Spontaneous fission in astrophysics
Spontaneous fission (SF) represents a rare yet fundamentally important nuclear decay process, with critical applications in understanding nucleosynthesis and energy generation in astrophysical environments such as neutron star mergers. This thesis focuses on the development and refinement of empiric...
- Autores:
-
Guerrero Pantoja, Alejandro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75837
- Acceso en línea:
- https://hdl.handle.net/1992/75837
- Palabra clave:
- Spontaneous Fission
Nuclear astrophysics
Física
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_d6eef0d986d23cb8eba101b7c78475b6 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75837 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Spontaneous fission in astrophysics |
title |
Spontaneous fission in astrophysics |
spellingShingle |
Spontaneous fission in astrophysics Spontaneous Fission Nuclear astrophysics Física |
title_short |
Spontaneous fission in astrophysics |
title_full |
Spontaneous fission in astrophysics |
title_fullStr |
Spontaneous fission in astrophysics |
title_full_unstemmed |
Spontaneous fission in astrophysics |
title_sort |
Spontaneous fission in astrophysics |
dc.creator.fl_str_mv |
Guerrero Pantoja, Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Kelkar, Neelima Govind |
dc.contributor.author.none.fl_str_mv |
Guerrero Pantoja, Alejandro |
dc.contributor.jury.none.fl_str_mv |
Flórez Bustos, Carlos Andrés |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias |
dc.subject.keyword.eng.fl_str_mv |
Spontaneous Fission |
topic |
Spontaneous Fission Nuclear astrophysics Física |
dc.subject.keyword.none.fl_str_mv |
Nuclear astrophysics |
dc.subject.themes.spa.fl_str_mv |
Física |
description |
Spontaneous fission (SF) represents a rare yet fundamentally important nuclear decay process, with critical applications in understanding nucleosynthesis and energy generation in astrophysical environments such as neutron star mergers. This thesis focuses on the development and refinement of empirical models to predict SF half-lives, leveraging nuclear fission barriers and parity corrections to improve their predictive accuracy. The work is motivated by the need to address limitations in existing models, which often fail to accurately describe the behavior of nuclei under extreme conditions or overlook contributions from isotopes that do not naturally undergo SF. A novel approach is presented, introducing regression-based formulas that integrate macroscopic terms, such as Z2/A, alongside microscopic corrections including fission barriers (Bf ) and parity effects. These formulas have been validated against experimental half-life data from the National Nuclear Data Center (NNDC) and compared to models proposed by Möller, Mamdouh, and Zagrebaev. The results reveal that while existing models perform well within specific nuclear regions, the proposed empirical formulas provide superior agreement across a broader range of nuclei, particularly for long-lived isotopes where shell and deformation effects dominate. Furthermore, the implications of SF for astrophysical nucleosynthesis are explored, with a focus on its role as a neutron source and a termination mechanism in the rapid neutron capture process (r-process). The analysis underscores the necessity of understanding SF in environments with extreme temperatures, neutron fluxes, and magnetic fields, which significantly alter nuclear stability and reaction rates. While this study lays the groundwork for future theoretical and experimental advancements, it also highlights the importance of improving fission barrier calculations and incorporating them into more comprehensive astrophysical models. These contributions are essential for advancing our knowledge of heavy element formation and energy dynamics in explosive cosmic events. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-12-06 |
dc.date.accessioned.none.fl_str_mv |
2025-01-30T15:08:05Z |
dc.date.available.none.fl_str_mv |
2025-01-30T15:08:05Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75837 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75837 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
[1] O. Hahn and F. Strassmann, “Über den nachweis und das verhalten der bei der bestrahlung des urans mittels neutronen entstehenden erdalkalimetalle,” Naturwis- senschaften, vol. 27, no. 1, pp. 11–15, 1939. [2] L. Meitner and O. R. Frisch, “Disintegration of uranium by neutrons: a new type of nuclear reaction,” Nature, vol. 143, no. 3615, pp. 239–240, 1939. [3] N. Bohr and J. A. Wheeler, “The mechanism of nuclear fission,” Physical Review, vol. 56, no. 5, p. 426, 1939. [4] W. Myers and W. Swiatecki, “Nuclear properties according to the thomas-fermi model,” Nuclear Physics A, vol. 601, no. 2, pp. 141–167, 1996. [5] M. G. Mayer, “On closed shells in nuclei. ii,” Physical Review, vol. 75, no. 12, p. 1969, 1949. [6] K. Pomorski, “Fission-barrier heights in some newest liquid-drop models,” Physica Scripta, vol. 2013, no. T154, p. 014023, 2013. [7] H. J. Krappe and K. Pomorski, Theory of Nuclear Fission: A Textbook, vol. 838. Springer Science & Business Media, 2012. [8] K. A. Petrzhak and G. N. Flerov, “Spontaneous fission of nuclei,” Soviet Physics Uspekhi, vol. 4, no. 2, p. 305, 1961. [9] V. Strutinsky, “Shell effects in nuclear masses and deformation energies,” Nuclear Physics A, vol. 95, no. 2, pp. 420–442, 1967. [10] MikeRun, “English: Illustration of a typical nuclear fission reaction.” [11] M. Arnould, S. Goriely, and K. Takahashi, “The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries,” Physics Reports, vol. 450, no. 4-6, pp. 97–213, 2007. [12] F.-K. Thielemann, M. Eichler, I. Panov, and B. Wehmeyer, “Neutron star mergers and nucleosynthesis of heavy elements,” Annual Review of Nuclear and Particle Science, vol. 67, no. 1, pp. 253–274, 2017. [13] W. Hartley, “Multi-messenger observations of a binary neutron star merger,” The Astrophysical Journal Letters, vol. 848, no. 2, p. L12, 2017. 104 [14] W. D. Myers and W. J. Swiatecki, “Nuclear masses and deformations,” Nuclear Physics, vol. 81, no. 1, pp. 1–60, 1966. [15] V. Strutinsky, “Shell effects in nuclear masses and deformation energies,” Nuclear Physics A, vol. 95, no. 2, pp. 420–442, 1967. [16] J. J. Cowan, F.-K. Thielemann, and J. W. Truran, “The r-process and nucle- ochronology,” Physics Reports, vol. 208, no. 4-5, pp. 267–394, 1991. [17] J. M. Lattimer, F. Mackie, D. Ravenhall, and D. Schramm, “Decompression of cold neutron star matter,” The Astrophysical Journal, 1977. [18] “Binary neutron star mergers as the production site of gold, platinum, and rare earth elements.” [19] B. D. Metzger, G. Martínez-Pinedo, S. Darbha, E. Quataert, A. Arcones, D. Kasen, R. Thomas, P. Nugent, I. Panov, and N. T. Zinner, “Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 406, no. 4, pp. 2650–2662, 2010. [20] D. Martin, A. Perego, A. Arcones, F.-K. Thielemann, O. Korobkin, and S. Ross- wog, “Synthesis of heavy elements in the ejecta of neutron star mergers,” in Journal of Physics: Conference Series, vol. 940, p. 012047, IOP Publishing, 2018. [21] A. Simons, “p-process investigations at nscl.” [22] J. M. Lattimer and M. Prakash, “Nuclear matter and its role in supernovae, neutron stars and compact object binary mergers,” Physics Reports, vol. 333, pp. 121–146, 2000. [23] F.-K. Thielemann, M. Eichler, I. Panov, and B. Wehmeyer, “Neutron star mergers and nucleosynthesis of heavy elements,” Annual Review of Nuclear and Particle Science, vol. 67, no. 1, pp. 253–274, 2017. [24] S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs, and neutron stars: The physics of compact objects. John Wiley & Sons, 2008. [25] J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M. Wiescher, K. Lan- ganke, G. Martínez-Pinedo, and F.-K. Thielemann, “Origin of the heaviest ele- ments: The rapid neutron-capture process,” Reviews of Modern Physics, vol. 93, no. 1, p. 015002, 2021. [26] K. S. Krane, Introductory Nuclear Physics. John Wiley & Sons, 1998. [27] “Alpha decay - explanation, examples, gamow theory of alpha decay.” [28] S. S. Wong, Introductory Nuclear Physics. Prentice Hall, 1990. [29] E. Segre, “Nuclei and particles: an introduction to nuclear and subnuclear physics,” (No Title), 1977. 105 [30] “Gamma decay - wize high school grade 12 physics textbook.” [31] G. Martínez-Pinedo, D. Mocelj, N. T. Zinner, A. Kelić, K. Langanke, I. Panov, B. Pfeiffer, T. Rauscher, K.-H. Schmidt, and F.-K. Thielemann, “The role of fission in the r-process,” Progress in Particle and Nuclear Physics, vol. 59, no. 1, pp. 199– 205, 2007. [32] H. J. Krappe and K. Pomorski, Theory of Nuclear Fission: A Textbook, vol. 838. Springer Science & Business Media, 2012. [33] A. Goyal and B. Suthar, “Semi empirical mass formula: A review,” 2016. [34] None, “Liquid drop model of nucleus,” Nuclear Power, 2024. [35] G. Gamow, “Zur quantentheorie des atomkernes,” Zeitschrift für Physik, vol. 51, pp. 204–212, 1928. [36] L. D. Landau and E. M. Lifshitz, Quantum mechanics: non-relativistic theory, vol. 3. Elsevier, 2013. [37] J. M. Blatt and V. F. Weisskopf, Theoretical nuclear physics. Springer Science & Business Media, 2012. [38] “Shell atomic model | description, configuration, chemistry, proposed by, & facts | britannica.” [39] I.-Y. Lee and J. Simpson, “Agata and greta: the future of gamma-ray spectroscopy,” Nuclear Physics News, vol. 20, no. 4, pp. 23–28, 2010. [40] A. Santra, L. collaboration, et al., “Detector challenges of the strong-field qed experiment luxe at the european xfel,” Journal of Instrumentation, vol. 18, no. 08, p. C08003, 2023. [41] N. Schunck and L. Robledo, “Microscopic theory of nuclear fission: a review,” Reports on Progress in Physics, vol. 79, no. 11, p. 116301, 2016. [42] A. Boehnlein, M. Diefenthaler, N. Sato, M. Schram, V. Ziegler, C. Fanelli, M. Hjorth-Jensen, T. Horn, M. P. Kuchera, D. Lee, et al., “Colloquium: Machine learning in nuclear physics,” Reviews of modern physics, vol. 94, no. 3, p. 031003, 2022. [43] K. Morita, “Study of superheavy elements at riken: experiments on the synthesis of element 113 in the reaction 209bi (70zn, n) 278113,” in Recent Achievements And Perspectives In Nuclear Physics, pp. 29–34, World Scientific, 2005. [44] K. Langanke and G. Martínez-Pinedo, “Nuclear weak-interaction processes in stars,” Reviews of Modern Physics, vol. 75, no. 3, p. 819, 2003. [45] K.-H. Schmidt and B. Jurado, “Review on the progress in nuclear fis- sion—experimental methods and theoretical descriptions,” Reports on Progress in Physics, vol. 81, no. 10, p. 106301, 2018. 106 [46] S. Goriely, “The fundamental role of fission during r-process nucleosynthesis in neutron star mergers,” The European Physical Journal A, vol. 51, pp. 1–21, 2015. [47] S. A. Giuliani, G. Martínez-Pinedo, and L. M. Robledo, “Fission properties of superheavy nuclei for r-process calculations,” Physical Review C, vol. 97, no. 3, p. 034323, 2018. [48] H. Koura, T. Tachibana, M. Uno, and M. Yamada, “Nuclidic mass formula on a spherical basis with an improved even-odd term,” Progress of theoretical physics, vol. 113, no. 2, pp. 305–325, 2005. [49] B. D. Metzger, “Kilonovae,” Living Reviews in Relativity, vol. 23, no. 1, p. 1, 2020. [50] S. Rosswog, “The multi-messenger picture of compact binary mergers,” Interna- tional Journal of Modern Physics D, vol. 24, no. 05, p. 1530012, 2015. [51] C. Sneden, J. J. Cowan, and R. Gallino, “Neutron-capture elements in the early galaxy,” Annu. Rev. Astron. Astrophys., vol. 46, no. 1, pp. 241–288, 