Open cluster dynamics
This doctoral thesis document is based on the results obtained in four scientific articles.
- Autores:
-
Alfonso, Jeison Estivens
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75274
- Acceso en línea:
- https://hdl.handle.net/1992/75274
- Palabra clave:
- Open clusters
Astrometry
N-body simulations
Initial mass function
Mass segregation
Machine learning
Statistics
Física
- Rights
- embargoedAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_ceb14e8a747b524c05a58ca5b2bfb688 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75274 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Open cluster dynamics |
title |
Open cluster dynamics |
spellingShingle |
Open cluster dynamics Open clusters Astrometry N-body simulations Initial mass function Mass segregation Machine learning Statistics Física |
title_short |
Open cluster dynamics |
title_full |
Open cluster dynamics |
title_fullStr |
Open cluster dynamics |
title_full_unstemmed |
Open cluster dynamics |
title_sort |
Open cluster dynamics |
dc.creator.fl_str_mv |
Alfonso, Jeison Estivens |
dc.contributor.advisor.none.fl_str_mv |
García Varela, José Alejandro |
dc.contributor.author.none.fl_str_mv |
Alfonso, Jeison Estivens |
dc.contributor.jury.none.fl_str_mv |
Kelkar, Neelima Govind Ferreira, Carlos |
dc.subject.keyword.eng.fl_str_mv |
Open clusters Astrometry N-body simulations Initial mass function Mass segregation Machine learning Statistics |
topic |
Open clusters Astrometry N-body simulations Initial mass function Mass segregation Machine learning Statistics Física |
dc.subject.themes.none.fl_str_mv |
Física |
description |
This doctoral thesis document is based on the results obtained in four scientific articles. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-12-12T19:54:54Z |
dc.date.issued.none.fl_str_mv |
2024-12-10 |
dc.date.accepted.none.fl_str_mv |
2024-12-12 |
dc.date.available.none.fl_str_mv |
2025-12-31 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75274 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75274 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Alfonso, J. & García-Varela, A. 2023, A&A, 677, A163 Alfonso, J., García-Varela, A., & Vieira, K. 2024, A&A, 689, A18 Allen, C. & Santillan, A. 1991, RMxAA, 22, 255 Allison, R. J., Goodwin, S. P., Parker, R. J., et al. 2009, MNRAS, 395, 1449 Anders, F., Chiappini, C., Minchev, I., et al. 2017, A&A, 600, A70 Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al. 2022, AJ, 935, 167 Babusiaux, C., Fabricius, C., Khanna, S., et al. 2023, A&A, 674, A32 Bailer-Jones, C. A. 2017, Practical Bayesian Inference (Cambridge University Press) Bailer-Jones, C. A. L. 2015, PASP, 127, 994 Binney, J. & Tremaine, S. 2008, Galactic Dynamics: Second Edition Boffin, H. M. J., Jerabkova, T., Beccari, G., & Wang, L. 2022, MNRAS, 514, 3579 Bonaca, A., Hogg, D. W., Price-Whelan, A. M., & Conroy, C. 2019, ApJ, 880, 38 Bossini, D., Vallenari, A., Bragaglia, A., et al. 2019, A&A, 623, A108 Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127 Bromley, B. C., Kenyon, S. J., Geller, M. J., & Brown, W. R. 2012, ApJL, 749, L42 Campello, R. J. G. B., Moulavi, D., & Sander, J. 2013, in Advances in Knowledge Discovery and Data Mining, ed. J. Pei, V. S. Tseng, L. Cao, H. Motoda, & G. Xu (Berlin, Heidelberg: Springer Berlin Heidelberg), 160–172 Cantat-Gaudin, T., Anders, F., Castro-Ginard, A., et al. 2020, A&A, 640, A1 Carrera, R., Pasquato, M., Vallenari, A., et al. 2019, A&A, 627, A119 Castro-Ginard, A., Jordi, C., Luri, X., et al. 2022, A&A, 661, A118 Castro-Ginard, A., Jordi, C., Luri, X., et al. 2018, A&A, 618, A59 Chabrier, G. 2003, PASP, 115, 763 Chernoff, D. F., Kochanek, C. S., & Shapiro, S. L. 1986, ApJ, 309, 183 Ciotti, L. 2021, Introduction to Stellar Dynamics