Simulative approach for predicting the heating behavior of elastomers in the solid-state microwave heating process

The increasing demand for energy efficient vulcanization of rubber extrusions requires the optimization and further development of existing processes. Microwave vulcanization allows the energy required for this process to be coupled directly into the material via dielectric losses. Microwave heating...

Full description

Autores:
Petzke, Jonas
Kleinschmidt, Dennis
Brüning, Florian
Tipo de recurso:
Conferencia (Ponencia)
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/76048
Acceso en línea:
https://hdl.handle.net/1992/76048
https://doi.org/10.51573/Andes.PPS39.GS.MS.2
https://repositorio.uniandes.edu.co/
Palabra clave:
Microwave Heating
Solid-State
Rubber
Simulation
CST Studio Suite
Dielectric Loss
Efficiency
Optimization
Waveguide
Microwave
Heating
Vulcanization
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_c23401ed351205b48ac14c1e506427af
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/76048
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Simulative approach for predicting the heating behavior of elastomers in the solid-state microwave heating process
title Simulative approach for predicting the heating behavior of elastomers in the solid-state microwave heating process
spellingShingle Simulative approach for predicting the heating behavior of elastomers in the solid-state microwave heating process
Microwave Heating
Solid-State
Rubber
Simulation
CST Studio Suite
Dielectric Loss
Efficiency
Optimization
Waveguide
Microwave
Heating
Vulcanization
Ingeniería
title_short Simulative approach for predicting the heating behavior of elastomers in the solid-state microwave heating process
title_full Simulative approach for predicting the heating behavior of elastomers in the solid-state microwave heating process
title_fullStr Simulative approach for predicting the heating behavior of elastomers in the solid-state microwave heating process
title_full_unstemmed Simulative approach for predicting the heating behavior of elastomers in the solid-state microwave heating process
title_sort Simulative approach for predicting the heating behavior of elastomers in the solid-state microwave heating process
dc.creator.fl_str_mv Petzke, Jonas
Kleinschmidt, Dennis
Brüning, Florian
dc.contributor.author.none.fl_str_mv Petzke, Jonas
Kleinschmidt, Dennis
Brüning, Florian
dc.contributor.editor.none.fl_str_mv Salcedo, Felipe
Perilla, Jairo Ernesto
Sierra, Cesar
Medina, Jorge Alberto
dc.subject.keyword.eng.fl_str_mv Microwave Heating
Solid-State
Rubber
Simulation
CST Studio Suite
Dielectric Loss
Efficiency
Optimization
Waveguide
Microwave
Heating
Vulcanization
topic Microwave Heating
Solid-State
Rubber
Simulation
CST Studio Suite
Dielectric Loss
Efficiency
Optimization
Waveguide
Microwave
Heating
Vulcanization
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description The increasing demand for energy efficient vulcanization of rubber extrusions requires the optimization and further development of existing processes. Microwave vulcanization allows the energy required for this process to be coupled directly into the material via dielectric losses. Microwave heating requires the polarity of the rubber so that the electromagnetic wave can cause the polar components of the material to vibrate. These vibrations cause internal friction, resulting in an increase in the temperature of the rubber compound. In this research project, microwaves were used to heat a rubber strand placed in a specially prepared waveguide. This method offers advantages over conventional methods, such as hot air vulcanization. A key advantage is that the energy is coupled directly into the material, resulting in low losses. In contrast to hot air vulcanization, where the air must first be heated, the heating of the material also takes place within the product to be heated. This results in a significant increase in energy efficiency, reaching up to 90 %. In addition, internal heating provides a more homogeneous heat distribution in the rubber strand compared to external heating by hot air vulcanization. To predict the heating behavior of rubber in the microwave process, a simulative model is created in the multiphysics simulation environment CST Studio Suite®. The model describes the microwave heating behavior of rubbers based on the thermodynamic and electromagnetic material data of the rubber compound. This simulation is known as a bi-directional simulation, so that temperature-dependent variables such as dielectric loss and thermal conductivity can be considered. The model is used to analyze parameter variations of the electromagnetic wave frequency, waveguide geometry, and strand orientation in the waveguide. Finally, optimized settings for the real process are recommended.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-12
dc.date.accessioned.none.fl_str_mv 2025-02-07T16:27:28Z
dc.date.available.none.fl_str_mv 2025-02-07T16:27:28Z
dc.type.none.fl_str_mv Documento de Conferencia
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_8544
status_str publishedVersion
dc.identifier.isbn.none.fl_str_mv 978-958-798-779-9
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/76048
dc.identifier.doi.none.fl_str_mv https://doi.org/10.51573/Andes.PPS39.GS.MS.2
dc.identifier.instname.none.fl_str_mv Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv https://repositorio.uniandes.edu.co/
identifier_str_mv 978-958-798-779-9
Universidad de los Andes
Repositorio Institucional Séneca
url https://hdl.handle.net/1992/76048
https://doi.org/10.51573/Andes.PPS39.GS.MS.2
https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 05-19-2024/05-23-2024
dc.relation.conferenceplace.none.fl_str_mv Cartagena de Indias, Colombia
dc.relation.ispartofconference.none.fl_str_mv Proceedings of the 39th International Conference of the Polymer Processing Society (PPS-39)
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 10 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Ediciones Uniandes
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
Facultad de Ingeniería
dc.publisher.place.none.fl_str_mv Bogotá
publisher.none.fl_str_mv Ediciones Uniandes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/47dfb7ce-f246-4015-abeb-bb0c5b44df5e/download
https://repositorio.uniandes.edu.co/bitstreams/d71ea93c-507e-4a01-b397-d71c7565c1de/download
https://repositorio.uniandes.edu.co/bitstreams/275900fb-d7f3-4c23-9adc-631d44436d68/download
https://repositorio.uniandes.edu.co/bitstreams/121e988e-27b3-4d7a-9680-946bafa19c92/download
https://repositorio.uniandes.edu.co/bitstreams/2237f73e-07f0-4d6a-bf41-83ed7de55f65/download
https://repositorio.uniandes.edu.co/bitstreams/0442ba5e-abfa-430d-bca1-dd6161f74d47/download
https://repositorio.uniandes.edu.co/bitstreams/b751fe65-66eb-44fa-b46a-541aea7f22df/download
bitstream.checksum.fl_str_mv 8f6272824c150c2127bf524583340ee3
7a43a6bf7de3a7c7d54a3476587c60bc
ae9e573a68e7f92501b6913cc846c39f
dd355fde9e123b7fc5f8d9eb631fe89d
e1c06d85ae7b8b032bef47e42e4c08f9
e401c32e39ef839310a5bf9cd7025ca7
32b7b3523e64d35c36410ebad62a3a04
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159303215742976
spelling Petzke, JonasKleinschmidt, DennisBrüning, FlorianSalcedo, FelipePerilla, Jairo ErnestoSierra, CesarMedina, Jorge Alberto2025-02-07T16:27:28Z2025-02-07T16:27:28Z2024-12978-958-798-779-9https://hdl.handle.net/1992/76048https://doi.org/10.51573/Andes.PPS39.GS.MS.2Universidad de los AndesRepositorio Institucional Sénecahttps://repositorio.uniandes.edu.co/The increasing demand for energy efficient vulcanization of rubber extrusions requires the optimization and further development of existing processes. Microwave vulcanization allows the energy required for this process to be coupled directly into the material via dielectric losses. Microwave heating requires the polarity of the rubber so that the electromagnetic wave can cause the polar components of the material to vibrate. These vibrations cause internal friction, resulting in an increase in the temperature of the rubber compound. In this research project, microwaves were used to heat a rubber strand placed in a specially prepared waveguide. This method offers advantages over conventional methods, such as hot air vulcanization. A key advantage is that the energy is coupled directly into the material, resulting in low losses. In contrast to hot air vulcanization, where the air must first be heated, the heating of the material also takes place within the product to be heated. This results in a significant increase in energy efficiency, reaching up to 90 %. In addition, internal heating provides a more homogeneous heat distribution in the rubber strand compared to external heating by hot air vulcanization. To predict the heating behavior of rubber in the microwave process, a simulative model is created in the multiphysics simulation environment CST Studio Suite®. The model describes the microwave heating behavior of rubbers based on the thermodynamic and electromagnetic material data of the rubber compound. This simulation is known as a bi-directional simulation, so that temperature-dependent variables such as dielectric loss and thermal conductivity can be considered. The model is used to analyze parameter variations of the electromagnetic wave frequency, waveguide geometry, and strand orientation in the waveguide. Finally, optimized settings for the real process are recommended.10 páginasapplication/pdfengEdiciones UniandesFacultad de IngenieríaFacultad de IngenieríaBogotáhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Simulative approach for predicting the heating behavior of elastomers in the solid-state microwave heating processDocumento de Conferenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/resource_type/c_c94fhttp://purl.org/coar/version/c_970fb48d4fbd8a85TextMicrowave HeatingSolid-StateRubberSimulationCST Studio SuiteDielectric LossEfficiencyOptimizationWaveguideMicrowaveHeatingVulcanizationIngeniería05-19-2024/05-23-2024Cartagena de Indias, ColombiaProceedings of the 39th International Conference of the Polymer Processing Society (PPS-39)ORIGINALPPS-39 - Simulative Approach for Predicting the Heating Behavior of Elastomers in the Solid-State Microwave Heating Process.pdfPPS-39 - Simulative Approach for Predicting the Heating Behavior of Elastomers in the Solid-State Microwave Heating Process.pdfapplication/pdf1206542https://repositorio.uniandes.edu.co/bitstreams/47dfb7ce-f246-4015-abeb-bb0c5b44df5e/download8f6272824c150c2127bf524583340ee3MD51S14-7_LICENCIA Simulative approach for predicting the heating behavior.pdfHIDEapplication/pdf557973https://repositorio.uniandes.edu.co/bitstreams/d71ea93c-507e-4a01-b397-d71c7565c1de/download7a43a6bf7de3a7c7d54a3476587c60bcMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/275900fb-d7f3-4c23-9adc-631d44436d68/downloadae9e573a68e7f92501b6913cc846c39fMD52TEXTPPS-39 - Simulative Approach for Predicting the Heating Behavior of Elastomers in the Solid-State Microwave Heating Process.pdf.txtPPS-39 - Simulative Approach for Predicting the Heating Behavior of Elastomers in the Solid-State Microwave Heating Process.pdf.txtExtracted texttext/plain21612https://repositorio.uniandes.edu.co/bitstreams/121e988e-27b3-4d7a-9680-946bafa19c92/downloaddd355fde9e123b7fc5f8d9eb631fe89dMD53S14-7_LICENCIA Simulative approach for predicting the heating behavior.pdf.txtS14-7_LICENCIA Simulative approach for predicting the heating behavior.pdf.txtExtracted texttext/plain2https://repositorio.uniandes.edu.co/bitstreams/2237f73e-07f0-4d6a-bf41-83ed7de55f65/downloade1c06d85ae7b8b032bef47e42e4c08f9MD56THUMBNAILPPS-39 - Simulative Approach for Predicting the Heating Behavior of Elastomers in the Solid-State Microwave Heating Process.pdf.jpgPPS-39 - Simulative Approach for Predicting the Heating Behavior of Elastomers in the Solid-State Microwave Heating Process.pdf.jpgGenerated Thumbnailimage/jpeg7640https://repositorio.uniandes.edu.co/bitstreams/0442ba5e-abfa-430d-bca1-dd6161f74d47/downloade401c32e39ef839310a5bf9cd7025ca7MD54S14-7_LICENCIA Simulative approach for predicting the heating behavior.pdf.jpgS14-7_LICENCIA Simulative approach for predicting the heating behavior.pdf.jpgGenerated Thumbnailimage/jpeg12851https://repositorio.uniandes.edu.co/bitstreams/b751fe65-66eb-44fa-b46a-541aea7f22df/download32b7b3523e64d35c36410ebad62a3a04MD571992/76048oai:repositorio.uniandes.edu.co:1992/760482025-03-05 10:11:59.26https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K