2008. [52] N. Schunck and D. Regnier, “Theory of nuclear fission,” Progress in Particle and Nuclear Physics, vol. 125, p. 103963, 2022. [53] R. Vandenbosch, Nuclear fission. Elsevier, 2012. [54] S. G. Nilsson, “Barrier shapes and their influence on fission,” Nuclear Physics A, vol. 115, pp. 545–548, 1969. [55] D. L. Hill and J. A. Wheeler, “Nuclear constitution and the interpretation of fission phenomena,” Physical Review, vol. 89, pp. 1102–1145, 1953. [56] J. R. Nix, “Stability of heavy nuclei against fission,” Annual Review of Nuclear Science, vol. 17, pp. 543–583, 1967. [57] C. Wong and J. Bang, “Shell effects on double-humped fission barriers,” Physical Review, vol. 182, pp. 1030–1042, 1969. [58] J. Cramer and J. R. Nix, “Models of the fission barrier and resonance phenomena,” Nuclear Physics A, vol. 225, pp. 129–156, 1970. [59] I. Halpern, “Barrier width and half-lives in spontaneous fission,” Physical Review, vol. 115, pp. 747–758, 1959. [60] W. D. Loveland, D. J. Morrissey, and G. T. Seaborg, Modern nuclear chemistry. John Wiley & Sons, 2017. [61] M. Eichler, Nucleosynthesis in explosive environments: neutron star mergers and core-collapse supernovae. PhD thesis, University_of_Basel, 2016. [62] V. M. Strutinsky, “The influence of surface curvature on nuclear deformation,” Zh. Eksp. Teor. Fiz., vol. 45, p. 1891, 1963. [63] K. Pomorski and J. Dudek, “Nuclear shape and fission barriers within the lsd model,” Phys. Rev. C, vol. 67, p. 044316, 2003. 107 [64] P. Moller et al., “Atomic and nuclear data tables 59,” Academic Press, Inc, 1995. [65] W. Myers and W. Światecki, “Nuclear equation of state,” Physical Review C, vol. 57, no. 6, p. 3020, 1998. [66] W. Swiatecki, “Systematics of spontaneous fission half-lives,” Physical Review, vol. 100, no. 3, p. 937, 1955. [67] V. Zagrebaev, A. Karpov, I. Mishustin, and W. Greiner, “Production of heavy and superheavy neutron-rich nuclei in neutron capture processes,” Physical Review C—Nuclear Physics, vol. 84, no. 4, p. 044617, 2011. [68] V. Viola Jr and G. Seaborg, “Nuclear systematics of the heavy elements—ii life- times for alpha, beta and spontaneous fission decay,” Journal of Inorganic and Nuclear Chemistry, vol. 28, no. 3, pp. 741–761, 1966. [69] A. Sobiczewski, Z. Patyk, and S. Ćwiok, “Deformed superheavy nuclei,” Physics letters B, vol. 224, no. 1-2, pp. 1–4, 1989. [70] I. Panov, I. Y. Korneev, G. Martinez-Pinedo, and F. K. Thielemann, “Influence of spontaneous fission rates on the yields of superheavy elements in the r-process,” Astronomy letters, vol. 39, pp. 150–160, 2013. [71] A. Mamdouh, J. Pearson, M. Rayet, and F. Tondeur, “Fission barriers of neutron- rich and superheavy nuclei calculated with the etfsi method,” Nuclear Physics A, vol. 679, no. 3-4, pp. 337–358, 2001. [72] P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, and M. Mumpower, “Fission barriers at the end of the chart of the nuclides,” Physical Review C, vol. 91, no. 2, p. 024310, 2015. [73] National Nuclear Data Center, “Nuclear structure and decay data.” https://www. nndc.bnl.gov/, 2024. Accessed: 2024-11-29. |
dc.rights.uri.none.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
109 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/07fc0212-0794-4c89-8657-444d33593465/download https://repositorio.uniandes.edu.co/bitstreams/0b43dbd4-08be-4024-a102-d9c97bfd69e4/download https://repositorio.uniandes.edu.co/bitstreams/de557a2d-d4fb-4838-acbe-9b6530518a71/download https://repositorio.uniandes.edu.co/bitstreams/fbc48010-26f1-497f-914e-c783d0828d84/download https://repositorio.uniandes.edu.co/bitstreams/2d8fbb4a-04d3-4451-8c5a-ae39f5b5593e/download https://repositorio.uniandes.edu.co/bitstreams/64f58b84-8e66-47c9-ba1d-7b2f73d80d54/download https://repositorio.uniandes.edu.co/bitstreams/701e029e-d3ff-4f16-84c7-da46445c7843/download |
bitstream.checksum.fl_str_mv |
c1a7b08f20f4fa87b1e3aa198d55dd22 e1d88b339cf0ec403295539a22b5dc31 ae9e573a68e7f92501b6913cc846c39f e1c06d85ae7b8b032bef47e42e4c08f9 a2078a9f7045b6628aecbf9c53c482ec 985888c2f788fb8f004a72faa074e0cc 543a91c50a5898fb23eea1aa509e350e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927662948384768 |
spelling |
Kelkar, Neelima Govindvirtual::22864-1Guerrero Pantoja, AlejandroFlórez Bustos, Carlos AndrésFacultad de Ciencias2025-01-30T15:08:05Z2025-01-30T15:08:05Z2024-12-06https://hdl.handle.net/1992/75837instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Spontaneous fission (SF) represents a rare yet fundamentally important nuclear decay process, with critical applications in understanding nucleosynthesis and energy generation in astrophysical environments such as neutron star mergers. This thesis focuses on the development and refinement of empirical models to predict SF half-lives, leveraging nuclear fission barriers and parity corrections to improve their predictive accuracy. The work is motivated by the need to address limitations in existing models, which often fail to accurately describe the behavior of nuclei under extreme conditions or overlook contributions from isotopes that do not naturally undergo SF. A novel approach is presented, introducing regression-based formulas that integrate macroscopic terms, such as Z2/A, alongside microscopic corrections including fission barriers (Bf ) and parity effects. These formulas have been validated against experimental half-life data from the National Nuclear Data Center (NNDC) and compared to models proposed by Möller, Mamdouh, and Zagrebaev. The results reveal that while existing models perform well within specific nuclear regions, the proposed empirical formulas provide superior agreement across a broader range of nuclei, particularly for long-lived isotopes where shell and deformation effects dominate. Furthermore, the implications of SF for astrophysical nucleosynthesis are explored, with a focus on its role as a neutron source and a termination mechanism in the rapid neutron capture process (r-process). The analysis underscores the necessity of understanding SF in environments with extreme temperatures, neutron fluxes, and magnetic fields, which significantly alter nuclear stability and reaction rates. While this study lays the groundwork for future theoretical and experimental advancements, it also highlights the importance of improving fission barrier calculations and incorporating them into more comprehensive astrophysical models. These contributions are essential for advancing our knowledge of heavy element formation and energy dynamics in explosive cosmic events.PregradoSpontaneous Fission109 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de Físicahttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Spontaneous fission in astrophysicsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPSpontaneous FissionNuclear astrophysicsFísica[1] O. Hahn and F. Strassmann, “Über den nachweis und das verhalten der bei derbestrahlung des urans mittels neutronen entstehenden erdalkalimetalle,” Naturwis-senschaften, vol. 27, no. 1, pp. 11–15, 1939.[2] L. Meitner and O. R. Frisch, “Disintegration of uranium by neutrons: a new typeof nuclear reaction,” Nature, vol. 143, no. 3615, pp. 239–240, 1939.[3] N. Bohr and J. A. Wheeler, “The mechanism of nuclear fission,” Physical Review,vol. 56, no. 5, p. 426, 1939.[4] W. Myers and W. Swiatecki, “Nuclear properties according to the thomas-fermimodel,” Nuclear Physics A, vol. 601, no. 2, pp. 141–167, 1996.[5] M. G. Mayer, “On closed shells in nuclei. ii,” Physical Review, vol. 75, no. 12,p. 1969, 1949.[6] K. Pomorski, “Fission-barrier heights in some newest liquid-drop models,” PhysicaScripta, vol. 2013, no. T154, p. 014023, 2013.[7] H. J. Krappe and K. Pomorski, Theory of Nuclear Fission: A Textbook, vol. 838.Springer Science & Business Media, 2012.[8] K. A. Petrzhak and G. N. Flerov, “Spontaneous fission of nuclei,” Soviet PhysicsUspekhi, vol. 4, no. 2, p. 305, 1961.[9] V. Strutinsky, “Shell effects in nuclear masses and deformation energies,” NuclearPhysics A, vol. 95, no. 2, pp. 420–442, 1967.[10] MikeRun, “English: Illustration of a typical nuclear fission reaction.”[11] M. Arnould, S. Goriely, and K. Takahashi, “The r-process of stellar nucleosynthesis:Astrophysics and nuclear physics achievements and mysteries,” Physics Reports,vol. 450, no. 4-6, pp. 97–213, 2007.[12] F.-K. Thielemann, M. Eichler, I. Panov, and B. Wehmeyer, “Neutron star mergersand nucleosynthesis of heavy elements,” Annual Review of Nuclear and ParticleScience, vol. 67, no. 1, pp. 253–274, 2017.[13] W. Hartley, “Multi-messenger observations of a binary neutron star merger,” TheAstrophysical Journal Letters, vol. 848, no. 2, p. L12, 2017. 104[14] W. D. Myers and W. J. Swiatecki, “Nuclear masses and deformations,” NuclearPhysics, vol. 81, no. 1, pp. 1–60, 1966.[15] V. Strutinsky, “Shell effects in nuclear masses and deformation energies,” NuclearPhysics A, vol. 95, no. 2, pp. 420–442, 1967.[16] J. J. Cowan, F.-K. Thielemann, and J. W. Truran, “The r-process and nucle-ochronology,” Physics Reports, vol. 208, no. 4-5, pp. 267–394, 1991.[17] J. M. Lattimer, F. Mackie, D. Ravenhall, and D. Schramm, “Decompression of coldneutron star matter,” The Astrophysical Journal, 1977.[18] “Binary neutron star mergers as the production site of gold, platinum, and rareearth elements.”[19] B. D. Metzger, G. Martínez-Pinedo, S. Darbha, E. Quataert, A. Arcones, D. Kasen,R. Thomas, P. Nugent, I. Panov, and N. T. Zinner, “Electromagnetic counterpartsof compact object mergers powered by the radioactive decay of r-process nuclei,”Monthly Notices of the Royal Astronomical Society, vol. 406, no. 4, pp. 2650–2662,2010.[20] D. Martin, A. Perego, A. Arcones, F.-K. Thielemann, O. Korobkin, and S. Ross-wog, “Synthesis of heavy elements in the ejecta of neutron star mergers,” in Journalof Physics: Conference Series, vol. 940, p. 012047, IOP Publishing, 2018.[21] A. Simons, “p-process investigations at nscl.”[22] J. M. Lattimer and M. Prakash, “Nuclear matter and its role in supernovae, neutronstars and compact object binary mergers,” Physics Reports, vol. 333, pp. 121–146,2000.[23] F.-K. Thielemann, M. Eichler, I. Panov, and B. Wehmeyer, “Neutron star mergersand nucleosynthesis of heavy elements,” Annual Review of Nuclear and ParticleScience, vol. 67, no. 1, pp. 253–274, 2017.[24] S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs, and neutron stars:The physics of compact objects. John Wiley & Sons, 2008.[25] J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M. Wiescher, K. Lan-ganke, G. Martínez-Pinedo, and F.-K. Thielemann, “Origin of the heaviest ele-ments: The rapid neutron-capture process,” Reviews of Modern Physics, vol. 93,no. 1, p. 015002, 2021.[26] K. S. Krane, Introductory Nuclear Physics. John Wiley & Sons, 1998.[27] “Alpha decay - explanation, examples, gamow theory of alpha decay.”[28] S. S. Wong, Introductory Nuclear Physics. Prentice Hall, 1990.[29] E. Segre, “Nuclei and particles: an introduction to nuclear and subnuclear physics,”(No Title), 1977. 105[30] “Gamma decay - wize high school grade 12 physics textbook.”[31] G. Martínez-Pinedo, D. Mocelj, N. T. Zinner, A. Kelić, K. Langanke, I. Panov,B. Pfeiffer, T. Rauscher, K.-H. Schmidt, and F.-K. Thielemann, “The role of fissionin the r-process,” Progress in Particle and Nuclear Physics, vol. 59, no. 1, pp. 199–205, 2007.[32] H. J. Krappe and K. Pomorski, Theory of Nuclear Fission: A Textbook, vol. 838.Springer Science & Business Media, 2012.[33] A. Goyal and B. Suthar, “Semi empirical mass formula: A review,” 2016.[34] None, “Liquid drop model of nucleus,” Nuclear Power, 2024.[35] G. Gamow, “Zur quantentheorie des atomkernes,” Zeitschrift für Physik, vol. 51,pp. 204–212, 1928.[36] L. D. Landau and E. M. Lifshitz, Quantum mechanics: non-relativistic theory,vol. 3. Elsevier, 2013.[37] J. M. Blatt and V. F. Weisskopf, Theoretical nuclear physics. Springer Science &Business Media, 2012.[38] “Shell atomic model | description, configuration, chemistry, proposed by, & facts |britannica.”[39] I.-Y. Lee and J. Simpson, “Agata and greta: the future of gamma-ray spectroscopy,”Nuclear Physics News, vol. 20, no. 4, pp. 23–28, 2010.[40] A. Santra, L. collaboration, et al., “Detector challenges of the strong-field qedexperiment luxe at the european xfel,” Journal of Instrumentation, vol. 18, no. 08,p. C08003, 2023.[41] N. Schunck and L. Robledo, “Microscopic theory of nuclear fission: a review,”Reports on Progress in Physics, vol. 79, no. 11, p. 116301, 2016.[42] A. Boehnlein, M. Diefenthaler, N. Sato, M. Schram, V. Ziegler, C. Fanelli,M. Hjorth-Jensen, T. Horn, M. P. Kuchera, D. Lee, et al., “Colloquium: Machinelearning in nuclear physics,” Reviews of modern physics, vol. 94, no. 3, p. 031003,2022.[43] K. Morita, “Study of superheavy elements at riken: experiments on the synthesisof element 113 in the reaction 209bi (70zn, n) 278113,” in Recent AchievementsAnd Perspectives In Nuclear Physics, pp. 29–34, World Scientific, 2005.[44] K. Langanke and G. Martínez-Pinedo, “Nuclear weak-interaction processes instars,” Reviews of Modern Physics, vol. 75, no. 3, p. 819, 2003.[45] K.-H. Schmidt and B. Jurado, “Review on the progress in nuclear fis-sion—experimental methods and theoretical descriptions,” Reports on Progress inPhysics, vol. 81, no. 10, p. 106301, 2018. 106[46] S. Goriely, “The fundamental role of fission during r-process nucleosynthesis inneutron star mergers,” The European Physical Journal A, vol. 51, pp. 1–21, 2015.[47] S. A. Giuliani, G. Martínez-Pinedo, and L. M. Robledo, “Fission properties ofsuperheavy nuclei for r-process calculations,” Physical Review C, vol. 97, no. 3,p. 034323, 2018.[48] H. Koura, T. Tachibana, M. Uno, and M. Yamada, “Nuclidic mass formula on aspherical basis with an improved even-odd term,” Progress of theoretical physics,vol. 113, no. 2, pp. 305–325, 2005.[49] B. D. Metzger, “Kilonovae,” Living Reviews in Relativity, vol. 23, no. 1, p. 1, 2020.[50] S. Rosswog, “The multi-messenger picture of compact binary mergers,” Interna-tional Journal of Modern Physics D, vol. 24, no. 05, p. 1530012, 2015.[51] C. Sneden, J. J. Cowan, and R. Gallino, “Neutron-capture elements in the earlygalaxy,” Annu. Rev. Astron. Astrophys., vol. 46, no. 1, pp. 241–288, 2008.[52] N. Schunck and D. Regnier, “Theory of nuclear fission,” Progress in Particle andNuclear Physics, vol. 125, p. 103963, 2022.[53] R. Vandenbosch, Nuclear fission. Elsevier, 2012.[54] S. G. Nilsson, “Barrier shapes and their influence on fission,” Nuclear Physics A,vol. 115, pp. 545–548, 1969.[55] D. L. Hill and J. A. Wheeler, “Nuclear constitution and the interpretation of fissionphenomena,” Physical Review, vol. 89, pp. 1102–1145, 1953.[56] J. R. Nix, “Stability of heavy nuclei against fission,” Annual Review of NuclearScience, vol. 17, pp. 543–583, 1967.[57] C. Wong and J. Bang, “Shell effects on double-humped fission barriers,” PhysicalReview, vol. 182, pp. 1030–1042, 1969.[58] J. Cramer and J. R. Nix, “Models of the fission barrier and resonance phenomena,”Nuclear Physics A, vol. 225, pp. 129–156, 1970.[59] I. Halpern, “Barrier width and half-lives in spontaneous fission,” Physical Review,vol. 115, pp. 747–758, 1959.[60] W. D. Loveland, D. J. Morrissey, and G. T. Seaborg, Modern nuclear chemistry.John Wiley & Sons, 2017.[61] M. Eichler, Nucleosynthesis in explosive environments: neutron star mergers andcore-collapse supernovae. PhD thesis, University_of_Basel, 2016.[62] V. M. Strutinsky, “The influence of surface curvature on nuclear deformation,” Zh.Eksp. Teor. Fiz., vol. 45, p. 1891, 1963.[63] K. Pomorski and J. Dudek, “Nuclear shape and fission barriers within the lsdmodel,” Phys. Rev. C, vol. 67, p. 044316, 2003. 107[64] P. Moller et al., “Atomic and nuclear data tables 59,” Academic Press, Inc, 1995.[65] W. Myers and W. Światecki, “Nuclear equation of state,” Physical Review C,vol. 57, no. 6, p. 3020, 1998.[66] W. Swiatecki, “Systematics of spontaneous fission half-lives,” Physical Review,vol. 100, no. 3, p. 937, 1955.[67] V. Zagrebaev, A. Karpov, I. Mishustin, and W. Greiner, “Production of heavyand superheavy neutron-rich nuclei in neutron capture processes,” Physical ReviewC—Nuclear Physics, vol. 84, no. 4, p. 044617, 2011.[68] V. Viola Jr and G. Seaborg, “Nuclear systematics of the heavy elements—ii life-times for alpha, beta and spontaneous fission decay,” Journal of Inorganic andNuclear Chemistry, vol. 28, no. 3, pp. 741–761, 1966.[69] A. Sobiczewski, Z. Patyk, and S. Ćwiok, “Deformed superheavy nuclei,” Physicsletters B, vol. 224, no. 1-2, pp. 1–4, 1989.[70] I. Panov, I. Y. Korneev, G. Martinez-Pinedo, and F. K. Thielemann, “Influence ofspontaneous fission rates on the yields of superheavy elements in the r-process,”Astronomy letters, vol. 39, pp. 150–160, 2013.[71] A. Mamdouh, J. Pearson, M. Rayet, and F. Tondeur, “Fission barriers of neutron-rich and superheavy nuclei calculated with the etfsi method,” Nuclear Physics A,vol. 679, no. 3-4, pp. 337–358, 2001.[72] P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, and M. Mumpower, “Fissionbarriers at the end of the chart of the nuclides,” Physical Review C, vol. 91, no. 2,p. 024310, 2015.[73] National Nuclear Data Center, “Nuclear structure and decay data.” https://www.nndc.bnl.gov/, 2024. Accessed: 2024-11-29.201912747Publicationhttps://scholar.google.es/citations?user=BMxIj5AAAAAJvirtual::22864-10000-0003-1129-8263virtual::22864-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000521795virtual::22864-199028683-12da-47c6-b475-e4e674a36d28virtual::22864-199028683-12da-47c6-b475-e4e674a36d28virtual::22864-1ORIGINALform signed - Alejandro Guerrero Pantoja.pdfform signed - Alejandro Guerrero Pantoja.pdfHIDEapplication/pdf60149https://repositorio.uniandes.edu.co/bitstreams/07fc0212-0794-4c89-8657-444d33593465/downloadc1a7b08f20f4fa87b1e3aa198d55dd22MD51Spontaneous Fission in Astrophysics.pdfSpontaneous Fission in Astrophysics.pdfapplication/pdf4817817https://repositorio.uniandes.edu.co/bitstreams/0b43dbd4-08be-4024-a102-d9c97bfd69e4/downloade1d88b339cf0ec403295539a22b5dc31MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/de557a2d-d4fb-4838-acbe-9b6530518a71/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTform signed - Alejandro Guerrero Pantoja.pdf.txtform signed - Alejandro Guerrero Pantoja.pdf.txtExtracted texttext/plain2https://repositorio.uniandes.edu.co/bitstreams/fbc48010-26f1-497f-914e-c783d0828d84/downloade1c06d85ae7b8b032bef47e42e4c08f9MD54Spontaneous Fission in Astrophysics.pdf.txtSpontaneous Fission in Astrophysics.pdf.txtExtracted texttext/plain100340https://repositorio.uniandes.edu.co/bitstreams/2d8fbb4a-04d3-4451-8c5a-ae39f5b5593e/downloada2078a9f7045b6628aecbf9c53c482ecMD56THUMBNAILform signed - Alejandro Guerrero Pantoja.pdf.jpgform signed - Alejandro Guerrero Pantoja.pdf.jpgGenerated Thumbnailimage/jpeg10119https://repositorio.uniandes.edu.co/bitstreams/64f58b84-8e66-47c9-ba1d-7b2f73d80d54/download985888c2f788fb8f004a72faa074e0ccMD55Spontaneous Fission in Astrophysics.pdf.jpgSpontaneous Fission in Astrophysics.pdf.jpgGenerated Thumbnailimage/jpeg6578https://repositorio.uniandes.edu.co/bitstreams/701e029e-d3ff-4f16-84c7-da46445c7843/download543a91c50a5898fb23eea1aa509e350eMD571992/75837oai:repositorio.uniandes.edu.co:1992/758372025-03-05 09:39:33.602https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |