Spontaneous fission in astrophysics

Spontaneous fission (SF) represents a rare yet fundamentally important nuclear decay process, with critical applications in understanding nucleosynthesis and energy generation in astrophysical environments such as neutron star mergers. This thesis focuses on the development and refinement of empiric...

Full description

Autores:
Guerrero Pantoja, Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75837
Acceso en línea:
https://hdl.handle.net/1992/75837
Palabra clave:
Spontaneous Fission
Nuclear astrophysics
Física
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_d6eef0d986d23cb8eba101b7c78475b6
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75837
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Spontaneous fission in astrophysics
title Spontaneous fission in astrophysics
spellingShingle Spontaneous fission in astrophysics
Spontaneous Fission
Nuclear astrophysics
Física
title_short Spontaneous fission in astrophysics
title_full Spontaneous fission in astrophysics
title_fullStr Spontaneous fission in astrophysics
title_full_unstemmed Spontaneous fission in astrophysics
title_sort Spontaneous fission in astrophysics
dc.creator.fl_str_mv Guerrero Pantoja, Alejandro
dc.contributor.advisor.none.fl_str_mv Kelkar, Neelima Govind
dc.contributor.author.none.fl_str_mv Guerrero Pantoja, Alejandro
dc.contributor.jury.none.fl_str_mv Flórez Bustos, Carlos Andrés
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias
dc.subject.keyword.eng.fl_str_mv Spontaneous Fission
topic Spontaneous Fission
Nuclear astrophysics
Física
dc.subject.keyword.none.fl_str_mv Nuclear astrophysics
dc.subject.themes.spa.fl_str_mv Física
description Spontaneous fission (SF) represents a rare yet fundamentally important nuclear decay process, with critical applications in understanding nucleosynthesis and energy generation in astrophysical environments such as neutron star mergers. This thesis focuses on the development and refinement of empirical models to predict SF half-lives, leveraging nuclear fission barriers and parity corrections to improve their predictive accuracy. The work is motivated by the need to address limitations in existing models, which often fail to accurately describe the behavior of nuclei under extreme conditions or overlook contributions from isotopes that do not naturally undergo SF. A novel approach is presented, introducing regression-based formulas that integrate macroscopic terms, such as Z2/A, alongside microscopic corrections including fission barriers (Bf ) and parity effects. These formulas have been validated against experimental half-life data from the National Nuclear Data Center (NNDC) and compared to models proposed by Möller, Mamdouh, and Zagrebaev. The results reveal that while existing models perform well within specific nuclear regions, the proposed empirical formulas provide superior agreement across a broader range of nuclei, particularly for long-lived isotopes where shell and deformation effects dominate. Furthermore, the implications of SF for astrophysical nucleosynthesis are explored, with a focus on its role as a neutron source and a termination mechanism in the rapid neutron capture process (r-process). The analysis underscores the necessity of understanding SF in environments with extreme temperatures, neutron fluxes, and magnetic fields, which significantly alter nuclear stability and reaction rates. While this study lays the groundwork for future theoretical and experimental advancements, it also highlights the importance of improving fission barrier calculations and incorporating them into more comprehensive astrophysical models. These contributions are essential for advancing our knowledge of heavy element formation and energy dynamics in explosive cosmic events.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-12-06
dc.date.accessioned.none.fl_str_mv 2025-01-30T15:08:05Z
dc.date.available.none.fl_str_mv 2025-01-30T15:08:05Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75837
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75837
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [1] O. Hahn and F. Strassmann, “Über den nachweis und das verhalten der bei der
bestrahlung des urans mittels neutronen entstehenden erdalkalimetalle,” Naturwis-
senschaften, vol. 27, no. 1, pp. 11–15, 1939.
[2] L. Meitner and O. R. Frisch, “Disintegration of uranium by neutrons: a new type
of nuclear reaction,” Nature, vol. 143, no. 3615, pp. 239–240, 1939.
[3] N. Bohr and J. A. Wheeler, “The mechanism of nuclear fission,” Physical Review,
vol. 56, no. 5, p. 426, 1939.
[4] W. Myers and W. Swiatecki, “Nuclear properties according to the thomas-fermi
model,” Nuclear Physics A, vol. 601, no. 2, pp. 141–167, 1996.
[5] M. G. Mayer, “On closed shells in nuclei. ii,” Physical Review, vol. 75, no. 12,
p. 1969, 1949.
[6] K. Pomorski, “Fission-barrier heights in some newest liquid-drop models,” Physica
Scripta, vol. 2013, no. T154, p. 014023, 2013.
[7] H. J. Krappe and K. Pomorski, Theory of Nuclear Fission: A Textbook, vol. 838.
Springer Science & Business Media, 2012.
[8] K. A. Petrzhak and G. N. Flerov, “Spontaneous fission of nuclei,” Soviet Physics
Uspekhi, vol. 4, no. 2, p. 305, 1961.
[9] V. Strutinsky, “Shell effects in nuclear masses and deformation energies,” Nuclear
Physics A, vol. 95, no. 2, pp. 420–442, 1967.
[10] MikeRun, “English: Illustration of a typical nuclear fission reaction.”
[11] M. Arnould, S. Goriely, and K. Takahashi, “The r-process of stellar nucleosynthesis:
Astrophysics and nuclear physics achievements and mysteries,” Physics Reports,
vol. 450, no. 4-6, pp. 97–213, 2007.
[12] F.-K. Thielemann, M. Eichler, I. Panov, and B. Wehmeyer, “Neutron star mergers
and nucleosynthesis of heavy elements,” Annual Review of Nuclear and Particle
Science, vol. 67, no. 1, pp. 253–274, 2017.
[13] W. Hartley, “Multi-messenger observations of a binary neutron star merger,” The
Astrophysical Journal Letters, vol. 848, no. 2, p. L12, 2017. 104
[14] W. D. Myers and W. J. Swiatecki, “Nuclear masses and deformations,” Nuclear
Physics, vol. 81, no. 1, pp. 1–60, 1966.
[15] V. Strutinsky, “Shell effects in nuclear masses and deformation energies,” Nuclear
Physics A, vol. 95, no. 2, pp. 420–442, 1967.
[16] J. J. Cowan, F.-K. Thielemann, and J. W. Truran, “The r-process and nucle-
ochronology,” Physics Reports, vol. 208, no. 4-5, pp. 267–394, 1991.
[17] J. M. Lattimer, F. Mackie, D. Ravenhall, and D. Schramm, “Decompression of cold
neutron star matter,” The Astrophysical Journal, 1977.
[18] “Binary neutron star mergers as the production site of gold, platinum, and rare
earth elements.”
[19] B. D. Metzger, G. Martínez-Pinedo, S. Darbha, E. Quataert, A. Arcones, D. Kasen,
R. Thomas, P. Nugent, I. Panov, and N. T. Zinner, “Electromagnetic counterparts
of compact object mergers powered by the radioactive decay of r-process nuclei,”
Monthly Notices of the Royal Astronomical Society, vol. 406, no. 4, pp. 2650–2662,
2010.
[20] D. Martin, A. Perego, A. Arcones, F.-K. Thielemann, O. Korobkin, and S. Ross-
wog, “Synthesis of heavy elements in the ejecta of neutron star mergers,” in Journal
of Physics: Conference Series, vol. 940, p. 012047, IOP Publishing, 2018.
[21] A. Simons, “p-process investigations at nscl.”
[22] J. M. Lattimer and M. Prakash, “Nuclear matter and its role in supernovae, neutron
stars and compact object binary mergers,” Physics Reports, vol. 333, pp. 121–146,
2000.
[23] F.-K. Thielemann, M. Eichler, I. Panov, and B. Wehmeyer, “Neutron star mergers
and nucleosynthesis of heavy elements,” Annual Review of Nuclear and Particle
Science, vol. 67, no. 1, pp. 253–274, 2017.
[24] S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs, and neutron stars:
The physics of compact objects. John Wiley & Sons, 2008.
[25] J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M. Wiescher, K. Lan-
ganke, G. Martínez-Pinedo, and F.-K. Thielemann, “Origin of the heaviest ele-
ments: The rapid neutron-capture process,” Reviews of Modern Physics, vol. 93,
no. 1, p. 015002, 2021.
[26] K. S. Krane, Introductory Nuclear Physics. John Wiley & Sons, 1998.
[27] “Alpha decay - explanation, examples, gamow theory of alpha decay.”
[28] S. S. Wong, Introductory Nuclear Physics. Prentice Hall, 1990.
[29] E. Segre, “Nuclei and particles: an introduction to nuclear and subnuclear physics,”
(No Title), 1977. 105
[30] “Gamma decay - wize high school grade 12 physics textbook.”
[31] G. Martínez-Pinedo, D. Mocelj, N. T. Zinner, A. Kelić, K. Langanke, I. Panov,
B. Pfeiffer, T. Rauscher, K.-H. Schmidt, and F.-K. Thielemann, “The role of fission
in the r-process,” Progress in Particle and Nuclear Physics, vol. 59, no. 1, pp. 199–
205, 2007.
[32] H. J. Krappe and K. Pomorski, Theory of Nuclear Fission: A Textbook, vol. 838.
Springer Science & Business Media, 2012.
[33] A. Goyal and B. Suthar, “Semi empirical mass formula: A review,” 2016.
[34] None, “Liquid drop model of nucleus,” Nuclear Power, 2024.
[35] G. Gamow, “Zur quantentheorie des atomkernes,” Zeitschrift für Physik, vol. 51,
pp. 204–212, 1928.
[36] L. D. Landau and E. M. Lifshitz, Quantum mechanics: non-relativistic theory,
vol. 3. Elsevier, 2013.
[37] J. M. Blatt and V. F. Weisskopf, Theoretical nuclear physics. Springer Science &
Business Media, 2012.
[38] “Shell atomic model | description, configuration, chemistry, proposed by, & facts |
britannica.”
[39] I.-Y. Lee and J. Simpson, “Agata and greta: the future of gamma-ray spectroscopy,”
Nuclear Physics News, vol. 20, no. 4, pp. 23–28, 2010.
[40] A. Santra, L. collaboration, et al., “Detector challenges of the strong-field qed
experiment luxe at the european xfel,” Journal of Instrumentation, vol. 18, no. 08,
p. C08003, 2023.
[41] N. Schunck and L. Robledo, “Microscopic theory of nuclear fission: a review,”
Reports on Progress in Physics, vol. 79, no. 11, p. 116301, 2016.
[42] A. Boehnlein, M. Diefenthaler, N. Sato, M. Schram, V. Ziegler, C. Fanelli,
M. Hjorth-Jensen, T. Horn, M. P. Kuchera, D. Lee, et al., “Colloquium: Machine
learning in nuclear physics,” Reviews of modern physics, vol. 94, no. 3, p. 031003,
2022.
[43] K. Morita, “Study of superheavy elements at riken: experiments on the synthesis
of element 113 in the reaction 209bi (70zn, n) 278113,” in Recent Achievements
And Perspectives In Nuclear Physics, pp. 29–34, World Scientific, 2005.
[44] K. Langanke and G. Martínez-Pinedo, “Nuclear weak-interaction processes in
stars,” Reviews of Modern Physics, vol. 75, no. 3, p. 819, 2003.
[45] K.-H. Schmidt and B. Jurado, “Review on the progress in nuclear fis-
sion—experimental methods and theoretical descriptions,” Reports on Progress in
Physics, vol. 81, no. 10, p. 106301, 2018. 106
[46] S. Goriely, “The fundamental role of fission during r-process nucleosynthesis in
neutron star mergers,” The European Physical Journal A, vol. 51, pp. 1–21, 2015.
[47] S. A. Giuliani, G. Martínez-Pinedo, and L. M. Robledo, “Fission properties of
superheavy nuclei for r-process calculations,” Physical Review C, vol. 97, no. 3,
p. 034323, 2018.
[48] H. Koura, T. Tachibana, M. Uno, and M. Yamada, “Nuclidic mass formula on a
spherical basis with an improved even-odd term,” Progress of theoretical physics,
vol. 113, no. 2, pp. 305–325, 2005.
[49] B. D. Metzger, “Kilonovae,” Living Reviews in Relativity, vol. 23, no. 1, p. 1, 2020.
[50] S. Rosswog, “The multi-messenger picture of compact binary mergers,” Interna-
tional Journal of Modern Physics D, vol. 24, no. 05, p. 1530012, 2015.
[51] C. Sneden, J. J. Cowan, and R. Gallino, “Neutron-capture elements in the early
galaxy,” Annu. Rev. Astron. Astrophys., vol. 46, no. 1, pp. 241–288, 2008.
[52] N. Schunck and D. Regnier, “Theory of nuclear fission,” Progress in Particle and
Nuclear Physics, vol. 125, p. 103963, 2022.
[53] R. Vandenbosch, Nuclear fission. Elsevier, 2012.
[54] S. G. Nilsson, “Barrier shapes and their influence on fission,” Nuclear Physics A,
vol. 115, pp. 545–548, 1969.
[55] D. L. Hill and J. A. Wheeler, “Nuclear constitution and the interpretation of fission
phenomena,” Physical Review, vol. 89, pp. 1102–1145, 1953.
[56] J. R. Nix, “Stability of heavy nuclei against fission,” Annual Review of Nuclear
Science, vol. 17, pp. 543–583, 1967.
[57] C. Wong and J. Bang, “Shell effects on double-humped fission barriers,” Physical
Review, vol. 182, pp. 1030–1042, 1969.
[58] J. Cramer and J. R. Nix, “Models of the fission barrier and resonance phenomena,”
Nuclear Physics A, vol. 225, pp. 129–156, 1970.
[59] I. Halpern, “Barrier width and half-lives in spontaneous fission,” Physical Review,
vol. 115, pp. 747–758, 1959.
[60] W. D. Loveland, D. J. Morrissey, and G. T. Seaborg, Modern nuclear chemistry.
John Wiley & Sons, 2017.
[61] M. Eichler, Nucleosynthesis in explosive environments: neutron star mergers and
core-collapse supernovae. PhD thesis, University_of_Basel, 2016.
[62] V. M. Strutinsky, “The influence of surface curvature on nuclear deformation,” Zh.
Eksp. Teor. Fiz., vol. 45, p. 1891, 1963.
[63] K. Pomorski and J. Dudek, “Nuclear shape and fission barriers within the lsd
model,” Phys. Rev. C, vol. 67, p. 044316, 2003. 107
[64] P. Moller et al., “Atomic and nuclear data tables 59,” Academic Press, Inc, 1995.
[65] W. Myers and W. Światecki, “Nuclear equation of state,” Physical Review C,
vol. 57, no. 6, p. 3020, 1998.
[66] W. Swiatecki, “Systematics of spontaneous fission half-lives,” Physical Review,
vol. 100, no. 3, p. 937, 1955.
[67] V. Zagrebaev, A. Karpov, I. Mishustin, and W. Greiner, “Production of heavy
and superheavy neutron-rich nuclei in neutron capture processes,” Physical Review
C—Nuclear Physics, vol. 84, no. 4, p. 044617, 2011.
[68] V. Viola Jr and G. Seaborg, “Nuclear systematics of the heavy elements—ii life-
times for alpha, beta and spontaneous fission decay,” Journal of Inorganic and
Nuclear Chemistry, vol. 28, no. 3, pp. 741–761, 1966.
[69] A. Sobiczewski, Z. Patyk, and S. Ćwiok, “Deformed superheavy nuclei,” Physics
letters B, vol. 224, no. 1-2, pp. 1–4, 1989.
[70] I. Panov, I. Y. Korneev, G. Martinez-Pinedo, and F. K. Thielemann, “Influence of
spontaneous fission rates on the yields of superheavy elements in the r-process,”
Astronomy letters, vol. 39, pp. 150–160, 2013.
[71] A. Mamdouh, J. Pearson, M. Rayet, and F. Tondeur, “Fission barriers of neutron-
rich and superheavy nuclei calculated with the etfsi method,” Nuclear Physics A,
vol. 679, no. 3-4, pp. 337–358, 2001.
[72] P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, and M. Mumpower, “Fission
barriers at the end of the chart of the nuclides,” Physical Review C, vol. 91, no. 2,
p. 024310, 2015.
[73] National Nuclear Data Center, “Nuclear structure and decay data.” https://www.
nndc.bnl.gov/, 2024. Accessed: 2024-11-29.
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 109 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/07fc0212-0794-4c89-8657-444d33593465/download
https://repositorio.uniandes.edu.co/bitstreams/0b43dbd4-08be-4024-a102-d9c97bfd69e4/download
https://repositorio.uniandes.edu.co/bitstreams/de557a2d-d4fb-4838-acbe-9b6530518a71/download
https://repositorio.uniandes.edu.co/bitstreams/fbc48010-26f1-497f-914e-c783d0828d84/download
https://repositorio.uniandes.edu.co/bitstreams/2d8fbb4a-04d3-4451-8c5a-ae39f5b5593e/download
https://repositorio.uniandes.edu.co/bitstreams/64f58b84-8e66-47c9-ba1d-7b2f73d80d54/download
https://repositorio.uniandes.edu.co/bitstreams/701e029e-d3ff-4f16-84c7-da46445c7843/download
bitstream.checksum.fl_str_mv c1a7b08f20f4fa87b1e3aa198d55dd22
e1d88b339cf0ec403295539a22b5dc31
ae9e573a68e7f92501b6913cc846c39f
e1c06d85ae7b8b032bef47e42e4c08f9
a2078a9f7045b6628aecbf9c53c482ec
985888c2f788fb8f004a72faa074e0cc
543a91c50a5898fb23eea1aa509e350e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927662948384768
spelling Kelkar, Neelima Govindvirtual::22864-1Guerrero Pantoja, AlejandroFlórez Bustos, Carlos AndrésFacultad de Ciencias2025-01-30T15:08:05Z2025-01-30T15:08:05Z2024-12-06https://hdl.handle.net/1992/75837instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Spontaneous fission (SF) represents a rare yet fundamentally important nuclear decay process, with critical applications in understanding nucleosynthesis and energy generation in astrophysical environments such as neutron star mergers. This thesis focuses on the development and refinement of empirical models to predict SF half-lives, leveraging nuclear fission barriers and parity corrections to improve their predictive accuracy. The work is motivated by the need to address limitations in existing models, which often fail to accurately describe the behavior of nuclei under extreme conditions or overlook contributions from isotopes that do not naturally undergo SF. A novel approach is presented, introducing regression-based formulas that integrate macroscopic terms, such as Z2/A, alongside microscopic corrections including fission barriers (Bf ) and parity effects. These formulas have been validated against experimental half-life data from the National Nuclear Data Center (NNDC) and compared to models proposed by Möller, Mamdouh, and Zagrebaev. The results reveal that while existing models perform well within specific nuclear regions, the proposed empirical formulas provide superior agreement across a broader range of nuclei, particularly for long-lived isotopes where shell and deformation effects dominate. Furthermore, the implications of SF for astrophysical nucleosynthesis are explored, with a focus on its role as a neutron source and a termination mechanism in the rapid neutron capture process (r-process). The analysis underscores the necessity of understanding SF in environments with extreme temperatures, neutron fluxes, and magnetic fields, which significantly alter nuclear stability and reaction rates. While this study lays the groundwork for future theoretical and experimental advancements, it also highlights the importance of improving fission barrier calculations and incorporating them into more comprehensive astrophysical models. These contributions are essential for advancing our knowledge of heavy element formation and energy dynamics in explosive cosmic events.PregradoSpontaneous Fission109 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de Físicahttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Spontaneous fission in astrophysicsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPSpontaneous FissionNuclear astrophysicsFísica[1] O. Hahn and F. Strassmann, “Über den nachweis und das verhalten der bei derbestrahlung des urans mittels neutronen entstehenden erdalkalimetalle,” Naturwis-senschaften, vol. 27, no. 1, pp. 11–15, 1939.[2] L. Meitner and O. R. Frisch, “Disintegration of uranium by neutrons: a new typeof nuclear reaction,” Nature, vol. 143, no. 3615, pp. 239–240, 1939.[3] N. Bohr and J. A. Wheeler, “The mechanism of nuclear fission,” Physical Review,vol. 56, no. 5, p. 426, 1939.[4] W. Myers and W. Swiatecki, “Nuclear properties according to the thomas-fermimodel,” Nuclear Physics A, vol. 601, no. 2, pp. 141–167, 1996.[5] M. G. Mayer, “On closed shells in nuclei. ii,” Physical Review, vol. 75, no. 12,p. 1969, 1949.[6] K. Pomorski, “Fission-barrier heights in some newest liquid-drop models,” PhysicaScripta, vol. 2013, no. T154, p. 014023, 2013.[7] H. J. Krappe and K. Pomorski, Theory of Nuclear Fission: A Textbook, vol. 838.Springer Science & Business Media, 2012.[8] K. A. Petrzhak and G. N. Flerov, “Spontaneous fission of nuclei,” Soviet PhysicsUspekhi, vol. 4, no. 2, p. 305, 1961.[9] V. Strutinsky, “Shell effects in nuclear masses and deformation energies,” NuclearPhysics A, vol. 95, no. 2, pp. 420–442, 1967.[10] MikeRun, “English: Illustration of a typical nuclear fission reaction.”[11] M. Arnould, S. Goriely, and K. Takahashi, “The r-process of stellar nucleosynthesis:Astrophysics and nuclear physics achievements and mysteries,” Physics Reports,vol. 450, no. 4-6, pp. 97–213, 2007.[12] F.-K. Thielemann, M. Eichler, I. Panov, and B. Wehmeyer, “Neutron star mergersand nucleosynthesis of heavy elements,” Annual Review of Nuclear and ParticleScience, vol. 67, no. 1, pp. 253–274, 2017.[13] W. Hartley, “Multi-messenger observations of a binary neutron star merger,” TheAstrophysical Journal Letters, vol. 848, no. 2, p. L12, 2017. 104[14] W. D. Myers and W. J. Swiatecki, “Nuclear masses and deformations,” NuclearPhysics, vol. 81, no. 1, pp. 1–60, 1966.[15] V. Strutinsky, “Shell effects in nuclear masses and deformation energies,” NuclearPhysics A, vol. 95, no. 2, pp. 420–442, 1967.[16] J. J. Cowan, F.-K. Thielemann, and J. W. Truran, “The r-process and nucle-ochronology,” Physics Reports, vol. 208, no. 4-5, pp. 267–394, 1991.[17] J. M. Lattimer, F. Mackie, D. Ravenhall, and D. Schramm, “Decompression of coldneutron star matter,” The Astrophysical Journal, 1977.[18] “Binary neutron star mergers as the production site of gold, platinum, and rareearth elements.”[19] B. D. Metzger, G. Martínez-Pinedo, S. Darbha, E. Quataert, A. Arcones, D. Kasen,R. Thomas, P. Nugent, I. Panov, and N. T. Zinner, “Electromagnetic counterpartsof compact object mergers powered by the radioactive decay of r-process nuclei,”Monthly Notices of the Royal Astronomical Society, vol. 406, no. 4, pp. 2650–2662,2010.[20] D. Martin, A. Perego, A. Arcones, F.-K. Thielemann, O. Korobkin, and S. Ross-wog, “Synthesis of heavy elements in the ejecta of neutron star mergers,” in Journalof Physics: Conference Series, vol. 940, p. 012047, IOP Publishing, 2018.[21] A. Simons, “p-process investigations at nscl.”[22] J. M. Lattimer and M. Prakash, “Nuclear matter and its role in supernovae, neutronstars and compact object binary mergers,” Physics Reports, vol. 333, pp. 121–146,2000.[23] F.-K. Thielemann, M. Eichler, I. Panov, and B. Wehmeyer, “Neutron star mergersand nucleosynthesis of heavy elements,” Annual Review of Nuclear and ParticleScience, vol. 67, no. 1, pp. 253–274, 2017.[24] S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs, and neutron stars:The physics of compact objects. John Wiley & Sons, 2008.[25] J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M. Wiescher, K. Lan-ganke, G. Martínez-Pinedo, and F.-K. Thielemann, “Origin of the heaviest ele-ments: The rapid neutron-capture process,” Reviews of Modern Physics, vol. 93,no. 1, p. 015002, 2021.[26] K. S. Krane, Introductory Nuclear Physics. John Wiley & Sons, 1998.[27] “Alpha decay - explanation, examples, gamow theory of alpha decay.”[28] S. S. Wong, Introductory Nuclear Physics. Prentice Hall, 1990.[29] E. Segre, “Nuclei and particles: an introduction to nuclear and subnuclear physics,”(No Title), 1977. 105[30] “Gamma decay - wize high school grade 12 physics textbook.”[31] G. Martínez-Pinedo, D. Mocelj, N. T. Zinner, A. Kelić, K. Langanke, I. Panov,B. Pfeiffer, T. Rauscher, K.-H. Schmidt, and F.-K. Thielemann, “The role of fissionin the r-process,” Progress in Particle and Nuclear Physics, vol. 59, no. 1, pp. 199–205, 2007.[32] H. J. Krappe and K. Pomorski, Theory of Nuclear Fission: A Textbook, vol. 838.Springer Science & Business Media, 2012.[33] A. Goyal and B. Suthar, “Semi empirical mass formula: A review,” 2016.[34] None, “Liquid drop model of nucleus,” Nuclear Power, 2024.[35] G. Gamow, “Zur quantentheorie des atomkernes,” Zeitschrift für Physik, vol. 51,pp. 204–212, 1928.[36] L. D. Landau and E. M. Lifshitz, Quantum mechanics: non-relativistic theory,vol. 3. Elsevier, 2013.[37] J. M. Blatt and V. F. Weisskopf, Theoretical nuclear physics. Springer Science &Business Media, 2012.[38] “Shell atomic model | description, configuration, chemistry, proposed by, & facts |britannica.”[39] I.-Y. Lee and J. Simpson, “Agata and greta: the future of gamma-ray spectroscopy,”Nuclear Physics News, vol. 20, no. 4, pp. 23–28, 2010.[40] A. Santra, L. collaboration, et al., “Detector challenges of the strong-field qedexperiment luxe at the european xfel,” Journal of Instrumentation, vol. 18, no. 08,p. C08003, 2023.[41] N. Schunck and L. Robledo, “Microscopic theory of nuclear fission: a review,”Reports on Progress in Physics, vol. 79, no. 11, p. 116301, 2016.[42] A. Boehnlein, M. Diefenthaler, N. Sato, M. Schram, V. Ziegler, C. Fanelli,M. Hjorth-Jensen, T. Horn, M. P. Kuchera, D. Lee, et al., “Colloquium: Machinelearning in nuclear physics,” Reviews of modern physics, vol. 94, no. 3, p. 031003,2022.[43] K. Morita, “Study of superheavy elements at riken: experiments on the synthesisof element 113 in the reaction 209bi (70zn, n) 278113,” in Recent AchievementsAnd Perspectives In Nuclear Physics, pp. 29–34, World Scientific, 2005.[44] K. Langanke and G. Martínez-Pinedo, “Nuclear weak-interaction processes instars,” Reviews of Modern Physics, vol. 75, no. 3, p. 819, 2003.[45] K.-H. Schmidt and B. Jurado, “Review on the progress in nuclear fis-sion—experimental methods and theoretical descriptions,” Reports on Progress inPhysics, vol. 81, no. 10, p. 106301, 2018. 106[46] S. Goriely, “The fundamental role of fission during r-process nucleosynthesis inneutron star mergers,” The European Physical Journal A, vol. 51, pp. 1–21, 2015.[47] S. A. Giuliani, G. Martínez-Pinedo, and L. M. Robledo, “Fission properties ofsuperheavy nuclei for r-process calculations,” Physical Review C, vol. 97, no. 3,p. 034323, 2018.[48] H. Koura, T. Tachibana, M. Uno, and M. Yamada, “Nuclidic mass formula on aspherical basis with an improved even-odd term,” Progress of theoretical physics,vol. 113, no. 2, pp. 305–325, 2005.[49] B. D. Metzger, “Kilonovae,” Living Reviews in Relativity, vol. 23, no. 1, p. 1, 2020.[50] S. Rosswog, “The multi-messenger picture of compact binary mergers,” Interna-tional Journal of Modern Physics D, vol. 24, no. 05, p. 1530012, 2015.[51] C. Sneden, J. J. Cowan, and R. Gallino, “Neutron-capture elements in the earlygalaxy,” Annu. Rev. Astron. Astrophys., vol. 46, no. 1, pp. 241–288, 2008.[52] N. Schunck and D. Regnier, “Theory of nuclear fission,” Progress in Particle andNuclear Physics, vol. 125, p. 103963, 2022.[53] R. Vandenbosch, Nuclear fission. Elsevier, 2012.[54] S. G. Nilsson, “Barrier shapes and their influence on fission,” Nuclear Physics A,vol. 115, pp. 545–548, 1969.[55] D. L. Hill and J. A. Wheeler, “Nuclear constitution and the interpretation of fissionphenomena,” Physical Review, vol. 89, pp. 1102–1145, 1953.[56] J. R. Nix, “Stability of heavy nuclei against fission,” Annual Review of NuclearScience, vol. 17, pp. 543–583, 1967.[57] C. Wong and J. Bang, “Shell effects on double-humped fission barriers,” PhysicalReview, vol. 182, pp. 1030–1042, 1969.[58] J. Cramer and J. R. Nix, “Models of the fission barrier and resonance phenomena,”Nuclear Physics A, vol. 225, pp. 129–156, 1970.[59] I. Halpern, “Barrier width and half-lives in spontaneous fission,” Physical Review,vol. 115, pp. 747–758, 1959.[60] W. D. Loveland, D. J. Morrissey, and G. T. Seaborg, Modern nuclear chemistry.John Wiley & Sons, 2017.[61] M. Eichler, Nucleosynthesis in explosive environments: neutron star mergers andcore-collapse supernovae. PhD thesis, University_of_Basel, 2016.[62] V. M. Strutinsky, “The influence of surface curvature on nuclear deformation,” Zh.Eksp. Teor. Fiz., vol. 45, p. 1891, 1963.[63] K. Pomorski and J. Dudek, “Nuclear shape and fission barriers within the lsdmodel,” Phys. Rev. C, vol. 67, p. 044316, 2003. 107[64] P. Moller et al., “Atomic and nuclear data tables 59,” Academic Press, Inc, 1995.[65] W. Myers and W. Światecki, “Nuclear equation of state,” Physical Review C,vol. 57, no. 6, p. 3020, 1998.[66] W. Swiatecki, “Systematics of spontaneous fission half-lives,” Physical Review,vol. 100, no. 3, p. 937, 1955.[67] V. Zagrebaev, A. Karpov, I. Mishustin, and W. Greiner, “Production of heavyand superheavy neutron-rich nuclei in neutron capture processes,” Physical ReviewC—Nuclear Physics, vol. 84, no. 4, p. 044617, 2011.[68] V. Viola Jr and G. Seaborg, “Nuclear systematics of the heavy elements—ii life-times for alpha, beta and spontaneous fission decay,” Journal of Inorganic andNuclear Chemistry, vol. 28, no. 3, pp. 741–761, 1966.[69] A. Sobiczewski, Z. Patyk, and S. Ćwiok, “Deformed superheavy nuclei,” Physicsletters B, vol. 224, no. 1-2, pp. 1–4, 1989.[70] I. Panov, I. Y. Korneev, G. Martinez-Pinedo, and F. K. Thielemann, “Influence ofspontaneous fission rates on the yields of superheavy elements in the r-process,”Astronomy letters, vol. 39, pp. 150–160, 2013.[71] A. Mamdouh, J. Pearson, M. Rayet, and F. Tondeur, “Fission barriers of neutron-rich and superheavy nuclei calculated with the etfsi method,” Nuclear Physics A,vol. 679, no. 3-4, pp. 337–358, 2001.[72] P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, and M. Mumpower, “Fissionbarriers at the end of the chart of the nuclides,” Physical Review C, vol. 91, no. 2,p. 024310, 2015.[73] National Nuclear Data Center, “Nuclear structure and decay data.” https://www.nndc.bnl.gov/, 2024. Accessed: 2024-11-29.201912747Publicationhttps://scholar.google.es/citations?user=BMxIj5AAAAAJvirtual::22864-10000-0003-1129-8263virtual::22864-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000521795virtual::22864-199028683-12da-47c6-b475-e4e674a36d28virtual::22864-199028683-12da-47c6-b475-e4e674a36d28virtual::22864-1ORIGINALform signed - Alejandro Guerrero Pantoja.pdfform signed - Alejandro Guerrero Pantoja.pdfHIDEapplication/pdf60149https://repositorio.uniandes.edu.co/bitstreams/07fc0212-0794-4c89-8657-444d33593465/downloadc1a7b08f20f4fa87b1e3aa198d55dd22MD51Spontaneous Fission in Astrophysics.pdfSpontaneous Fission in Astrophysics.pdfapplication/pdf4817817https://repositorio.uniandes.edu.co/bitstreams/0b43dbd4-08be-4024-a102-d9c97bfd69e4/downloade1d88b339cf0ec403295539a22b5dc31MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/de557a2d-d4fb-4838-acbe-9b6530518a71/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTform signed - Alejandro Guerrero Pantoja.pdf.txtform signed - Alejandro Guerrero Pantoja.pdf.txtExtracted texttext/plain2https://repositorio.uniandes.edu.co/bitstreams/fbc48010-26f1-497f-914e-c783d0828d84/downloade1c06d85ae7b8b032bef47e42e4c08f9MD54Spontaneous Fission in Astrophysics.pdf.txtSpontaneous Fission in Astrophysics.pdf.txtExtracted texttext/plain100340https://repositorio.uniandes.edu.co/bitstreams/2d8fbb4a-04d3-4451-8c5a-ae39f5b5593e/downloada2078a9f7045b6628aecbf9c53c482ecMD56THUMBNAILform signed - Alejandro Guerrero Pantoja.pdf.jpgform signed - Alejandro Guerrero Pantoja.pdf.jpgGenerated Thumbnailimage/jpeg10119https://repositorio.uniandes.edu.co/bitstreams/64f58b84-8e66-47c9-ba1d-7b2f73d80d54/download985888c2f788fb8f004a72faa074e0ccMD55Spontaneous Fission in Astrophysics.pdf.jpgSpontaneous Fission in Astrophysics.pdf.jpgGenerated Thumbnailimage/jpeg6578https://repositorio.uniandes.edu.co/bitstreams/701e029e-d3ff-4f16-84c7-da46445c7843/download543a91c50a5898fb23eea1aa509e350eMD571992/75837oai:repositorio.uniandes.edu.co:1992/758372025-03-05 09:39:33.602https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K