Converse, J. M. & Stahler, S. W. 2008, ApJ, 678, 431 Converse, J. M. & Stahler, S. W. 2010, MNRAS, 405, 666 Cordoni, G., Milone, A. P., Marino, A. F., et al. 2023, A&A, 672, A29 Cranmer, K., Brehmer, J., & Louppe, G. 2020, Proceedings of the National Academy of Science, 117, 30055 Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, Research in Astronomy and Astrophysics, 12, 1197 Dalton, G., Trager, S. C., Abrams, D. C., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, ed. I. S. McLean, S. K. Ramsay, & H. Takami, 84460P Danilov, V. M. & Seleznev, A. F. 2020, Astrophysical Bulletin, 75, 407 De Boor, C. 1978, Springer-Verlag google scholar, 2, 4135 de Bruijne, J. H. J. 1999, MNRAS, 306, 381 de La Fuente Marcos, R. & de La Fuente Marcos, C. 2009, A&A, 500, L13 Deacon, N. R. & Kraus, A. L. 2020, MNRAS, 496, 5176 Dehnen, W. 2000, AJ, 119, 800 Della Croce, A., Dalessandro, E., Livernois, A., & Vesperini, E. 2024, A&A, 683, A10 Dias, W. S., Monteiro, H., Moitinho, A., et al. 2021, MNRAS, 504, 356 Dib, S., Schmeja, S., & Parker, R. J. 2018, MNRAS, 473, 849 Dinnbier, F. & Kroupa, P. 2020a, A&A, 640, A84 Dinnbier, F. & Kroupa, P. 2020b, A&A, 640, A85 Dinnbier, F., Kroupa, P., Subr, L., & Jerabkov´a, T. 2022, ApJ, 925, 214 Eggen, O. J. & Greenstein, J. L. 1965, ApJ, 141, 83 Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. 1996, KDD-96 Proceedings, 96, 226 Feigelson, E. D. & Babu, G. J. 2012, Modern Statistical Methods for Astronomy Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306 Fu, X., Bragaglia, A., Liu, C., et al. 2022, A&A, 668, A4 Gaia Collaboration, Babusiaux, C., van Leeuwen, F., et al. 2018a, A&A, 616, A10 Gaia Collaboration, Helmi, A., van Leeuwen, F., et al. 2018b, A&A, 616, A12 Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1 Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2023, A&A, 674, A1 Gao, X.-h. 2019a, PASP, 131, 044101 Gao, X.-h. 2019b, MNRAS, 486, 5405 Gelman, A. & Rubin, D. B. 1992, Statistical Science, 7, 457 Geron, A. 2022, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow (” O’Reilly Media, Inc.”) Godoy-Rivera, D., Pinsonneault, M. H., & Rebull, L. M. 2021, ApJS, 257, 46 Gossage, S., Conroy, C., Dotter, A., et al. 2018, ApJ, 863, 67 Grondin, S. M., Webb, J. J., Lane, J. M. M., Speagle, J. S., & Leigh, N. W. C. 2024, MNRAS, 528, 5189 Hao, C. J., Xu, Y., Hou, L. G., et al. 2024, ApJ, 963, 153 Harris, W. E. 2010, arXiv e-prints, arXiv:1012.3224 Hennebelle, P. & Grudi´c, M. Y. 2024, ARA&A, 62, 63 Heyl, J., Caiazzo, I., & Richer, H. B. 2022, ApJ, 926, 132 Hidalgo, S. L., Pietrinferni, A., Cassisi, S., et al. 2018, ApJ, 856, 125 Holland, K., Jameson, R. F., Hodgkin, S., Davies, M. B., & Pinfield, D. 2000, MNRAS, 319, 956 Hunt, E. L. & Reffert, S. 2021, A&A, 646, A104 Hunt, E. L. & Reffert, S. 2023, A&A, 673, A114 Jerabkova, T., Beccari, G., Boffin, H. M. J., et al. 2019, AAP, 627, A57 Jerabkova, T., Boffin, H. M. J., Beccari, G., et al. 2021, A&A, 647, A137 Kamdar, H., Conroy, C., & Ting, Y.-S. 2021, arXiv e-prints, arXiv:2106.02050 Kharchenko, N. V., Berczik, P., Petrov, M. I., et al. 2009, A&A, 495, 807 Kharchenko, N. V., Piskunov, A. E., Schilbach, E., R¨oser, S., & Scholz, R. D. 2013, A&A, 558, A53 King, I. 1962, AJ, 67, 471 Kounkel, M. & Covey, K. 2019, AJ, 158, 122 Kraus, A. L. & Hillenbrand, L. A. 2007, AJ, 134, 2340 Kroupa, P. 2002, Science, 295, 82 Kroupa, P., Aarseth, S., & Hurley, J. 2001, MNRAS, 321, 699 Kroupa, P., Pflamm-Altenburg, J., Mazurenko, S., et al. 2024, ApJ, 970, 94 Krumholz, M. R., McKee, C. F., & Bland-Hawthorn, J. 2019, ARA&A, 57, 227 Kruskal, J. B. 1956, Proceedings of the American Mathematical Society, 7, 48 K¨upper, A. H. W., Balbinot, E., Bonaca, A., et al. 2015, AJ, 803, 80 K¨upper, A. H. W., MacLeod, A., & Heggie, D. C. 2008, MNRAS, 387, 1248 Lada, C. J. & Lada, E. A. 2003, Annual Review of A&A, 41, 57 Lindegren, L., Klioner, S. A., Hernandez, J., et al. 2021, A&A, 649, A2 Lodieu, N., P´erez-Garrido, A., Smart, R. L., & Silvotti, R. 2019, A&A, 628, A66 Luri, X., Brown, A. G. A., Sarro, L. M., et al. 2018, A&A, 616, A9 Mackereth, J. T., Bovy, J., Leung, H. W., et al. 2019, MNRAS, 489, 176 Mahalanobis, P. C. 2018, Sankhy¯a: The Indian Journal of Statistics, Series A (2008-), 80, pp. S1 Marigo, P., Bressan, A., Nanni, A., Girardi, L., & Pumo, M. L. 2013, MNRAS, 434, 488 McInnes, L., Healy, J., & Astels, S. 2017, The Journal of Open Source Software, 2 McKee, C. F. & Ostriker, E. C. 2007, ARA&A, 45, 565 McMillan, S. L. W., Vesperini, E., & Portegies Zwart, S. F. 2007, ApJL, 655, L45 Meingast, S., Alves, J., & Rottensteiner, A. 2021, A&A, 645, A84 Mermilliod, J. C. 1981, A&A, 97, 235 Miller, G. E. & Scalo, J. M. 1979, ApJS, 41, 513 Moraux, E., Kroupa, P., & Bouvier, J. 2004, A&A, 426, 75 Morton, T. D. 2015, isochrones: Stellar model grid package, Astrophysics Source Code Library, record ascl:1503.010 Naidoo, K. 2019, The Journal of Open Source Software, 4, 1721 Netopil, M., Paunzen, E., Heiter, U., & Soubiran, C. 2016, A&A, 585, A150 Odenkirchen, M., Grebel, E. K., Rockosi, C. M., et al. 2001, ApJL, 548, L165 Pang, X., Li, Y., Yu, Z., et al. 2021, ApJ, 912, 162 Pang, X., Liao, S., Li, J., et al. 2024, ApJ, 966, 169 Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, Journal of Machine Learning Research, 12, 2825 Pelupessy, F. I., J¨anes, J., & Portegies Zwart, S. 2012, NA, 17, 711 Pera, M. S., Perren, G. I., V´azquez, R. A., & Navone, H. D. 2022, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 63, 121 Pinfield, D. J., Jameson, R. F., & Hodgkin, S. T. 1998, MNRAS, 299, 955 Piskunov, A. E., Schilbach, E., Kharchenko, N. V., R¨oser, S., & Scholz, R. D. 2007, A&A, 468, 151 Plummer, H. C. 1911, MNRAS, 71, 460 Portegies Zwart, S. & McMillan, S. 2018, Astrophysical Recipes; The art of AMUSE Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A, 48, 431 Raboud, D. & Mermilliod, J. C. 1998, AAP, 333, 897 Rebassa-Mansergas, A., Solano, E., Jim´enez-Esteban, F. M., et al. 2021, MNRAS, 506, 5201 Reino, S., de Bruijne, J., Zari, E., d’Antona, F., & Ventura, P. 2018, MNRAS, 477, 3197 Renaud, F., Gieles, M., & Boily, C. M. 2011, MNRAS, 418, 759 Robin, A. C., Marshall, D. J., Schultheis, M., & Reyl´e, C. 2012, A&A, 538, A106 Robinson, E., von Hippel, T., Stein, N., et al. 2016, BASE-9: Bayesian Analysis for Stellar Evolution with nine variables, Astrophysics Source Code Library, record ascl:1608.007 R¨oser, S. & Schilbach, E. 2019, A&A, 627, A4 R¨oser, S., Schilbach, E., & Goldman, B. 2019, A&A, 621, L2 Rousseeuw, P. J. & van Driessen, K. 1999, Technometrics, 41, 212 Rybizki, J., Green, G. M., Rix, H.-W., et al. 2022, MNRAS, 510, 2597 Sabogal-Martiınez, B. E., Garcıa-Varela, J. A., Higuera G., M. A., Uribe, A., & Brieva, E. 2001, RMxAA, 37, 105 Salaris, M. & Bedin, L. R. 2019, MNRAS, 483, 3098 Salpeter, E. E. 1955, ApJ, 121, 161 Sanders, W. L. 1971, A&A, 14, 226 Slovak, M. H. 1977, AJ, 82, 818 Smith, Haywood, J. & Eichhorn, H. 1996, MNRAS, 281, 211 Song, F., Esamdin, A., Hu, Q., & Zhang, M. 2022, A&A, 666, A75 Spina, L., Randich, S., Magrini, L., et al. 2017, A&A, 601, A70 Spitzer, L., J. 1975, in Dynamics of the Solar Systems, ed. A. Hayli, Vol. 69, 3 Spitzer, Lyman, J. 1958, ApJ, 127, 17 Stock, J. & Abad, C. 1988, RMxAA, 16, 63 Stolte, A., Brandner, W., Brandl, B., & Zinnecker, H. 2006, AJ, 132, 253 Sun, W., de Grijs, R., Deng, L., & Albrow, M. D. 2019, ApJ, 876, 113 Tang, S.-Y., Pang, X., Yuan, Z., et al. 2019, ApJ, 877, 12 Tarricq, Y., Soubiran, C., Casamiquela, L., et al. 2022, A&A, 659, A59 Tauris, T. M. & van den Heuvel, E. P. J. 2023, Physics of Binary Star Evolution. From Stars to X-ray Binaries and Gravitational Wave Sources Tremblay, P.-E., B´edard, A., O’Brien, M. W., et al. 2024, NAR, 99, 101705 Uribe, A. & Brieva, E. 1994, APSS, 214, 171 van Groeningen, M. G. J., Castro-Ginard, A., Brown, A. G. A., Casamiquela, L., & Jordi, C. 2023, A&A, 675, A68 van Leeuwen, F. 1980, in Star Clusters, ed. J. E. Hesser, Vol. 85, 157–163 van Leeuwen, F. 2009, A&A, 497, 209 Van Ravenzwaaij, D., Cassey, P., & Brown, S. D. 2018, Psychonomic bulletin & review, 25, 143 Vasilevskis, S., Klemola, A., & Preston, G. 1958, AJ, 63, 387 Vasiliev, E. 2019, MNRAS, 484, 2832 Vesperini, E. 2010, Philosophical Transactions of the Royal Society of London Series A, 368, 829 Vesperini, E., McMillan, S. L. W., D’Antona, F., & D’Ercole, A. 2011, MNRAS, 416, 355 Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261 von Hippel, T., Jefferys, W. H., Scott, J., et al. 2006, ApJ, 645, 1436 Wallace, A. L. 2024, MNRAS, 527, 8718 Wu, B. Y. & Chao, K.-M. 2004, Spanning trees and optimization problems (Chapman and Hall/CRC) Yong, D., Carney, B. W., & Friel, E. D. 2012, AJ, 144, 95 Zapatero Osorio, M. R., G´alvez Ortiz, M. C., Bihain, G., et al. 2014, A&A, 568, A77 Zhang, Y., Tang, S.-Y., Chen, W. P., Pang, X., & Liu, J. Z. 2020, ApJ, 889, 99 Zhong, J., Chen, L., Kouwenhoven, M. B. N., et al. 2019, A&A, 624, A34 Zucker, C., Peek, J. E. G., & Loebman, S. 2022, ApJ, 936, 160 |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
100 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ciencias - Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/1530951c-0b04-4759-99d6-2199f2981f0b/download https://repositorio.uniandes.edu.co/bitstreams/ff11f30d-8004-4979-b123-b8af232d42b9/download https://repositorio.uniandes.edu.co/bitstreams/8a351ffc-3799-46f7-b850-22dbac96b49a/download https://repositorio.uniandes.edu.co/bitstreams/7e0f063c-0c1f-4a3c-98a1-84d25456c59a/download https://repositorio.uniandes.edu.co/bitstreams/7fd8bd3a-6f09-478b-82fe-8e35c2e82212/download https://repositorio.uniandes.edu.co/bitstreams/c6084f5e-3e0c-4b30-8234-f6abeac43527/download https://repositorio.uniandes.edu.co/bitstreams/bad2004b-5239-436c-8a3c-08996a5f899f/download https://repositorio.uniandes.edu.co/bitstreams/3211334f-54a1-4b1e-848d-7111705f9dd5/download |
bitstream.checksum.fl_str_mv |
64bf58a9ddca4c8fc4769c75849c2b26 a16757eb49e7db0e34d37085c21efb2b 0175ea4a2d4caec4bbcc37e300941108 ae9e573a68e7f92501b6913cc846c39f 66ef401510e3ba45b25f61978ca23146 12d94b9c08f5ac35da86ffd46f8d81c2 a1bec502a9c684c66dba2f44e8f60df7 862b620ad48c0ba4666f59c66d3f3bb7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927788861390848 |
spelling |
García Varela, José Alejandrovirtual::21835-1Alfonso, Jeison EstivensKelkar, Neelima GovindFerreira, Carlos2024-12-12T19:54:54Z2025-12-312024-12-102024-12-12https://hdl.handle.net/1992/75274instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This doctoral thesis document is based on the results obtained in four scientific articles.Open star clusters are one of the most studied stellar systems studied due to their significance importance in Galactic dynamics and structure, and stellar evolution. About seven thousand open clusters have been found in the Milky Way, but this number is expected to increase in a few years with the upcoming catalogs, such as Gaia DR4, LSST, and JWST, among others. Open clusters are groups of stars that are bounded by their intrinsic gravity and share similar properties, such as a homogeneous distribution of chemical abundances and ages, and also a mean kinematics consistent with their center of mass. Their number of stars does not exceed a few thousand and, due to their weak gravitational field, they exhibit asymmetric shapes, unlike their counterparts, globular clusters. Since the first release of the Gaia astrometric mission, the unveiling of many astrophysical phenomena has now been put in the context of stellar populations and Galactic dynamics. Its exquisite astrometric data for nearly 2 billion stars is unprecedented in the growing understanding of the properties and kinematics of our Galaxy. Particularly, in the context of open clusters using Gaia data, efforts are focused on star evaporation, cluster dissolution, tidal tails and binary stars, topics that are relevant to many astrophysical phenomena. This PhD thesis focuses on the following topics: star membership in nearby Galactic open clusters, Initial Mass Function, mass segregation, binary stars and tidal tails. To perform the star membership, clustering algorithms were implemented, and outliers were treated by a statistical approach using the Mahalanobis distance. Once the most probable members were obtained, the cluster parameters were characterized by implementing a Bayesian methodology using color-magnitude diagrams with a stellar isochrone model. Moreover, a study of the dissolution of one nearby open clusters is discussed by comparing N-body simulations with Gaia DR3 data, which also includes an application of the convergent-point method to recover stars that follow the cluster kinematics. In addition to this, a binary study was also performed on fifteen open cluster by applying binary corrections to the Initial Mass Function through simulated-based inference. This thesis document is structured on five chapters. Below there is a description of each of them. Chapter one contains an overall introduction to open clusters and how they evolve. Chapter two is based on the application of two methods to recover stars in three nearby open clusters, which include a classical approach using proper motions and the DBSCAN algorithm. Chapter three describes the methodology to perform the HDBSCAN algorithm to astrometry and photometry in order to obtain stellar members for 370 open clusters, and the treatment of outliers using a robust statistical method. Chapter four contains a description of the tidal tails in the Pleiades open cluster and includes an analysis of contaminants. Chapter five outlines the process for estimating masses for main sequence stars in fifteen open clusters, discussing the Initial Mass Function while considering binary stars and mass segregation.DoctoradoAstronomy and Astrophysics100 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfOpen cluster dynamicsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDOpen clustersAstrometryN-body simulationsInitial mass functionMass segregationMachine learningStatisticsFísicaAlfonso, J. & García-Varela, A. 2023, A&A, 677, A163Alfonso, J., García-Varela, A., & Vieira, K. 2024, A&A, 689, A18Allen, C. & Santillan, A. 1991, RMxAA, 22, 255Allison, R. J., Goodwin, S. P., Parker, R. J., et al. 2009, MNRAS, 395, 1449Anders, F., Chiappini, C., Minchev, I., et al. 2017, A&A, 600, A70Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al. 2022, AJ, 935, 167Babusiaux, C., Fabricius, C., Khanna, S., et al. 2023, A&A, 674, A32Bailer-Jones, C. A. 2017, Practical Bayesian Inference (Cambridge University Press)Bailer-Jones, C. A. L. 2015, PASP, 127, 994Binney, J. & Tremaine, S. 2008, Galactic Dynamics: Second EditionBoffin, H. M. J., Jerabkova, T., Beccari, G., & Wang, L. 2022, MNRAS, 514, 3579Bonaca, A., Hogg, D. W., Price-Whelan, A. M., & Conroy, C. 2019, ApJ, 880, 38Bossini, D., Vallenari, A., Bragaglia, A., et al. 2019, A&A, 623, A108Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127Bromley, B. C., Kenyon, S. J., Geller, M. J., & Brown, W. R. 2012, ApJL, 749, L42Campello, R. J. G. B., Moulavi, D., & Sander, J. 2013, in Advances in KnowledgeDiscovery and Data Mining, ed. J. Pei, V. S. Tseng, L. Cao, H. Motoda, & G. Xu (Berlin, Heidelberg: Springer Berlin Heidelberg), 160–172Cantat-Gaudin, T., Anders, F., Castro-Ginard, A., et al. 2020, A&A, 640, A1Carrera, R., Pasquato, M., Vallenari, A., et al. 2019, A&A, 627, A119Castro-Ginard, A., Jordi, C., Luri, X., et al. 2022, A&A, 661, A118Castro-Ginard, A., Jordi, C., Luri, X., et al. 2018, A&A, 618, A59Chabrier, G. 2003, PASP, 115, 763Chernoff, D. F., Kochanek, C. S., & Shapiro, S. L. 1986, ApJ, 309, 183Ciotti, L. 2021, Introduction to Stellar DynamicsConverse, J. M. & Stahler, S. W. 2008, ApJ, 678, 431Converse, J. M. & Stahler, S. W. 2010, MNRAS, 405, 666Cordoni, G., Milone, A. P., Marino, A. F., et al. 2023, A&A, 672, A29Cranmer, K., Brehmer, J., & Louppe, G. 2020, Proceedings of the National Academy of Science, 117, 30055Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, Research in Astronomy and Astrophysics, 12, 1197Dalton, G., Trager, S. C., Abrams, D. C., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, ed. I. S. McLean, S. K. Ramsay, & H. Takami, 84460PDanilov, V. M. & Seleznev, A. F. 2020, Astrophysical Bulletin, 75, 407De Boor, C. 1978, Springer-Verlag google scholar, 2, 4135de Bruijne, J. H. J. 1999, MNRAS, 306, 381de La Fuente Marcos, R. & de La Fuente Marcos, C. 2009, A&A, 500, L13Deacon, N. R. & Kraus, A. L. 2020, MNRAS, 496, 5176Dehnen, W. 2000, AJ, 119, 800Della Croce, A., Dalessandro, E., Livernois, A., & Vesperini, E. 2024, A&A, 683, A10Dias, W. S., Monteiro, H., Moitinho, A., et al. 2021, MNRAS, 504, 356Dib, S., Schmeja, S., & Parker, R. J. 2018, MNRAS, 473, 849Dinnbier, F. & Kroupa, P. 2020a, A&A, 640, A84Dinnbier, F. & Kroupa, P. 2020b, A&A, 640, A85Dinnbier, F., Kroupa, P., Subr, L., & Jerabkov´a, T. 2022, ApJ, 925, 214Eggen, O. J. & Greenstein, J. L. 1965, ApJ, 141, 83Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. 1996, KDD-96 Proceedings, 96, 226Feigelson, E. D. & Babu, G. J. 2012, Modern Statistical Methods for AstronomyForeman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306Fu, X., Bragaglia, A., Liu, C., et al. 2022, A&A, 668, A4Gaia Collaboration, Babusiaux, C., van Leeuwen, F., et al. 2018a, A&A, 616, A10Gaia Collaboration, Helmi, A., van Leeuwen, F., et al. 2018b, A&A, 616, A12Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2023, A&A, 674, A1Gao, X.-h. 2019a, PASP, 131, 044101Gao, X.-h. 2019b, MNRAS, 486, 5405Gelman, A. & Rubin, D. B. 1992, Statistical Science, 7, 457Geron, A. 2022, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow (” O’Reilly Media, Inc.”)Godoy-Rivera, D., Pinsonneault, M. H., & Rebull, L. M. 2021, ApJS, 257, 46Gossage, S., Conroy, C., Dotter, A., et al. 2018, ApJ, 863, 67Grondin, S. M., Webb, J. J., Lane, J. M. M., Speagle, J. S., & Leigh, N. W. C. 2024, MNRAS, 528, 5189Hao, C. J., Xu, Y., Hou, L. G., et al. 2024, ApJ, 963, 153Harris, W. E. 2010, arXiv e-prints, arXiv:1012.3224Hennebelle, P. & Grudi´c, M. Y. 2024, ARA&A, 62, 63Heyl, J., Caiazzo, I., & Richer, H. B. 2022, ApJ, 926, 132Hidalgo, S. L., Pietrinferni, A., Cassisi, S., et al. 2018, ApJ, 856, 125Holland, K., Jameson, R. F., Hodgkin, S., Davies, M. B., & Pinfield, D. 2000, MNRAS, 319, 956Hunt, E. L. & Reffert, S. 2021, A&A, 646, A104Hunt, E. L. & Reffert, S. 2023, A&A, 673, A114Jerabkova, T., Beccari, G., Boffin, H. M. J., et al. 2019, AAP, 627, A57Jerabkova, T., Boffin, H. M. J., Beccari, G., et al. 2021, A&A, 647, A137Kamdar, H., Conroy, C., & Ting, Y.-S. 2021, arXiv e-prints, arXiv:2106.02050Kharchenko, N. V., Berczik, P., Petrov, M. I., et al. 2009, A&A, 495, 807Kharchenko, N. V., Piskunov, A. E., Schilbach, E., R¨oser, S., & Scholz, R. D. 2013, A&A, 558, A53King, I. 1962, AJ, 67, 471Kounkel, M. & Covey, K. 2019, AJ, 158, 122Kraus, A. L. & Hillenbrand, L. A. 2007, AJ, 134, 2340Kroupa, P. 2002, Science, 295, 82Kroupa, P., Aarseth, S., & Hurley, J. 2001, MNRAS, 321, 699Kroupa, P., Pflamm-Altenburg, J., Mazurenko, S., et al. 2024, ApJ, 970, 94Krumholz, M. R., McKee, C. F., & Bland-Hawthorn, J. 2019, ARA&A, 57, 227Kruskal, J. B. 1956, Proceedings of the American Mathematical Society, 7, 48K¨upper, A. H. W., Balbinot, E., Bonaca, A., et al. 2015, AJ, 803, 80K¨upper, A. H. W., MacLeod, A., & Heggie, D. C. 2008, MNRAS, 387, 1248Lada, C. J. & Lada, E. A. 2003, Annual Review of A&A, 41, 57Lindegren, L., Klioner, S. A., Hernandez, J., et al. 2021, A&A, 649, A2Lodieu, N., P´erez-Garrido, A., Smart, R. L., & Silvotti, R. 2019, A&A, 628, A66Luri, X., Brown, A. G. A., Sarro, L. M., et al. 2018, A&A, 616, A9Mackereth, J. T., Bovy, J., Leung, H. W., et al. 2019, MNRAS, 489, 176Mahalanobis, P. C. 2018, Sankhy¯a: The Indian Journal of Statistics, Series A (2008-), 80, pp. S1Marigo, P., Bressan, A., Nanni, A., Girardi, L., & Pumo, M. L. 2013, MNRAS, 434, 488McInnes, L., Healy, J., & Astels, S. 2017, The Journal of Open Source Software, 2McKee, C. F. & Ostriker, E. C. 2007, ARA&A, 45, 565McMillan, S. L. W., Vesperini, E., & Portegies Zwart, S. F. 2007, ApJL, 655, L45Meingast, S., Alves, J., & Rottensteiner, A. 2021, A&A, 645, A84Mermilliod, J. C. 1981, A&A, 97, 235Miller, G. E. & Scalo, J. M. 1979, ApJS, 41, 513Moraux, E., Kroupa, P., & Bouvier, J. 2004, A&A, 426, 75Morton, T. D. 2015, isochrones: Stellar model grid package, Astrophysics Source Code Library, record ascl:1503.010Naidoo, K. 2019, The Journal of Open Source Software, 4, 1721Netopil, M., Paunzen, E., Heiter, U., & Soubiran, C. 2016, A&A, 585, A150Odenkirchen, M., Grebel, E. K., Rockosi, C. M., et al. 2001, ApJL, 548, L165Pang, X., Li, Y., Yu, Z., et al. 2021, ApJ, 912, 162Pang, X., Liao, S., Li, J., et al. 2024, ApJ, 966, 169Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, Journal of Machine Learning Research, 12, 2825Pelupessy, F. I., J¨anes, J., & Portegies Zwart, S. 2012, NA, 17, 711Pera, M. S., Perren, G. I., V´azquez, R. A., & Navone, H. D. 2022, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 63, 121Pinfield, D. J., Jameson, R. F., & Hodgkin, S. T. 1998, MNRAS, 299, 955Piskunov, A. E., Schilbach, E., Kharchenko, N. V., R¨oser, S., & Scholz, R. D. 2007, A&A, 468, 151Plummer, H. C. 1911, MNRAS, 71, 460Portegies Zwart, S. & McMillan, S. 2018, Astrophysical Recipes; The art of AMUSEPortegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A, 48, 431Raboud, D. & Mermilliod, J. C. 1998, AAP, 333, 897Rebassa-Mansergas, A., Solano, E., Jim´enez-Esteban, F. M., et al. 2021, MNRAS, 506, 5201Reino, S., de Bruijne, J., Zari, E., d’Antona, F., & Ventura, P. 2018, MNRAS, 477, 3197Renaud, F., Gieles, M., & Boily, C. M. 2011, MNRAS, 418, 759Robin, A. C., Marshall, D. J., Schultheis, M., & Reyl´e, C. 2012, A&A, 538, A106Robinson, E., von Hippel, T., Stein, N., et al. 2016, BASE-9: Bayesian Analysis for Stellar Evolution with nine variables, Astrophysics Source Code Library, record ascl:1608.007R¨oser, S. & Schilbach, E. 2019, A&A, 627, A4R¨oser, S., Schilbach, E., & Goldman, B. 2019, A&A, 621, L2Rousseeuw, P. J. & van Driessen, K. 1999, Technometrics, 41, 212Rybizki, J., Green, G. M., Rix, H.-W., et al. 2022, MNRAS, 510, 2597Sabogal-Martiınez, B. E., Garcıa-Varela, J. A., Higuera G., M. A., Uribe, A., &Brieva, E. 2001, RMxAA, 37, 105Salaris, M. & Bedin, L. R. 2019, MNRAS, 483, 3098Salpeter, E. E. 1955, ApJ, 121, 161Sanders, W. L. 1971, A&A, 14, 226Slovak, M. H. 1977, AJ, 82, 818Smith, Haywood, J. & Eichhorn, H. 1996, MNRAS, 281, 211Song, F., Esamdin, A., Hu, Q., & Zhang, M. 2022, A&A, 666, A75Spina, L., Randich, S., Magrini, L., et al. 2017, A&A, 601, A70Spitzer, L., J. 1975, in Dynamics of the Solar Systems, ed. A. Hayli, Vol. 69, 3Spitzer, Lyman, J. 1958, ApJ, 127, 17Stock, J. & Abad, C. 1988, RMxAA, 16, 63Stolte, A., Brandner, W., Brandl, B., & Zinnecker, H. 2006, AJ, 132, 253Sun, W., de Grijs, R., Deng, L., & Albrow, M. D. 2019, ApJ, 876, 113Tang, S.-Y., Pang, X., Yuan, Z., et al. 2019, ApJ, 877, 12Tarricq, Y., Soubiran, C., Casamiquela, L., et al. 2022, A&A, 659, A59Tauris, T. M. & van den Heuvel, E. P. J. 2023, Physics of Binary Star Evolution. From Stars to X-ray Binaries and Gravitational Wave SourcesTremblay, P.-E., B´edard, A., O’Brien, M. W., et al. 2024, NAR, 99, 101705Uribe, A. & Brieva, E. 1994, APSS, 214, 171van Groeningen, M. G. J., Castro-Ginard, A., Brown, A. G. A., Casamiquela, L., &Jordi, C. 2023, A&A, 675, A68van Leeuwen, F. 1980, in Star Clusters, ed. J. E. Hesser, Vol. 85, 157–163van Leeuwen, F. 2009, A&A, 497, 209Van Ravenzwaaij, D., Cassey, P., & Brown, S. D. 2018, Psychonomic bulletin & review, 25, 143Vasilevskis, S., Klemola, A., & Preston, G. 1958, AJ, 63, 387Vasiliev, E. 2019, MNRAS, 484, 2832Vesperini, E. 2010, Philosophical Transactions of the Royal Society of London Series A, 368, 829Vesperini, E., McMillan, S. L. W., D’Antona, F., & D’Ercole, A. 2011, MNRAS, 416, 355Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261von Hippel, T., Jefferys, W. H., Scott, J., et al. 2006, ApJ, 645, 1436Wallace, A. L. 2024, MNRAS, 527, 8718Wu, B. Y. & Chao, K.-M. 2004, Spanning trees and optimization problems (Chapman and Hall/CRC)Yong, D., Carney, B. W., & Friel, E. D. 2012, AJ, 144, 95Zapatero Osorio, M. R., G´alvez Ortiz, M. C., Bihain, G., et al. 2014, A&A, 568, A77Zhang, Y., Tang, S.-Y., Chen, W. P., Pang, X., & Liu, J. Z. 2020, ApJ, 889, 99Zhong, J., Chen, L., Kouwenhoven, M. B. N., et al. 2019, A&A, 624, A34Zucker, C., Peek, J. E. G., & Loebman, S. 2022, ApJ, 936, 160201727189Publication88a1271b-7c5b-4cba-a02a-87878aba01e4virtual::21835-188a1271b-7c5b-4cba-a02a-87878aba01e4virtual::21835-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000382418virtual::21835-1ORIGINALOpen cluster dynamics.pdfOpen cluster dynamics.pdfRestricción de acceso hasta el año 2026. Este documento cuenta con información de dos artículos que están en arbitraje en revistas científicas.application/pdf5543137https://repositorio.uniandes.edu.co/bitstreams/1530951c-0b04-4759-99d6-2199f2981f0b/download64bf58a9ddca4c8fc4769c75849c2b26MD51Autorizacion.pdfAutorizacion.pdfHIDEapplication/pdf244040https://repositorio.uniandes.edu.co/bitstreams/ff11f30d-8004-4979-b123-b8af232d42b9/downloada16757eb49e7db0e34d37085c21efb2bMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/8a351ffc-3799-46f7-b850-22dbac96b49a/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/7e0f063c-0c1f-4a3c-98a1-84d25456c59a/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTOpen cluster dynamics.pdf.txtOpen cluster dynamics.pdf.txtExtracted texttext/plain101069https://repositorio.uniandes.edu.co/bitstreams/7fd8bd3a-6f09-478b-82fe-8e35c2e82212/download66ef401510e3ba45b25f61978ca23146MD55Autorizacion.pdf.txtAutorizacion.pdf.txtExtracted texttext/plain1940https://repositorio.uniandes.edu.co/bitstreams/c6084f5e-3e0c-4b30-8234-f6abeac43527/download12d94b9c08f5ac35da86ffd46f8d81c2MD57THUMBNAILOpen cluster dynamics.pdf.jpgOpen cluster dynamics.pdf.jpgGenerated Thumbnailimage/jpeg4257https://repositorio.uniandes.edu.co/bitstreams/bad2004b-5239-436c-8a3c-08996a5f899f/downloada1bec502a9c684c66dba2f44e8f60df7MD56Autorizacion.pdf.jpgAutorizacion.pdf.jpgGenerated Thumbnailimage/jpeg10949https://repositorio.uniandes.edu.co/bitstreams/3211334f-54a1-4b1e-848d-7111705f9dd5/download862b620ad48c0ba4666f59c66d3f3bb7MD581992/75274oai:repositorio.uniandes.edu.co:1992/752742024-12-16 10:24:31.913http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalembargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |