, 2023.Mehdi Zarifi, Parviz Kameli, Hossein Ahmadvand, and Hossein Nikmanesh. The consequences of growth modes on the magnetotransport properties of la0.4pr0.3ca0.3mn03/lao films. AIP Advances, 8(11), 2018.Suman Kumari, Praveen K Siwach, Kamlesh K Maurya, Veer PS Awana, and Hari K Singh. Magnetotransport irreversibility in single crystalline la0.18pr0.40ca0.42mn03 thin films. physica status solidi (b), 256(7):1800617, 2019.Lizhi Liang, Lei Li, Heng Wu, and Xinhua Zhu. Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures. Nanoscale Research Letters, 9:1–14, 2014.Juan Antonio Collado, Carlos Frontera, José Luis García-Muñoz, Clemens Ritter, M Brunelli, and Miguel A. G. Aranda. Room temperature structural and microstructural study for the magneto-conducting la5/8-xprxca3/8mn03 (0 x 5/8) series. Chemistry of Materials, 15:167–174, 2003.Lake Shore Cryotronics. Hardware Reference Manual 7400 Series VSM System, 2014.Richard J Harrison and Joshua M Feinberg. Forcinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochemistry, Geophysics, Geosystems, 9(5), 2008.Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm. The American Statistician, 49(4):327–335, 1995.Juan Sebastián Rodríguez Páez. Simulación de la dinámica de magnetización y propiedades de transporte en la separación de fases en manganitas. Proyecto final - monografía, Universidad de los Andes, Bogotá D.C., Colombia, junio 2022. Profesor Asesor: Juan Gabriel Ramírez Rojas, Ph.D.Antanas Vaitkus, Andrius Merkys, and Saulius Gražulis. Validation of the Crystallography Open Database using the Crystallographic Information Framework. Journal of Applied Crystallography, 54(2):661–672, Apr 2021.Miguel Quirós, Saulius Gražulis, Saulė Girdzijauskaitė, Andrius Merkys, and Antanas Vaitkus. Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. Journal of Cheminformatics, 10(1), May 2018.Andrius Merkys, Antanas Vaitkus, Justas Butkus, Mykolas Okulič-Kazarinas, Visvaldas Kairys, and Saulius Gražulis. COD::CIF::Parser: an error-correcting CIF parser for the Perl language. Journal of Applied Crystallography, 49(1), Feb 2016.Saulius Gražulis, Adriana Daškevič, Andrius Merkys, Daniel Chateigner, Luca Lutterotti, Miguel Quirós, Nadezhda R. Serebryanaya, Peter Moeck, Robert T. Downs, and Armel Le Bail. Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Research, 40(D1):D420–D427, 2012.R. T. Downs and M. Hall-Wallace. The American Mineralogist crystal structure database. American Mineralogist, 88:247–250, 2003.Andrius Merkys, Antanas Vaitkus, Algirdas Grybauskas, Aleksandras Konovalovas, Miguel Quirós, and Saulius Gražulis. Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions. Journal of Cheminformatics, 15(1):25, 2023.Siming Wang, Juan Gabriel Ramírez, and Ivan K. Schuller. Avalanches in vanadium sesquioxide nanodevices. Physical Review B, 92(8):085150, 2015.Prabodh Shukla. Hysteresis in the zero-temperature random-field Ising model on directed random graphs. Phys. Rev. E, 98:032144, Sep 2018.202011318Publication6ce2beec-157c-481d-8faa-d682fa74a732virtual::21995-16ce2beec-157c-481d-8faa-d682fa74a732virtual::21995-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000154482virtual::21995-1ORIGINALautorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf322089https://repositorio.uniandes.edu.co/bitstreams/ee41466c-7ceb-4d04-bb96-9ebe1cbff7f9/download86da10505c2792b4a63b88b6c1a7a290MD51Dináamica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio.pdfDináamica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio.pdfapplication/pdf12742818https://repositorio.uniandes.edu.co/bitstreams/f6fe8ebc-bd89-404f-b4e1-c1c3228e48b1/downloadf1bf3a0908a2e4c9f1295abd24607727MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/d8de5a4c-819d-4308-95ae-079078ae3849/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTautorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain1994https://repositorio.uniandes.edu.co/bitstreams/76c635e1-27b2-4a64-812e-71a3fd8f72a2/download5403b763da06756fb7b9cbb84e302d37MD54Dináamica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio.pdf.txtDináamica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio.pdf.txtExtracted texttext/plain101875https://repositorio.uniandes.edu.co/bitstreams/307fb435-5ea1-4e60-a531-aa2bf4256e46/downloadcb3f0a642c4fe366cfa68023b66bd1b8MD56THUMBNAILautorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg10946https://repositorio.uniandes.edu.co/bitstreams/6bc18267-8509-4a3e-a296-b8cf195a1bc7/download40bc1b9bf6184397defb58651fcc361cMD55Dináamica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio.pdf.jpgDináamica de coexistencia de fases en manganitas de Lantano dopadas con Calcio y Praseodimio.pdf.jpgGenerated Thumbnailimage/jpeg7552https://repositorio.uniandes.edu.co/bitstreams/9e74d980-1824-4263-9b98-4e00268bdc6c/download4d542463a3192c65fc6470333cef0898MD571992/75360oai:repositorio.uniandes.edu.co:1992/753602025-01-15 03:15:21.013https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K