Integration of UV light, activated carbon and photocatalytic nanomaterial technologies for point-of-use water treatment in rural areas in Colombia: performance assessment
Colombia is a nation with pronounced socioeconomic differences, where access to potable water remains a challenge without an effective solution, especially in rural areas. This research explores the feasibility of integrating three non-conventional technologies, at the forefront of scientific advanc...
- Autores:
-
Angel Imitola, Luis Eduardo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75976
- Acceso en línea:
- https://hdl.handle.net/1992/75976
- Palabra clave:
- Activated carbon
Nanotechnology
UV light
Adsorption
Photocatalysis
Disinfection
Water treatment
Rural areas
Emerging contaminants
Environmental sustainability
Ingeniería
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_c20698a452c4961d9d55ed888c45cac0 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75976 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Integration of UV light, activated carbon and photocatalytic nanomaterial technologies for point-of-use water treatment in rural areas in Colombia: performance assessment |
title |
Integration of UV light, activated carbon and photocatalytic nanomaterial technologies for point-of-use water treatment in rural areas in Colombia: performance assessment |
spellingShingle |
Integration of UV light, activated carbon and photocatalytic nanomaterial technologies for point-of-use water treatment in rural areas in Colombia: performance assessment Activated carbon Nanotechnology UV light Adsorption Photocatalysis Disinfection Water treatment Rural areas Emerging contaminants Environmental sustainability Ingeniería |
title_short |
Integration of UV light, activated carbon and photocatalytic nanomaterial technologies for point-of-use water treatment in rural areas in Colombia: performance assessment |
title_full |
Integration of UV light, activated carbon and photocatalytic nanomaterial technologies for point-of-use water treatment in rural areas in Colombia: performance assessment |
title_fullStr |
Integration of UV light, activated carbon and photocatalytic nanomaterial technologies for point-of-use water treatment in rural areas in Colombia: performance assessment |
title_full_unstemmed |
Integration of UV light, activated carbon and photocatalytic nanomaterial technologies for point-of-use water treatment in rural areas in Colombia: performance assessment |
title_sort |
Integration of UV light, activated carbon and photocatalytic nanomaterial technologies for point-of-use water treatment in rural areas in Colombia: performance assessment |
dc.creator.fl_str_mv |
Angel Imitola, Luis Eduardo |
dc.contributor.advisor.none.fl_str_mv |
Rodríguez Susa, Manuel Salvador Gerente, Claire Villot, Audrey Andres, Yves Plazas Tuttle, Jaime Guillermo |
dc.contributor.author.none.fl_str_mv |
Angel Imitola, Luis Eduardo |
dc.contributor.jury.none.fl_str_mv |
Barakat, Abdellatif Chejne, Farid Amrane, Abdeltif Gerente, Claire Rodríguez Susa, Manuel Salvador |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ingeniería::Centro de Investigaciones en Ingenieria Ambiental |
dc.subject.keyword.eng.fl_str_mv |
Activated carbon |
topic |
Activated carbon Nanotechnology UV light Adsorption Photocatalysis Disinfection Water treatment Rural areas Emerging contaminants Environmental sustainability Ingeniería |
dc.subject.keyword.none.fl_str_mv |
Nanotechnology UV light Adsorption Photocatalysis Disinfection Water treatment Rural areas Emerging contaminants Environmental sustainability |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
Colombia is a nation with pronounced socioeconomic differences, where access to potable water remains a challenge without an effective solution, especially in rural areas. This research explores the feasibility of integrating three non-conventional technologies, at the forefront of scientific advances, for the future design of a sustainable point-of-use water treatment system for rural communities in the country. The first technology employed was activated carbon, used primarily as an adsorbent for organic contaminants present in water. The activated carbon in this research was produced from chontaduro seeds, a locally abundant waste biomass, using a direct physical activation method with steam. A factorial design and multi-objective optimization process that considered key properties from both an operational and sustainability standpoint were used. The resulting activated carbon was thoroughly characterized, demonstrating outstanding properties. The second technology evaluated was irradiation with ultraviolet (UV) light as a disinfectant agent, considering its capacity to damage the genetic material and cell membranes of pathogenic microorganisms and its capacity to break complex organic molecules into simpler compounds. Finally, the third integrated technology was the use of photocatalytic nanoparticles, particularly titanium dioxide (TiO2), capable of generating reactive oxygen species when irradiated with UV light. These species have the ability to mineralize organic contaminants and attack pathogenic microorganisms, offering an additional mechanism for water purification. The study involved the synthesis and characterization of hybrid materials, using activated carbon as a support matrix and coating it with TiO2 nanoparticles by the sol-gel method. Ibuprofen (IBU) was selected as a representative organic pollutant and Escherichia coli as a microbiological indicator to determine the effectiveness of the technologies studied, conducting experiments under controlled conditions. Regarding IBU, the results showed that activated carbon has a remarkable adsorption capacity for IBU, and that this capacity is higher when ions are present in the water at concentrations similar to those of soft surface water. Furthermore, the adsorption capacity is not unique to IBU, but can also be applied to a broad spectrum of organic contaminants. UV radiation at adequate intensities can degrade IBU, although complete mineralization is not achieved, generating by-products during the process. On the other hand, when coating the carbon with TiO2 nanoparticles, a reduction in its IBU adsorption capacity was observed, but when irradiating the material with UV light, the photocatalytic effect of the nanoparticles compensates for this decrease. As for E. coli, UV light proved to be a very effective disinfectant. However, the presence of activated carbon can generate a shadowing effect that prevents the correct irradiation of the microorganisms, reducing the removal efficiency as the amount of carbon increases. However, by coating the activated carbon with TiO2 nanoparticles, the photocatalytic effect can compensate for the shadowing effect, increasing the removal efficiency of E. coli. These results show that the synergistic effects between the technologies improve the treatment efficiency, exceeding the results obtained by each technology independently. The findings of this study suggest that the integration of these technologies is not only viable, but also offers a promising solution to improve water quality in rural areas of Colombia. The system's ability to inactivate microorganisms and remove organic contaminants makes it a sustainable alternative, which can be adapted to the needs of communities without access to centralized treatment systems. In addition, the use of chontaduro seeds as raw material for the production of activated carbon contributes to the sustainable approach of the project, prioritizing the objectives of the circular economy. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-12-16 |
dc.date.accessioned.none.fl_str_mv |
2025-02-03T12:58:40Z |
dc.date.available.none.fl_str_mv |
2025-02-03T12:58:40Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75976 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75976 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
[1] OECD, OECD Economic Surveys: Colombia 2022. in OECD Economic Surveys: Colombia. OECD, 2022. doi: 10.1787/04bf9377-en. [2] Colombian Ministry of Housing, “Plan Nacional de Abastecimiento de Agua Potable Y Saneamiento Básico Rural,” Bogotá, 2021. [Online]. Available: https://minvivienda.gov.co/system/files/consultasp/plan-nacional-apsbr.pdf [3] L. A. Camacho Botero, “LA PARADOJA DE LA DISPONIBILIDAD DE AGUA DE MALA CALIDAD EN EL SECTOR RURAL COLOMBIANO,” Rev. Ing., no. 49, Art. no. 49, Jan. 2020, doi: 10.16924/revinge.49.6. [4] L. D. S. Torres and É. Q. Rubiano, “SOSTENIBILIDAD DE LAS TECNOLOGÍAS DE TRATAMIENTO DE AGUA PARA LA ZONA RURAL,” Rev. Ing., no. 49, Art. no. 49, Jan. 2020, doi: 10.16924/revinge.49.7. [5] Institute of Hydrology, Meteorology and Environmental Studies, “Oferta agua - IDEAM.” Accessed: Jun. 02, 2023. [Online]. Available: http://www.ideam.gov.co/web/siac/ofertaagua [6] O. F. Nwabor, E. Nnamonu, P. Martins, and A. Christiana, “Water and Waterborne Diseases: A Review,” Int. J. Trop. Dis. Health, vol. 12, pp. 1–14, Jan. 2016, doi: 10.9734/IJTDH/2016/21895. [7] M. S. Ruiz-Díaz, G. J. Mora-García, G. I. Salguedo-Madrid, Á. Alario, and D. E. Gómez-Camargo, “Analysis of Health Indicators in Two Rural Communities on the Colombian Caribbean Coast: Poor Water Supply and Education Level Are Associated with Water-Related Diseases,” Am. J. Trop. Med. Hyg., vol. 97, no. 5, pp. 1378–1392, Sep. 2017, doi: 10.4269/ajtmh.16-0305. [8] World Health Organization, Safer water, better health. Geneva: World Health Organization, 2019. [Online]. Available: https://apps.who.int/iris/handle/10665/329905 [9] M. A. Galezzo Martínez, “Análisis de la problemática de la calidad del agua en área rural dispersa del departamento del Cesar y evaluación de LEDs UV como opción de desinfección en punto de uso,” 2020, [Online]. Available: http://hdl.handle.net/1992/48383 [10] L. E. Angel, “Giardia y Cryptosporidium: una mirada retrospectiva a la situación en Colombia,” 2016. [11] S. Wong, N. Ngadi, I. M. Inuwa, and O. Hassan, “Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review,” J. Clean. Prod., vol. 175, pp. 361–375, Feb. 2018, doi: 10.1016/j.jclepro.2017.12.059. [12] M. J. Gil, A. M. Soto, J. I. Usma, and O. D. Gutiérrez, “Contaminantes emergentes en aguas, efectos y posibles tratamientos,” Prod. Limpia, vol. 7, no. 2, pp. 52–73, 2012. [13] C. Rabbat, A. Pinna, Y. Andres, A. Villot, and S. Awad, “Adsorption of ibuprofen from aqueous solution onto a raw and steam-activated biochar derived from recycled textiles insulation panels at end-of-life: Kinetic, isotherm and fixed-bed experiments,” J. Water Process Eng., vol. 53, p. 103830, Jul. 2023, doi: 10.1016/j.jwpe.2023.103830. [14] D. Bahamon, L. Carro, S. Guri, and L. F. Vega, “Computational study of ibuprofen removal from water by adsorption in realistic activated carbons,” J. Colloid Interface Sci., vol. 498, pp. 323–334, Jul. 2017, doi: 10.1016/j.jcis.2017.03.068. [15] M. Dubey, B. P. Vellanki, and A. A. Kazmi, “Fate of emerging contaminants in a sequencing batch reactor and potential of biological activated carbon as tertiary treatment for the removal of persisting contaminants,” J. Environ. Manage., vol. 338, p. 117802, Jul. 2023, doi: 10.1016/j.jenvman.2023.117802. [16] C. Bouissou-Schurtz et al., “Ecological risk assessment of the presence of pharmaceutical residues in a French national water survey,” Regul. Toxicol. Pharmacol., vol. 69, no. 3, pp. 296–303, Aug. 2014, doi: 10.1016/j.yrtph.2014.04.006. [17] International Initiative for Impact Evaluation (3ie), “Water, sanitation and hygiene interventions to combat childhood diarrhoea in developing countries,” 3ie, May 2012. doi: 10.23846/SR0017. [18] V. da S. Lacerda, “Aprovechamiento de residuos lignocelulósicos para la producción de biocombustibles y bioproductos,” 2015, doi: 10.35376/10324/16047. [19] Y. X. Gan, “Activated Carbon from Biomass Sustainable Sources,” C, vol. 7, no. 2, Art. no. 2, Jun. 2021, doi: 10.3390/c7020039. [20] A. H. Jawad, N. N. Mohd Firdaus Hum, A. S. Abdulhameed, and M. A. Mohd Ishak, “Mesoporous activated carbon from grass waste via H3PO4-activation for methylene blue dye removal: modelling, optimisation, and mechanism study,” Int. J. Environ. Anal. Chem., vol. 102, no. 17, pp. 6061–6077, Dec. 2022, doi: 10.1080/03067319.2020.1807529. [21] A. Vilén, P. Laurell, and R. Vahala, “Comparative life cycle assessment of activated carbon production from various raw materials,” J. Environ. Manage., vol. 324, p. 116356, Dec. 2022, doi: 10.1016/j.jenvman.2022.116356. [22] Z. Heidarinejad, M. H. Dehghani, M. Heidari, G. Javedan, I. Ali, and M. Sillanpää, “Methods for preparation and activation of activated carbon: a review,” Environ. Chem. Lett., vol. 18, no. 2, pp. 393–415, Mar. 2020, doi: 10.1007/s10311-019-00955-0. [23] G. Iacomino et al., “Potential of Biochar as a Peat Substitute in Growth Media for Lavandula angustifolia, Salvia rosmarinus and Fragaria × ananassa,” Plants, vol. 12, no. 21, Art. no. 21, Jan. 2023, doi: 10.3390/plants12213689. [24] K. Kanjana, P. Harding, T. Kwamman, W. Kingkam, and T. Chutimasakul, “Biomass-derived activated carbons with extremely narrow pore size distribution via eco-friendly synthesis for supercapacitor application,” Biomass Bioenergy, vol. 153, p. 106206, Oct. 2021, doi: 10.1016/j.biombioe.2021.106206. [25] J. Pallarés, A. González-Cencerrado, and I. Arauzo, “Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam,” Biomass Bioenergy, vol. 115, pp. 64–73, Aug. 2018, doi: 10.1016/j.biombioe.2018.04.015. [26] J. Peña, A. Villot, and C. Gerente, “Pyrolysis chars and physically activated carbons prepared from buckwheat husks for catalytic purification of syngas,” Biomass Bioenergy, vol. 132, p. 105435, Jan. 2020, doi: 10.1016/j.biombioe.2019.105435. [27] Stifel Investment Banking, “SPOTLIGHT Activated Carbon,” Dec. 2021. [Online]. Available: https://www.stifel.com/Newsletters/InvestmentBanking/BAL/Marketing/Europe/2021/StifelSpotlights_ActivatedCarbon171221.pdf [28] M. J. Prauchner and F. Rodríguez-Reinoso, “Chemical versus physical activation of coconut shell: A comparative study,” Microporous Mesoporous Mater., vol. 152, pp. 163–171, Apr. 2012, doi: 10.1016/j.micromeso.2011.11.040. [29] M. Danish and T. Ahmad, “A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application,” Renew. Sustain. Energy Rev., vol. 87, pp. 1–21, May 2018, doi: 10.1016/j.rser.2018.02.003. [30] N. Tancredi, N. Medero, F. Möller, J. Píriz, C. Plada, and T. Cordero, “Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood,” J. Colloid Interface Sci., vol. 279, no. 2, pp. 357–363, Nov. 2004, doi: 10.1016/j.jcis.2004.06.067. [31] J. L. Shmidt, A. V. Pimenov, A. I. Lieberman, and H. Y. Cheh, “Kinetics of Adsorption with Granular, Powdered, and Fibrous Activated Carbon,” Sep. Sci. Technol., vol. 32, no. 13, pp. 2105–2114, Aug. 1997, doi: 10.1080/01496399708000758. [32] J. Jjagwe, P. W. Olupot, E. Menya, and H. M. Kalibbala, “Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review,” J. Bioresour. Bioprod., vol. 6, no. 4, pp. 292–322, Nov. 2021, doi: 10.1016/j.jobab.2021.03.003. [33] M. Fazal-ur-Rehman, “Methodological Trends in Preparation of Activated Carbon from Local Sources and Their Impacts on Production-A Review,” Curr. Trends Chem. Eng. Process Technol., Feb. 2018, Accessed: Mar. 17, 2024. [Online]. Available: https://www.gavinpublishers.com/article/view/methodological-trends-in-preparation-of-activated-carbon-from-local-sources-and-their-impacts-on-production-a-review [34] J. J. Peña, “Study of chars prepared from biomass wastes : material and energy recovery,” phdthesis, Ecole nationale supérieure Mines-Télécom Atlantique, 2018. Accessed: Jun. 02, 2023. [Online]. Available: https://theses.hal.science/tel-03032643 [35] F. C. C. Moura, R. D. F. Rios, and B. R. L. Galvão, “Emerging contaminants removal by granular activated carbon obtained from residual Macauba biomass,” Environ. Sci. Pollut. Res., vol. 25, no. 26, pp. 26482–26492, Sep. 2018, doi: 10.1007/s11356-018-2713-8. [36] H. Fu, L. Yang, Y. Wan, Z. Xu, and D. Zhu, “Adsorption of Pharmaceuticals to Microporous Activated Carbon Treated with Potassium Hydroxide, Carbon Dioxide, and Steam,” J. Environ. Qual., vol. 40, no. 6, pp. 1886–1894, 2011, doi: 10.2134/jeq2011.0109. [37] C.-T. Hsieh and H. Teng, “Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions,” Carbon, vol. 38, no. 6, pp. 863–869, Jan. 2000, doi: 10.1016/S0008-6223(99)00180-3. [38] P. Lawtae and C. Tangsathitkulchai, “The Use of High Surface Area Mesoporous-Activated Carbon from Longan Seed Biomass for Increasing Capacity and Kinetics of Methylene Blue Adsorption from Aqueous Solution,” Molecules, vol. 26, no. 21, Art. no. 21, Jan. 2021, doi: 10.3390/molecules26216521. [39] M. A. Nazem, M. H. Zare, and S. Shirazian, “Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes,” RSC Adv., vol. 10, no. 3, pp. 1463–1475, 2020, doi: 10.1039/C9RA07409K. [40] A. H. A. Abdelaal, “Industrial Char Recoveries in the Perspective of Circular Economy in the Wood Gasification Industry,” Free University of Bozen-Bolzano, Dec. 2023. Accessed: Oct. 04, 2024. [Online]. Available: https://bia.unibz.it/esploro/outputs/doctoral/Industrial-Char-Recoveries-in-the-Perspective/991006679498301241 [41] Y. Tong, P. J. McNamara, and B. K. Mayer, “Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium,” Environ. Sci. Water Res. Technol., vol. 5, no. 5, pp. 821–838, Apr. 2019, doi: 10.1039/C8EW00938D. [42] M. M. Rao, D. H. K. K. Reddy, P. Venkateswarlu, and K. Seshaiah, “Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste,” J. Environ. Manage., vol. 90, no. 1, pp. 634–643, Jan. 2009, doi: 10.1016/j.jenvman.2007.12.019. [43] L. Xu, L. C. Campos, J. Li, K. Karu, and L. Ciric, “Removal of antibiotics in sand, GAC, GAC sandwich and anthracite/sand biofiltration systems,” Chemosphere, vol. 275, p. 130004, Jul. 2021, doi: 10.1016/j.chemosphere.2021.130004. [44] D. Eeshwarasinghe, P. Loganathan, and S. Vigneswaran, “Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon,” Chemosphere, vol. 223, pp. 616–627, May 2019, doi: 10.1016/j.chemosphere.2019.02.033. [45] M. Kobya, E. Demirbas, E. Senturk, and M. Ince, “Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone,” Bioresour. Technol., vol. 96, no. 13, pp. 1518–1521, Sep. 2005, doi: 10.1016/j.biortech.2004.12.005. [46] C. E. Choong, S. Ibrahim, and W. J. Basirun, “Mesoporous silica from batik sludge impregnated with aluminum hydroxide for the removal of bisphenol A and ibuprofen,” J. Colloid Interface Sci., vol. 541, pp. 12–17, Apr. 2019, doi: 10.1016/j.jcis.2019.01.071. [47] W. Sun, H. Li, H. Li, S. Li, and X. Cao, “Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: Batch experiment and DFT calculation,” Chem. Eng. J., vol. 360, pp. 645–653, Mar. 2019, doi: 10.1016/j.cej.2018.12.021. [48] K. Kuśmierek, L. Dąbek, and A. Świątkowski, “Comparative study on the adsorption kinetics and equilibrium of common water contaminants onto bentonite,” Desalination Water Treat., vol. 186, pp. 373–381, May 2020, doi: 10.5004/dwt.2020.25476. [49] M. E. M. Ali, A. M. Abd El-Aty, M. I. Badawy, and R. K. Ali, “Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus,” Ecotoxicol. Environ. Saf., vol. 151, pp. 144–152, Apr. 2018, doi: 10.1016/j.ecoenv.2018.01.012. [50] X. Yang, J. Wang, A. M. El-Sherbeeny, A. A. AlHammadi, W. H. Park, and M. R. Abukhadra, “Insight into the adsorption and oxidation activity of a ZnO/piezoelectric quartz core-shell for enhanced decontamination of ibuprofen: Steric, energetic, and oxidation studies,” Chem. Eng. J., vol. 431, p. 134312, Mar. 2022, doi: 10.1016/j.cej.2021.134312. [51] S. Ganesan et al., “Facile and low-cost production of Lantana camara stalk-derived porous carbon nanostructures with excellent supercapacitance and adsorption performance,” Int. J. Energy Res., vol. 45, no. 12, pp. 17440–17449, 2021, doi: 10.1002/er.5730. [52] H. Guedidi, L. Reinert, J.-M. Lévêque, Y. Soneda, N. Bellakhal, and L. Duclaux, “The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen,” Carbon, vol. 54, pp. 432–443, Apr. 2013, doi: 10.1016/j.carbon.2012.11.059. [53] “Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment | Wiley.” Accessed: Jan. 28, 2025. [Online]. Available: https://www.wiley.com/en-us/Activated+Carbon+for+Water+and+Wastewater+Treatment%3A+Integration+of+Adsorption+and+Biological+Treatment-p-9783527324712 [54] E. Tchikuala, P. Mourão, and J. Nabais, “Valorisation of Natural Fibres from African Baobab Wastes by the Production of Activated Carbons for Adsorption of Diuron,” Procedia Eng., vol. 200, pp. 399–407, Jan. 2017, doi: 10.1016/j.proeng.2017.07.056. [55] W.-T. Tsai and T.-J. Jiang, “Optimization of physical activation process for activated carbon preparation from water caltrop husk,” Biomass Convers. Biorefinery, vol. 13, no. 8, pp. 6875–6884, Jun. 2023, doi: 10.1007/s13399-021-01729-x. [56] Chairunnisa, N. Takata, K. Thu, T. Miyazaki, K. Nakabayashi, and J. Miyawaki, “Camphor leaf-derived activated carbon prepared by conventional physical activation and its water adsorption profile,” Carbon Lett., vol. 31, no. 4, pp. 737–748, Aug. 2021, doi: 10.1007/s42823-020-00204-3. [57] C.-H. Tsai and W.-T. Tsai, “Optimization of Physical Activation Process by CO2 for Activated Carbon Preparation from Honduras Mahogany Pod Husk,” Materials, vol. 16, no. 19, Art. no. 19, Jan. 2023, doi: 10.3390/ma16196558. [58] N. A. Rashidi and S. Yusup, “Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption,” Environ. Sci. Pollut. Res., vol. 26, no. 33, pp. 33732–33746, Nov. 2019, doi: 10.1007/s11356-018-1903-8. [59] H. Albatrni, H. Qiblawey, and M. J. Al-Marri, “Walnut shell based adsorbents: A review study on preparation, mechanism, and application,” J. Water Process Eng., vol. 45, p. 102527, Feb. 2022, doi: 10.1016/j.jwpe.2021.102527. [60] Colombian Ministry of Agriculture, “Evaluaciones Agropecuarias Municipales EVA | Datos Abiertos Colombia.” [Online]. Available: https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Evaluaciones-Agropecuarias-Municipales-EVA/2pnw-mmge [61] J. G. Henao, G. G. Mancheno, A. Patiño, E. E. Peña, and M. I. Páez, “Elaboración de una Pasta Emulsionada de Cáscara de Chontaduro (Bactris gasipaes),” Rev. Tecnológica - ESPOL, vol. 33, no. 1, Art. no. 1, Jun. 2021, doi: 10.37815/rte.v33n1.794. [62] V. Ortega Bermúdez and J. J. Valderrama Artunduaga, “Aprovechamiento de los residuos sólidos de cáscara y semilla de Bactris Gasipaes y Euterpe Oleracea mediante el análisis composicional y la aplicación de los extractos en la formulación de un producto de valor agregado,” 2020, [Online]. Available: http://hdl.handle.net/1992/48970 [63] O. L. Torres-Vargas, I. Luzardo-Ocampo, E. Hernandez-Becerra, and M. E. Rodríguez-García, “Physicochemical Characterization of Unripe and Ripe Chontaduro (Bactris gasipaes Kunth) Fruit Flours and Starches,” Starch - Stärke, vol. 73, no. 7–8, p. 2000242, 2021, doi: 10.1002/star.202000242. [64] El Espectador, “El chontaduro, un potenciador sexual natural,” REVISTACROMOS.COM. Accessed: Jun. 02, 2023. [Online]. Available: https://www.elespectador.com/cromos/estilo-de-vida/el-chontaduro-un-potenciador-sexual-natural/ [65] J. J. Zuluaga Peláez, J. Rojas Molina, C. A. Yasno Cabrera, C. A. Cárdenas Guzmán, and C. J. Escobar Acevedo, El cultivo de chontaduro (Bactris gasipaes H.B.K) para fruto y palmito. Corporación colombiana de investigación agropecuaria - AGROSAVIA, 1998. Accessed: May 14, 2024. [Online]. Available: https://repository.agrosavia.co/handle/20.500.12324/15990 [66] A. F. R. Gonzalez and C. Flórez, “Valorización de residuos de frutas para combustión y pirólisis,” Rev. Politécnica, vol. 15, no. 28, Art. no. 28, Jun. 2019, doi: 10.33571/rpolitec.v15n28a4. [67] K. MacDermid-Watts, R. Pradhan, and A. Dutta, “Catalytic Hydrothermal Carbonization Treatment of Biomass for Enhanced Activated Carbon: A Review,” Waste Biomass Valorization, vol. 12, no. 5, pp. 2171–2186, May 2021, doi: 10.1007/s12649-020-01134-x. [68] M. Tripathi, J. N. Sahu, and P. Ganesan, “Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review,” Renew. Sustain. Energy Rev., vol. 55, pp. 467–481, Mar. 2016, doi: 10.1016/j.rser.2015.10.122. [69] R.-L. Tseng, F.-C. Wu, and R.-S. Juang, “Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons,” Carbon, vol. 41, no. 3, pp. 487–495, Jan. 2003, doi: 10.1016/S0008-6223(02)00367-6. [70] M. A. Dı́az-Dı́ez, V. Gómez-Serrano, C. Fernández González, E. M. Cuerda-Correa, and A. Macı́as-Garcı́a, “Porous texture of activated carbons prepared by phosphoric acid activation of woods,” Appl. Surf. Sci., vol. 238, no. 1, pp. 309–313, Nov. 2004, doi: 10.1016/j.apsusc.2004.05.228. [71] P. Madhu, H. Kanagasabapathy, and I. Neethi Manickam, “Cotton shell utilization as a source of biomass energy for bio-oil by flash pyrolysis on electrically heated fluidized bed reactor,” J. Mater. Cycles Waste Manag., vol. 18, no. 1, pp. 146–155, Jan. 2016, doi: 10.1007/s10163-014-0318-y. [72] T. Y. A. Fahmy, Y. Fahmy, F. Mobarak, M. El-Sakhawy, and R. E. Abou-Zeid, “Biomass pyrolysis: past, present, and future,” Environ. Dev. Sustain., vol. 22, no. 1, pp. 17–32, Jan. 2020, doi: 10.1007/s10668-018-0200-5. [73] F. Rodríguez-Reinoso and M. Molina-Sabio, “Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview,” Carbon, vol. 30, no. 7, pp. 1111–1118, Jan. 1992, doi: 10.1016/0008-6223(92)90143-K. [74] A. Aworn, P. Thiravetyan, and W. Nakbanpote, “Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores,” J. Anal. Appl. Pyrolysis, vol. 82, no. 2, pp. 279–285, Jul. 2008, doi: 10.1016/j.jaap.2008.04.007. [75] G. M. Brito, D. F. Cipriano, M. Â. Schettino, A. G. Cunha, E. R. C. Coelho, and J. C. Checon Freitas, “One-step methodology for preparing physically activated biocarbons from agricultural biomass waste,” J. Environ. Chem. Eng., vol. 7, no. 3, p. 103113, Jun. 2019, doi: 10.1016/j.jece.2019.103113. [76] P. González-García, “Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications,” Renew. Sustain. Energy Rev., vol. 82, pp. 1393–1414, Feb. 2018, doi: 10.1016/j.rser.2017.04.117. [77] D. Bergna, T. Hu, H. Prokkola, H. Romar, and U. Lassi, “Effect of Some Process Parameters on the Main Properties of Activated Carbon Produced from Peat in a Lab-Scale Process,” Waste Biomass Valorization, vol. 11, no. 6, pp. 2837–2848, Jun. 2020, doi: 10.1007/s12649-019-00584-2. [78] G. K. P. Lopes et al., “Steam-activated carbon from malt bagasse: Optimization of preparation conditions and adsorption studies of sunset yellow food dye,” Arab. J. Chem., vol. 14, no. 3, p. 103001, Mar. 2021, doi: 10.1016/j.arabjc.2021.103001. [79] U. Moralı, H. Demiral, and S. Şensöz, “Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance,” J. Clean. Prod., vol. 189, pp. 602–611, Jul. 2018, doi: 10.1016/j.jclepro.2018.04.084. [80] A. Kundu, B. Sen Gupta, M. A. Hashim, and G. Redzwan, “Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating,” J. Clean. Prod., vol. 105, pp. 420–427, Oct. 2015, doi: 10.1016/j.jclepro.2014.06.093. [81] F. Ghorbani, S. Kamari, S. Zamani, S. Akbari, and M. Salehi, “Optimization and modeling of aqueous Cr(VI) adsorption onto activated carbon prepared from sugar beet bagasse agricultural waste by application of response surface methodology,” Surf. Interfaces, vol. 18, p. 100444, Mar. 2020, doi: 10.1016/j.surfin.2020.100444. [82] S. Dhanapala, H. Nilmalgoda, M. B. Gunathilake, U. Rathnayake, and E. M. Wimalasiri, “Energy Balance Assessment in Agricultural Systems; An Approach to Diversification,” AgriEngineering, vol. 5, no. 2, Art. no. 2, Jun. 2023, doi: 10.3390/agriengineering5020059. [83] D. C. Montgomery, Design and Analysis of Experiments, 8th Edition. John Wiley & Sons, Incorporated, 2012. [Online]. Available: https://books.google.fr/books?id=XQAcAAAAQBAJ [84] W. Edwards, R. F. Miles Jr., and D. von Winterfeldt, Eds., Advances in Decision Analysis: From Foundations to Applications. Cambridge: Cambridge University Press, 2007. doi: 10.1017/CBO9780511611308. [85] M. M. A. Daouda, ´esime Akowanou Akuemaho V. On, S. E. R. Mahunon, C. K. Adjinda, M. P. Aina, and P. Drogui, “Optimal removal of diclofenac and amoxicillin by activated carbon prepared from coconut shell through response surface methodology,” South Afr. J. Chem. Eng., vol. 38, no. 1, pp. 78–89, Dec. 2021, doi: 10.1016/j.sajce.2021.08.004. [86] Y. Wang et al., “Efficient removal of acetochlor pesticide from water using magnetic activated carbon: Adsorption performance, mechanism, and regeneration exploration,” Sci. Total Environ., vol. 778, p. 146353, Jul. 2021, doi: 10.1016/j.scitotenv.2021.146353. [87] S. G. Mohammad, S. M. Ahmed, A. E.-G. E. Amr, and A. H. Kamel, “Porous Activated Carbon from Lignocellulosic Agricultural Waste for the Removal of Acetampirid Pesticide from Aqueous Solutions,” Molecules, vol. 25, no. 10, Art. no. 10, Jan. 2020, doi: 10.3390/molecules25102339. [88] S. Mondal, S. Patel, and S. K. Majumder, “Naproxen Removal Capacity Enhancement by Transforming the Activated Carbon into a Blended Composite Material,” Water. Air. Soil Pollut., vol. 231, no. 2, p. 37, Jan. 2020, doi: 10.1007/s11270-020-4411-7. [89] M. M. Rao, G. P. C. Rao, K. Seshaiah, N. V. Choudary, and M. C. Wang, “Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions,” Waste Manag., vol. 28, no. 5, pp. 849–858, Jan. 2008, doi: 10.1016/j.wasman.2007.01.017. [90] B. Tu et al., “Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass,” J. Colloid Interface Sci., vol. 560, pp. 649–658, Feb. 2020, doi: 10.1016/j.jcis.2019.10.103. [91] S. Mandal, J. Calderon, S. B. Marpu, M. A. Omary, and S. Q. Shi, “Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies,” J. Contam. Hydrol., vol. 243, p. 103869, Dec. 2021, doi: 10.1016/j.jconhyd.2021.103869. [92] E. Menya, P. W. Olupot, H. Storz, M. Lubwama, and Y. Kiros, “Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review,” Chem. Eng. Res. Des., vol. 129, pp. 271–296, Jan. 2018, doi: 10.1016/j.cherd.2017.11.008. [93] W. Li and S. Liu, “Bifunctional activated carbon with dual photocatalysis and adsorption capabilities for efficient phenol removal,” Adsorption, vol. 18, no. 2, pp. 67–74, Oct. 2012, doi: 10.1007/s10450-011-9381-z. [94] O. Garcia-Rodriguez, A. Villot, H. Olvera-Vargas, C. Gerente, Y. Andres, and O. Lefebvre, “Impact of the saturation level on the electrochemical regeneration of activated carbon in a single sequential reactor,” Carbon, vol. 163, pp. 265–275, Aug. 2020, doi: 10.1016/j.carbon.2020.02.041. [95] N. M. Hull, W. H. Herold, and K. G. Linden, “UV LED water disinfection: Validation and small system demonstration study,” AWWA Water Sci., vol. 1, no. 4, p. e1148, 2019, doi: 10.1002/aws2.1148. [96] United States Environmental Protection Agency, “ULTRAVIOLET DISINFECTION GUIDANCE MANUAL FOR THE FINAL LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE,” Washington DC, 2006. [Online]. Available: https://www.epa.gov/system/files/documents/2022-10/ultraviolet-disinfection-guidance-manual-2006.pdf [97] P. Jarvis, O. Autin, E. H. Goslan, and F. Hassard, “Application of Ultraviolet Light-Emitting Diodes (UV-LED) to Full-Scale Drinking-Water Disinfection,” Water, vol. 11, no. 9, Art. no. 9, Sep. 2019, doi: 10.3390/w11091894. [98] M. Mori et al., “Development of a new water sterilization device with a 365 nm UV-LED,” Med. Biol. Eng. Comput., vol. 45, no. 12, pp. 1237–1241, Dec. 2007, doi: 10.1007/s11517-007-0263-1. [99] E. J. Wurtmann and S. L. Wolin, “RNA under attack: Cellular handling of RNA damage,” Crit. Rev. Biochem. Mol. Biol., vol. 44, no. 1, pp. 34–49, 2009, doi: 10.1080/10409230802594043. [100] G.-Q. Li, W.-L. Wang, Z.-Y. Huo, Y. Lu, and H.-Y. Hu, “Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli,” Water Res., vol. 126, pp. 134–143, Dec. 2017, doi: 10.1016/j.watres.2017.09.030. [101] J. Zibo et al., “Which UV wavelength is the most effective for chlorine-resistant bacteria in terms of the impact of activity, cell membrane and DNA?,” Chem. Eng. J., vol. 447, p. 137584, Nov. 2022, doi: 10.1016/j.cej.2022.137584. [102] J. R. Bolton and C. A. Cotton, The Ultraviolet Disinfection Handbook. American Water Works Association, 2011. [103] R. Z. Chen, S. A. Craik, and J. R. Bolton, “Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: Information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water,” Water Res., vol. 43, no. 20, pp. 5087–5096, Dec. 2009, doi: 10.1016/j.watres.2009.08.032. [104] S. Vilhunen, H. Särkkä, and M. Sillanpää, “Ultraviolet light-emitting diodes in water disinfection,” Environ. Sci. Pollut. Res., vol. 16, no. 4, pp. 439–442, Jun. 2009, doi: 10.1007/s11356-009-0103-y. [105] K. Song, M. Mohseni, and F. Taghipour, “Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review,” Water Res., vol. 94, pp. 341–349, May 2016, doi: 10.1016/j.watres.2016.03.003. [106] A. B. Petersen, R. Gniadecki, J. Vicanova, T. Thorn, and H. C. Wulf, “Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes,” J. Photochem. Photobiol. B, vol. 59, no. 1, pp. 123–131, Dec. 2000, doi: 10.1016/S1011-1344(00)00149-4. [107] G. Zarić et al., “Escherichia coli as Microbiological Quality Water Indicator:A High Importance for Human and Animal Health: Microbiological water quality,” J. Hell. Vet. Med. Soc., vol. 74, no. 3, Art. no. 3, Oct. 2023, doi: 10.12681/jhvms.30878. [108] D. Pousty, R. Hofmann, Y. Gerchman, and H. Mamane, “Wavelength-dependent time–dose reciprocity and stress mechanism for UV-LED disinfection of Escherichia coli,” J. Photochem. Photobiol. B, vol. 217, p. 112129, Apr. 2021, doi: 10.1016/j.jphotobiol.2021.112129. [109] N. M. Hull and K. G. Linden, “Synergy of MS2 disinfection by sequential exposure to tailored UV wavelengths,” Water Res., vol. 143, pp. 292–300, Oct. 2018, doi: 10.1016/j.watres.2018.06.017. [110] K. M. S. Hansen, R. Zortea, A. Piketty, S. R. Vega, and H. R. Andersen, “Photolytic removal of DBPs by medium pressure UV in swimming pool water,” Sci. Total Environ., vol. 443, pp. 850–856, Jan. 2013, doi: 10.1016/j.scitotenv.2012.11.064. [111] N. P. F. Gonçalves, O. del Puerto, C. Medana, P. Calza, and P. Roslev, “Degradation of the antifungal pharmaceutical clotrimazole by UVC and vacuum-UV irradiation: Kinetics, transformation products and attenuation of toxicity,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 106275, Oct. 2021, doi: 10.1016/j.jece.2021.106275. [112] K. Kawabata, K. Sugihara, S. Sanoh, S. Kitamura, and S. Ohta, “Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation,” J. Toxicol. Sci., vol. 38, no. 2, pp. 215–223, 2013, doi: 10.2131/jts.38.215. [113] G. Wen et al., “Reactivation of fungal spores in water following UV disinfection: Effect of temperature, dark delay, and real water matrices,” Chemosphere, vol. 237, p. 124490, Dec. 2019, doi: 10.1016/j.chemosphere.2019.124490. [114] A. A. Zewde, Z. Li, L. Zhang, E. A. Odey, and Z. Xiaoqin, “Utilisation of appropriately treated wastewater for some further beneficial purposes: a review of the disinfection method of treated wastewater using UV radiation technology,” Rev. Environ. Health, vol. 35, no. 2, pp. 139–146, Jun. 2020, doi: 10.1515/reveh-2019-0066. [115] C. Jing et al., “Oxidation of ibuprofen in water by UV/O3 process: Removal, byproducts, and degradation pathways,” J. Water Process Eng., vol. 53, p. 103721, Jul. 2023, doi: 10.1016/j.jwpe.2023.103721. [116] W. Sanders, Basic Principles of Nanotechnology. Boca Raton: CRC Press, 2018. doi: 10.1201/9781351054423. [117] N. Puri, A. Gupta, and A. Mishra, “Recent advances on nano-adsorbents and nanomembranes for the remediation of water,” J. Clean. Prod., vol. 322, p. 129051, Nov. 2021, doi: 10.1016/j.jclepro.2021.129051. [118] P. Westerhoff, P. Alvarez, Q. Li, J. Gardea-Torresdey, and J. Zimmerman, “Overcoming implementation barriers for nanotechnology in drinking water treatment,” Environ. Sci. Nano, vol. 3, no. 6, pp. 1241–1253, Dec. 2016, doi: 10.1039/C6EN00183A. [119] W. Xu et al., “Synergy mechanism for TiO2/activated carbon composite material: Photocatalytic degradation of methylene blue solution,” Can. J. Chem. Eng., vol. 100, no. 2, pp. 276–290, 2022, doi: 10.1002/cjce.24097. [120] H. A. Foster, I. B. Ditta, S. Varghese, and A. Steele, “Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity,” Appl. Microbiol. Biotechnol., vol. 90, no. 6, pp. 1847–1868, Jun. 2011, doi: 10.1007/s00253-011-3213-7. [121] M. A. Lazar, S. Varghese, and S. S. Nair, “Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates,” Catalysts, vol. 2, no. 4, Art. no. 4, Dec. 2012, doi: 10.3390/catal2040572. [122] N. Yahya et al., “A review of integrated photocatalyst adsorbents for wastewater treatment,” J. Environ. Chem. Eng., vol. 6, no. 6, pp. 7411–7425, Dec. 2018, doi: 10.1016/j.jece.2018.06.051. [123] G. Di et al., “Simultaneous removal of several pharmaceuticals and arsenic on Zn-Fe mixed metal oxides: Combination of photocatalysis and adsorption,” Chem. Eng. J., vol. 328, pp. 141–151, Nov. 2017, doi: 10.1016/j.cej.2017.06.112. [124] P. Benjwal and K. K. Kar, “Simultaneous photocatalysis and adsorption based removal of inorganic and organic impurities from water by titania/activated carbon/carbonized epoxy nanocomposite,” J. Environ. Chem. Eng., vol. 3, no. 3, pp. 2076–2083, Sep. 2015, doi: 10.1016/j.jece.2015.07.009. [125] M. Chen, C. Bao, T. Cun, and Q. Huang, “One-pot synthesis of ZnO/oligoaniline nanocomposites with improved removal of organic dyes in water: Effect of adsorption on photocatalytic degradation,” Mater. Res. Bull., vol. 95, pp. 459–467, Nov. 2017, doi: 10.1016/j.materresbull.2017.08.017. [126] K. Badvi and V. Javanbakht, “Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles,” J. Clean. Prod., vol. 280, p. 124518, Jan. 2021, doi: 10.1016/j.jclepro.2020.124518. [127] D. D. Sun, J. H. Tay, and K. M. Tan, “Photocatalytic degradation of E. coliform in water,” Water Res., vol. 37, no. 14, pp. 3452–3462, Aug. 2003, doi: 10.1016/S0043-1354(03)00228-8. [128] M. V. Liga, E. L. Bryant, V. L. Colvin, and Q. Li, “Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment,” Water Res., vol. 45, no. 2, pp. 535–544, Jan. 2011, doi: 10.1016/j.watres.2010.09.012. [129] O. Baaloudj, N. Nasrallah, M. Kebir, L. Khezami, A. Amrane, and A. A. Assadi, “A comparative study of ceramic nanoparticles synthesized for antibiotic removal: catalysis characterization and photocatalytic performance modeling,” Environ. Sci. Pollut. Res., vol. 28, no. 11, pp. 13900–13912, Mar. 2021, doi: 10.1007/s11356-020-11616-z. [130] F. Tagnaouti Moumnani et al., “Synthesis and characterization of Zn3V2O8 nanoparticles: mechanism and factors influencing crystal violet photodegradation,” React. Kinet. Mech. Catal., vol. 137, no. 2, pp. 1157–1174, Apr. 2024, doi: 10.1007/s11144-023-02553-2. [131] K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 Photocatalysis: A Historical Overview and Future Prospects,” Jpn. J. Appl. Phys., vol. 44, no. 12R, p. 8269, Dec. 2005, doi: 10.1143/JJAP.44.8269. [132] X. Qu, P. J. J. Alvarez, and Q. Li, “Applications of nanotechnology in water and wastewater treatment,” Water Res., vol. 47, no. 12, pp. 3931–3946, Aug. 2013, doi: 10.1016/j.watres.2012.09.058. [133] H. D. Pascagaza-Rubio et al., “Disinfection of Outdoor Livestock Water Troughs: Effect of TiO2-Based Coatings and UV-A LED,” Water, vol. 14, no. 23, Art. no. 23, Jan. 2022, doi: 10.3390/w14233808. [134] M. Pavel, C. Anastasescu, R.-N. State, A. Vasile, F. Papa, and I. Balint, “Photocatalytic Degradation of Organic and Inorganic Pollutants to Harmless End Products: Assessment of Practical Application Potential for Water and Air Cleaning,” Catalysts, vol. 13, no. 2, Art. no. 2, Feb. 2023, doi: 10.3390/catal13020380. [135] S. N. A. Shah, Z. Shah, M. Hussain, and M. Khan, “Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem,” Bioinorg. Chem. Appl., vol. 2017, p. 4101735, Mar. 2017, doi: 10.1155/2017/4101735. [136] G. Guan, E. Ye, M. You, and Z. Li, “Hybridized 2D Nanomaterials Toward Highly Efficient Photocatalysis for Degrading Pollutants: Current Status and Future Perspectives,” Small, vol. 16, no. 19, p. 1907087, May 2020, doi: 10.1002/smll.201907087. [137] Y. Chen and D. D. Dionysiou, “Sol-Gel Synthesis of Nanostructured TiO2 Films for Water Purification,” in Sol-Gel Methods for Materials Processing, P. Innocenzi, Y. L. Zub, and V. G. Kessler, Eds., in NATO Science for Peace and Security Series C: Environmental Security. Dordrecht: Springer Netherlands, 2008, pp. 67–75. doi: 10.1007/978-1-4020-8514-7_4. [138] D. Bokov et al., “Nanomaterial by Sol-Gel Method: Synthesis and Application,” Adv. Mater. Sci. Eng., vol. 2021, p. e5102014, Dec. 2021, doi: 10.1155/2021/5102014. [139] J. Jaramillo, B. A. Garzón, and L. T. Mejía, “Influence of the pH of the synthesis using sol-gel method on the structural and optical properties of TiO2,” J. Phys. Conf. Ser., vol. 687, no. 1, p. 012099, Feb. 2016, doi: 10.1088/1742-6596/687/1/012099. [140] Y. Ioni, A. Popova, S. Maksimov, and I. Kozerozhets, “Ni Nanoparticles on the Reduced Graphene Oxide Surface Synthesized in Supercritical Isopropanol,” Nanomaterials, vol. 13, no. 22, Art. no. 22, Jan. 2023, doi: 10.3390/nano13222923. [141] M. Hakamizadeh, S. Afshar, A. Tadjarodi, R. Khajavian, M. R. Fadaie, and B. Bozorgi, “Improving hydrogen production via water splitting over Pt/TiO2/activated carbon nanocomposite,” Int. J. Hydrog. Energy, vol. 39, no. 14, pp. 7262–7269, May 2014, doi: 10.1016/j.ijhydene.2014.03.048. [142] U. Schubert, “Chemistry and Fundamentals of the Sol–Gel Process,” in The Sol-Gel Handbook, John Wiley & Sons, Ltd, 2015, pp. 1–28. doi: 10.1002/9783527670819.ch01. [143] S. Benjedim et al., “Activated carbon-based coloured titania nanoparticles with high visible radiation absorption and excellent photoactivity in the degradation of emerging drugs of wastewater,” Carbon, vol. 178, pp. 753–766, Jun. 2021, doi: 10.1016/j.carbon.2021.03.044. [144] Y. Li, S. Zhang, Q. Yu, and W. Yin, “The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol–gel method,” Appl. Surf. Sci., vol. 253, no. 23, pp. 9254–9258, Sep. 2007, doi: 10.1016/j.apsusc.2007.05.057. [145] E. Carpio, P. Zúñiga, S. Ponce, J. Solis, J. Rodriguez, and W. Estrada, “Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon,” J. Mol. Catal. Chem., vol. 228, no. 1, pp. 293–298, Mar. 2005, doi: 10.1016/j.molcata.2004.09.066. [146] Colombian Superintendency of Public Services, “Sistema Único de Información.” Accessed: Jun. 05, 2023. [Online]. Available: http://reportes.sui.gov.co/fabricaReportes/frameSet.jsp?idreporte=acu_tec_039 [147] E. J. Smith, W. Davison, and J. Hamilton-Taylor, “Methods for preparing synthetic freshwaters,” Water Res., vol. 36, no. 5, pp. 1286–1296, Mar. 2002, doi: 10.1016/S0043-1354(01)00341-4. [148] Acueducto, agua y alcantarillado de Bogotá, “Plan Maestro de Calidad de Agua Potable,” Bogotá, 2022. [149] “Multi-Attribute Utility Theory and Multi-Criteria Decision Making (Chapter 6) - Theory and Practice in Policy Analysis.” Accessed: Sep. 03, 2024. [Online]. Available: https://www.cambridge.org/core/books/abs/theory-and-practice-in-policy-analysis/multiattribute-utility-theory-and-multicriteria-decision-making/3523324FC20E8D28A191FC5F59F956A8 [150] H. Taherdoost and M. Madanchian, “Multi-Criteria Decision Making (MCDM) Methods and Concepts,” Encyclopedia, vol. 3, no. 1, Art. no. 1, Mar. 2023, doi: 10.3390/encyclopedia3010006. [151] R. J. Dombrowski, C. M. Lastoskie, and D. R. Hyduke, “The Horvath–Kawazoe method revisited,” Colloids Surf. Physicochem. Eng. Asp., vol. 187–188, pp. 23–39, Aug. 2001, doi: 10.1016/S0927-7757(01)00618-5. [152] B. Coasne, K. E. Gubbins, and R. J.-M. Pellenq, “A Grand Canonical Monte Carlo Study of Adsorption and Capillary Phenomena in Nanopores of Various Morphologies and Topologies: Testing the BET and BJH Characterization Methods,” Part. Part. Syst. Charact., vol. 21, no. 2, pp. 149–160, 2004, doi: 10.1002/ppsc.200400928. [153] J. Torres-Perez, C. Gerente, and Y. Andres, “Conversion of agricultural residues into activated carbons for water purification: Application to arsenate removal,” J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., vol. 47, no. 8, pp. 1173–1185, 2012, doi: 10.1080/10934529.2012.668390. [154] G. J. Tortora, B. R. Funke, and C. L. Case, Introducción a la microbiología. Ed. Médica Panamericana, 2007. [155] C. Giannini and R. Roani, Diccionario de restauración y diagnóstico. Editorial NEREA, 2008. [156] C. M. Sayes and A. B. Santamaria, “Chapter 5 - Toxicological Issues to Consider When Evaluating the Safety of Consumer Products Containing Nanomaterials,” in Nanotechnology Environmental Health and Safety (Second Edition), M. S. Hull and D. M. Bowman, Eds., in Micro and Nano Technologies. , Oxford: William Andrew Publishing, 2014, pp. 77–115. doi: 10.1016/B978-1-4557-3188-6.00005-0. [157] P. Chakraborty, S. D. Singh, I. Gorai, D. Singh, W.-U. Rahman, and G. Halder, “Explication of physically and chemically treated date stone biochar for sorptive remotion of ibuprofen from aqueous solution,” J. Water Process Eng., vol. 33, p. 101022, Feb. 2020, doi: 10.1016/j.jwpe.2019.101022. [158] F. Hernández et al., “LC-QTOF MS screening of more than 1,000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia,” Anal. Bioanal. Chem., vol. 407, no. 21, pp. 6405–6416, Aug. 2015, doi: 10.1007/s00216-015-8796-x. [159] C. Aristizabal-Ciro, A. M. Botero-Coy, F. J. López, and G. A. Peñuela, “Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply,” Environ. Sci. Pollut. Res., vol. 24, no. 8, pp. 7335–7347, Mar. 2017, doi: 10.1007/s11356-016-8253-1. [160] S. Zhang, Q. Zhang, S. Darisaw, O. Ehie, and G. Wang, “Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA,” Chemosphere, vol. 66, no. 6, pp. 1057–1069, Jan. 2007, doi: 10.1016/j.chemosphere.2006.06.067. [161] L. M. Madikizela and L. Chimuka, “Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa,” Environ. Monit. Assess., vol. 189, no. 7, p. 348, Jul. 2017, doi: 10.1007/s10661-017-6069-1. [162] P. Paíga et al., “Pilot monitoring study of ibuprofen in surface waters of north of Portugal,” Environ. Sci. Pollut. Res., vol. 20, no. 4, pp. 2410–2420, Apr. 2013, doi: 10.1007/s11356-012-1128-1. [163] “Stereoisomeric profiling of pharmaceuticals ibuprofen and iopromide in wastewater and river water, China | Environmental Geochemistry and Health.” Accessed: Jul. 03, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s10653-013-9551-x [164] D. Ramírez-Morales et al., “Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ecotoxicity in a swine production area in Costa Rica,” Chemosphere, vol. 272, p. 129574, Jun. 2021, doi: 10.1016/j.chemosphere.2021.129574. [165] G. Labuto et al., “Individual and competitive adsorption of ibuprofen and caffeine from primary sewage effluent by yeast-based activated carbon and magnetic carbon nanocomposite,” Sustain. Chem. Pharm., vol. 28, p. 100703, Sep. 2022, doi: 10.1016/j.scp.2022.100703. [166] T. R. Sahoo and B. Prelot, “Chapter 7 - Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology,” in Nanomaterials for the Detection and Removal of Wastewater Pollutants, B. Bonelli, F. S. Freyria, I. Rossetti, and R. Sethi, Eds., in Micro and Nano Technologies. , Elsevier, 2020, pp. 161–222. doi: 10.1016/B978-0-12-818489-9.00007-4. [167] E. D. Revellame, D. L. Fortela, W. Sharp, R. Hernandez, and M. E. Zappi, “Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review,” Clean. Eng. Technol., vol. 1, p. 100032, Dec. 2020, doi: 10.1016/j.clet.2020.100032. [168] I. Langmuir, “THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM.,” J. Am. Chem. Soc., vol. 40, no. 9, pp. 1361–1403, Sep. 1918, doi: 10.1021/ja02242a004. [169] H. Freundlich, “Über die Adsorption in Lösungen,” Z. Für Phys. Chem., vol. 57U, no. 1, pp. 385–470, Oct. 1907, doi: 10.1515/zpch-1907-5723. [170] W. W. Loo, Y. L. Pang, S. Lim, K. H. Wong, C. W. Lai, and A. Z. Abdullah, “Enhancement of photocatalytic degradation of Malachite Green using iron doped titanium dioxide loaded on oil palm empty fruit bunch-derived activated carbon,” Chemosphere, vol. 272, p. 129588, Jun. 2021, doi: 10.1016/j.chemosphere.2021.129588. [171] K. Li, L. Yu, J. Cai, and L. Zhang, “C@TiO2 core-shell adsorbents for efficient rhodamine B adsorption from aqueous solution,” Microporous Mesoporous Mater., vol. 320, p. 111110, Jun. 2021, doi: 10.1016/j.micromeso.2021.111110. [172] X.-P. Guo, P. Zang, Y.-M. Li, and D.-S. Bi, “TiO2-Powdered Activated Carbon (TiO2/PAC) for Removal and Photocatalytic Properties of 2-Methylisoborneol (2-MIB) in Water,” Water, vol. 13, no. 12, Art. no. 12, Jan. 2021, doi: 10.3390/w13121622. [173] S. Ntakirutimana and W. Tan, “Electrochemical capacitive behaviors of carbon/titania composite prepared by Tween 80-assisted sol-gel process for capacitive deionization,” Desalination, vol. 512, p. 115131, Sep. 2021, doi: 10.1016/j.desal.2021.115131. [174] A. Amorós-Pérez, M. Á. Lillo-Ródenas, M. del C. Román-Martínez, P. García-Muñoz, and N. Keller, “TiO2 and TiO2-Carbon Hybrid Photocatalysts for Diuron Removal from Water,” Catalysts, vol. 11, no. 4, Art. no. 4, Apr. 2021, doi: 10.3390/catal11040457. [175] Y. Li, X. Li, J. Li, and J. Yin, “TiO2-coated active carbon composites with increased photocatalytic activity prepared by a properly controlled sol–gel method,” Mater. Lett., vol. 59, no. 21, pp. 2659–2663, Sep. 2005, doi: 10.1016/j.matlet.2005.03.050. [176] A. C. Martins et al., “Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline,” Ceram. Int., vol. 43, no. 5, pp. 4411–4418, Apr. 2017, doi: 10.1016/j.ceramint.2016.12.088. [177] R. R. Bhosale, S. R. Pujari, M. K. Lande, B. R. Arbad, S. B. Pawar, and A. B. Gambhire, “Photocatalytic activity and characterization of sol–gel-derived Ni-doped TiO2-coated active carbon composites,” Appl. Surf. Sci., vol. 261, pp. 835–841, Nov. 2012, doi: 10.1016/j.apsusc.2012.08.113. [178] H. Slimen, A. Houas, and J. P. Nogier, “Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light,” J. Photochem. Photobiol. Chem., vol. 221, no. 1, pp. 13–21, Jun. 2011, doi: 10.1016/j.jphotochem.2011.04.013. [179] V. Loryuenyong, A. Buasri, C. Srilachai, and H. Srimuang, “The synthesis of microporous and mesoporous titania with high specific surface area using sol–gel method and activated carbon templates,” Mater. Lett., vol. 87, pp. 47–50, Nov. 2012, doi: 10.1016/j.matlet.2012.07.090. [180] P.-I. Liu et al., “Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization,” Electrochimica Acta, vol. 96, pp. 173–179, Apr. 2013, doi: 10.1016/j.electacta.2013.02.099. [181] M.-A. Galezzo and M. R. Susa, “Effect of single and combined exposures to UV-C and UV-A LEDs on the inactivation of Klebsiella pneumoniae and Escherichia coli in water disinfection,” J. Water Sanit. Hyg. Dev., vol. 11, no. 6, pp. 1071–1082, Oct. 2021, doi: 10.2166/washdev.2021.105. [182] E. J. Cho, L. T. P. Trinh, Y. Song, Y. G. Lee, and H.-J. Bae, “Bioconversion of biomass waste into high value chemicals,” Bioresour. Technol., vol. 298, p. 122386, Feb. 2020, doi: 10.1016/j.biortech.2019.122386. [183] L. S. Queiroz et al., “Activated carbon obtained from amazonian biomass tailings (acai seed): Modification, characterization, and use for removal of metal ions from water,” J. Environ. Manage., vol. 270, p. 110868, Sep. 2020, doi: 10.1016/j.jenvman.2020.110868. [184] B. Janković et al., “Physico-chemical characterization of carbonized apricot kernel shell as precursor for activated carbon preparation in clean technology utilization,” J. Clean. Prod., vol. 236, p. 117614, Nov. 2019, doi: 10.1016/j.jclepro.2019.117614. [185] N. Gómez, J. G. Rosas, J. Cara, O. Martínez, J. A. Alburquerque, and M. E. Sánchez, “Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 1. Effect of temperature on process performance on a pilot scale,” J. Clean. Prod., vol. 120, pp. 181–190, May 2016, doi: 10.1016/j.jclepro.2014.10.082. [186] Y. D. Singh, P. Mahanta, and U. Bora, “Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production,” Renew. Energy, vol. 103, pp. 490–500, Apr. 2017, doi: 10.1016/j.renene.2016.11.039. [187] R. M. Braga et al., “Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass,” J. Therm. Anal. Calorim., vol. 115, no. 2, pp. 1915–1920, Feb. 2014, doi: 10.1007/s10973-013-3503-7. [188] O. Agboola et al., “Synthesis of activated carbon from olive seeds: investigating the yield, energy efficiency, and dye removal capacity,” SN Appl. Sci., vol. 1, no. 1, p. 85, Dec. 2018, doi: 10.1007/s42452-018-0089-5. [189] R. Pedicini, S. Maisano, V. Chiodo, G. Conte, A. Policicchio, and R. G. Agostino, “Posidonia Oceanica and Wood chips activated carbon as interesting materials for hydrogen storage,” Int. J. Hydrog. Energy, vol. 45, no. 27, pp. 14038–14047, May 2020, doi: 10.1016/j.ijhydene.2020.03.130. [190] X. Wang et al., “Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review,” Chemosphere, vol. 287, p. 131995, Jan. 2022, doi: 10.1016/j.chemosphere.2021.131995. [191] X. Xiao, Z. Chen, and B. Chen, “H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials,” Sci. Rep., vol. 6, p. 22644, Mar. 2016, doi: 10.1038/srep22644. [192] A. Amaya, N. Medero, N. Tancredi, H. Silva, and C. Deiana, “Activated carbon briquettes from biomass materials,” Bioresour. Technol., vol. 98, no. 8, pp. 1635–1641, May 2007, doi: 10.1016/j.biortech.2006.05.049. [193] A. M. Warhurst, G. D. Fowler, G. L. McConnachie, and S. J. T. Pollard, “Pore structure and adsorption characteristics of steam pyrolysis carbons from Moringa oleifera,” Carbon, vol. 35, no. 8, pp. 1039–1045, Jan. 1997, doi: 10.1016/S0008-6223(97)00053-5. [194] K. Wilson, H. Yang, C. W. Seo, and W. E. Marshall, “Select metal adsorption by activated carbon made from peanut shells,” Bioresour. Technol., vol. 97, no. 18, pp. 2266–2270, Dec. 2006, doi: 10.1016/j.biortech.2005.10.043. [195] S. Mopoung and N. Dejang, “Activated carbon preparation from eucalyptus wood chips using continuous carbonization–steam activation process in a batch intermittent rotary kiln,” Sci. Rep., vol. 11, no. 1, p. 13948, Jul. 2021, doi: 10.1038/s41598-021-93249-x. [196] “EBC and WBC guidelines & documents.” Accessed: Oct. 17, 2024. [Online]. Available: https://www.european-biochar.org/en/ct/2-EBC-and-WBC-guidelines-documents [197] T. Gandhi, Microelectronics Fialure Analysis Desk Reference, Seventh Edition. ASM International, 2019. [198] S. Chauhan, T. Shafi, B. K. Dubey, and S. Chowdhury, “Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption,” Waste Dispos. Sustain. Energy, vol. 5, no. 1, pp. 37–62, 2023, doi: 10.1007/s42768-022-00118-y. [199] S. Vito, I. Boci, S. Vishkulli, and M. Hoxhaj, “Investigation of Phenol Adsorption Process Utilizing Wood Sawdust,” J. Trans. Syst. Eng., vol. 2, no. 1, Art. no. 1, Jan. 2024, doi: 10.15157/JTSE.2024.2.1.148-155. [200] W. A. Shaikh et al., “Tailor-made biochar-based nanocomposite for enhancing aqueous phase antibiotic removal,” J. Water Process Eng., vol. 55, p. 104215, Oct. 2023, doi: 10.1016/j.jwpe.2023.104215. [201] S. Mondal, K. Bobde, K. Aikat, and G. Halder, “Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: Equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies,” J. Environ. Manage., vol. 182, pp. 581–594, Nov. 2016, doi: 10.1016/j.jenvman.2016.08.018. [202] S. Oh, W. S. Shin, and H. T. Kim, “Effects of pH, dissolved organic matter, and salinity on ibuprofen sorption on sediment,” Environ. Sci. Pollut. Res. Int., vol. 23, no. 22, pp. 22882–22889, 2016, doi: 10.1007/s11356-016-7503-6. [203] M. O. Omorogie et al., “Activated carbon from Nauclea diderrichii agricultural waste–a promising adsorbent for ibuprofen, methylene blue and CO2,” Adv. Powder Technol., vol. 32, no. 3, pp. 866–874, Mar. 2021, doi: 10.1016/j.apt.2021.01.031. [204] A. Arinkoola et al., “Adsorptive Removal of Ibuprofen, Ketoprofen and Naproxen from Aqueous Solution Using Coconut Shell Biomass,” Environ. Res. Eng. Manag., vol. 78, no. 2, Art. no. 2, Jul. 2022, doi: 10.5755/j01.erem.78.2.29695. [205] A. L. Bursztyn Fuentes, D. E. Benito, M. L. Montes, A. N. Scian, and M. B. Lombardi, “Paracetamol and Ibuprofen Removal from Aqueous Phase Using a Ceramic-Derived Activated Carbon,” Arab. J. Sci. Eng., vol. 48, no. 1, pp. 525–537, Jan. 2023, doi: 10.1007/s13369-022-07307-1. [206] L. Li, X. Yao, H. Li, Z. Liu, W. Ma, and X. Liang, “Thermal Stability of Oxygen-Containing Functional Groups on Activated Carbon Surfaces in a Thermal Oxidative Environment,” J. Chem. Eng. Jpn., vol. 47, no. 1, pp. 21–27, 2014, doi: 10.1252/jcej.13we193. [207] H. Ardebili, J. Zhang, and M. G. Pecht, “8 - Defect and failure analysis techniques for encapsulated microelectronics,” in Encapsulation Technologies for Electronic Applications (Second Edition), H. Ardebili, J. Zhang, and M. G. Pecht, Eds., in Materials and Processes for Electronic Applications. , William Andrew Publishing, 2019, pp. 317–373. doi: 10.1016/B978-0-12-811978-5.00008-0. [208] I. A. Olowonyo, K. K. Salam, M. O. Aremu, and A. Lateef, “Synthesis, characterization, and adsorptive performance of titanium dioxide nanoparticles modified groundnut shell activated carbon on ibuprofen removal from pharmaceutical wastewater,” Waste Manag. Bull., vol. 1, no. 4, pp. 217–233, Mar. 2024, doi: 10.1016/j.wmb.2023.11.003. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
167 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Civil y Ambiental |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/4810cc94-4be1-4e16-8fc9-6fb33f7a0acf/download https://repositorio.uniandes.edu.co/bitstreams/0119ab75-b3eb-430b-9fec-4383ff19604b/download https://repositorio.uniandes.edu.co/bitstreams/a677d1b9-588b-4346-9bec-c7bd37dfa7bc/download https://repositorio.uniandes.edu.co/bitstreams/b6488a38-7682-43c9-952f-70d449940601/download https://repositorio.uniandes.edu.co/bitstreams/b7316521-052c-455e-a247-028db1007454/download https://repositorio.uniandes.edu.co/bitstreams/b16696be-3487-4c6d-8321-701338301872/download https://repositorio.uniandes.edu.co/bitstreams/ce7ea475-0e6e-419e-9c45-d47981719f94/download https://repositorio.uniandes.edu.co/bitstreams/08a30662-1f29-4988-be3a-2ceb6d816719/download |
bitstream.checksum.fl_str_mv |
ae9e573a68e7f92501b6913cc846c39f 28e704fbcaf2a16cf11e9ab0fb399b3b 41fb817f1573568a90fbd3e1709f699c 4460e5956bc1d1639be9ae6146a50347 559cc13a7d53b46fe73cd72235725c11 2a78b4bff3d7d1e4b72a0d2b479d788a 8fa5720934f073814d752aa379645086 85a0fb1d7a7bb5388358680424fccf6b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927781817057280 |
spelling |
Rodríguez Susa, Manuel SalvadorGerente, ClaireVillot, AudreyAndres, YvesPlazas Tuttle, Jaime Guillermovirtual::23075-1Angel Imitola, Luis EduardoBarakat, AbdellatifChejne, FaridAmrane, AbdeltifGerente, ClaireRodríguez Susa, Manuel SalvadorFacultad de Ingeniería::Centro de Investigaciones en Ingenieria Ambiental2025-02-03T12:58:40Z2025-02-03T12:58:40Z2024-12-16https://hdl.handle.net/1992/75976instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Colombia is a nation with pronounced socioeconomic differences, where access to potable water remains a challenge without an effective solution, especially in rural areas. This research explores the feasibility of integrating three non-conventional technologies, at the forefront of scientific advances, for the future design of a sustainable point-of-use water treatment system for rural communities in the country. The first technology employed was activated carbon, used primarily as an adsorbent for organic contaminants present in water. The activated carbon in this research was produced from chontaduro seeds, a locally abundant waste biomass, using a direct physical activation method with steam. A factorial design and multi-objective optimization process that considered key properties from both an operational and sustainability standpoint were used. The resulting activated carbon was thoroughly characterized, demonstrating outstanding properties. The second technology evaluated was irradiation with ultraviolet (UV) light as a disinfectant agent, considering its capacity to damage the genetic material and cell membranes of pathogenic microorganisms and its capacity to break complex organic molecules into simpler compounds. Finally, the third integrated technology was the use of photocatalytic nanoparticles, particularly titanium dioxide (TiO2), capable of generating reactive oxygen species when irradiated with UV light. These species have the ability to mineralize organic contaminants and attack pathogenic microorganisms, offering an additional mechanism for water purification. The study involved the synthesis and characterization of hybrid materials, using activated carbon as a support matrix and coating it with TiO2 nanoparticles by the sol-gel method. Ibuprofen (IBU) was selected as a representative organic pollutant and Escherichia coli as a microbiological indicator to determine the effectiveness of the technologies studied, conducting experiments under controlled conditions. Regarding IBU, the results showed that activated carbon has a remarkable adsorption capacity for IBU, and that this capacity is higher when ions are present in the water at concentrations similar to those of soft surface water. Furthermore, the adsorption capacity is not unique to IBU, but can also be applied to a broad spectrum of organic contaminants. UV radiation at adequate intensities can degrade IBU, although complete mineralization is not achieved, generating by-products during the process. On the other hand, when coating the carbon with TiO2 nanoparticles, a reduction in its IBU adsorption capacity was observed, but when irradiating the material with UV light, the photocatalytic effect of the nanoparticles compensates for this decrease. As for E. coli, UV light proved to be a very effective disinfectant. However, the presence of activated carbon can generate a shadowing effect that prevents the correct irradiation of the microorganisms, reducing the removal efficiency as the amount of carbon increases. However, by coating the activated carbon with TiO2 nanoparticles, the photocatalytic effect can compensate for the shadowing effect, increasing the removal efficiency of E. coli. These results show that the synergistic effects between the technologies improve the treatment efficiency, exceeding the results obtained by each technology independently. The findings of this study suggest that the integration of these technologies is not only viable, but also offers a promising solution to improve water quality in rural areas of Colombia. The system's ability to inactivate microorganisms and remove organic contaminants makes it a sustainable alternative, which can be adapted to the needs of communities without access to centralized treatment systems. In addition, the use of chontaduro seeds as raw material for the production of activated carbon contributes to the sustainable approach of the project, prioritizing the objectives of the circular economy.Colombia es una nación con pronunciadas diferencias socioeconómicas, en la que el acceso al agua potable sigue siendo un desafío sin una solución efectiva, especialmente en las zonas rurales. En esta investigación se explora la viabilidad de integrar tres tecnologías no convencionales, a la vanguardia de los avances científicos, para el diseño futuro de un sistema sostenible de tratamiento de agua en punto de uso para comunidades rurales del país. La primera tecnología empleada fue el carbón activado, utilizado principalmente como adsorbente de contaminantes orgánicos presentes en el agua. El carbón activado de esta investigación fue producido de manera sostenible y optimizada a partir de semillas de chontaduro, una biomasa residual abundante localmente, mediante un método de activación física directa con vapor de agua. Se utilizó un diseño factorial y un proceso de optimización multiobjetivo que consideró propiedades clave tanto desde un punto de vista operativo como de sostenibilidad. El carbón activado resultante fue exhaustivamente caracterizado, demostrando propiedades sobresalientes. La segunda tecnología evaluada fue la irradiación con luz ultravioleta (UV) como agente desinfectante, teniendo en cuenta su capacidad para dañar el material genético y membranas celulares de microorganismos patógenos y su capacidad de romper moléculas orgánicas complejas en compuestos más simples. Finalmente, la tercera tecnología integrada fue el uso de nanopartículas fotocatalíticas, particularmente de dióxido de titanio (TiO2), capaces de generar especies reactivas de oxígeno cuando son irradiadas con luz UV. Estas especies tienen la capacidad de mineralizar contaminantes orgánicos y atacar microorganismos patógenos, ofreciendo un mecanismo adicional de purificación del agua. El estudio incluyó la síntesis y caracterización de materiales híbridos, utilizando el carbón activado como matriz de soporte y cubriéndolo con nanopartículas de TiO2 mediante el método sol-gel. Se seleccionó el ibuprofeno (IBU) como contaminante orgánico representativo y Escherichia coli como indicador microbiológico para determinar la efectividad de las tecnologías estudiadas, llevando a cabo experimentos bajo condiciones controladas. Respecto al IBU, los resultados mostraron que el carbón activado tiene una notable capacidad de adsorción de IBU, y que esta capacidad es mayor cuando hay iones presentes en el agua en concentraciones similares a las de aguas superficiales blandas. Además, la capacidad de adsorción no es exclusiva para el IBU, sino que también puede aplicarse a un amplio espectro de contaminantes orgánicos. La radiación UV en intensidades adecuadas puede degradar el IBU, aunque no se alcanza una mineralización completa, generándose subproductos durante el proceso. Por otro lado, al cubrir el carbón con nanopartículas de TiO2 se observó una reducción en su capacidad de adsorción de IBU, pero al irradiar el material con luz UV, el efecto fotocatalítico de las nanopartículas compensa esta disminución. En cuanto a E. coli, la luz UV demostró ser un desinfectante muy eficaz. Sin embargo, la presencia de carbón activado puede generar un efecto sombra que impide la correcta irradiación de los microorganismos, reduciendo la eficiencia de remoción a medida que aumenta la cantidad de carbón. No obstante, al cubrir el carbón activado con nanopartículas, el efecto fotocatalítico logra compensar el efecto sombra, aumentando la eficiencia en la remoción de E. coli. Estos resultados muestran que los efectos sinérgicos entre las tecnologías mejoran la eficacia del tratamiento, superando los resultados obtenidos por cada tecnología de manera independiente. Los hallazgos de este estudio sugieren que la integración de estas tecnologías no solo es viable, sino que también ofrece una solución prometedora para mejorar la calidad del agua en áreas rurales de Colombia. La capacidad del sistema para inactivar microorganismos y remover contaminantes orgánicos hace que sea una alternativa sostenible, la cual puede ser adaptada a las necesidades de comunidades sin acceso a sistemas de tratamiento centralizados. Además, el uso de semillas de chontaduro como materia prima para la producción de carbón activado contribuye al enfoque sostenible del proyecto, priorizando los objetivos de la economía circular.La Colombie est un pays aux disparités socio-économiques prononcées, où l'accès à l'eau potable reste un défi sans solution efficace, en particulier dans les zones rurales. Cette recherche explore la faisabilité de l'intégration de trois technologies non conventionnelles, à la pointe des avancées scientifiques, pour la conception future d'un système durable de traitement de l'eau au point d'utilisation pour les communautés rurales du pays. La première technologie employée est le charbon actif, utilisé principalement comme adsorbant pour les polluants organiques présents dans l'eau. Le charbon actif utilisé dans cette recherche a été produit de manière durable et optimisée à partir de noyaux de chontaduro, un déchet de biomasse localement abondant, en utilisant une méthode d'activation physique directe avec de la vapeur d'eau. Une conception factorielle et un processus d'optimisation multi-objectifs ont été utilisés pour prendre en compte les propriétés clés du point de vue de l'exploitation et de la durabilité. Le charbon actif obtenu a fait l'objet d'une caractérisation approfondie, démontrant des propriétés intéressantes. La deuxième technologie évaluée est l'irradiation par la lumière ultraviolette (UV) comme agent désinfectant, en tenant compte de sa capacité à endommager le matériel génétique et les membranes cellulaires des micro-organismes pathogènes et de sa capacité à décomposer des molécules organiques complexes en composés plus simples. Enfin, la troisième technologie intégrée est l'utilisation de nanoparticules photocatalytiques, en particulier le dioxyde de titane (TiO2), capables de générer des espèces réactives de l'oxygène lorsqu'elles sont irradiées par la lumière UV. Ces espèces ont la capacité de minéraliser les polluants organiques et d'attaquer les micro-organismes pathogènes, offrant ainsi un mécanisme supplémentaire de purification de l'eau. L'étude a porté sur la synthèse et la caractérisation de matériaux hybrides, en utilisant le charbon actif comme matrice de support et en le recouvrant de nanoparticules de TiO2 par la méthode sol-gel. L'ibuprofène (IBU) a été choisi comme polluant organique représentatif et Escherichia coli comme indicateur microbiologique pour déterminer l'efficacité des technologies étudiées, en menant des expériences dans des conditions contrôlées. En ce qui concerne l'IBU, les résultats ont montré que le charbon actif a une capacité d'adsorption remarquable pour l'IBU, et que cette capacité est plus élevée lorsque les ions sont présents dans l'eau à des concentrations similaires à celles des eaux de surface douces. En outre, la capacité d'adsorption n'est pas propre à l'IBU, mais peut également s'appliquer à un large éventail de polluants organiques. L'irradiation UV à des intensités appropriées peut dégrader l'IBU, bien que la minéralisation ne soit pas complète et que des sous-produits soient générés au cours du processus. D'autre part, le revêtement du charbon actif avec des nanoparticules de TiO2 a entraîné une réduction de sa capacité d'adsorption de l'IBU, mais lors de l'irradiation UV, l'effet photocatalytique des nanoparticules compense cette diminution. En ce qui concerne E. coli, la lumière UV s'est révélée être un désinfectant très efficace. Cependant, la présence de charbon actif peut créer un effet d'ombre qui empêche l'irradiation correcte des micro-organismes, réduisant l'efficacité d'élimination à mesure que la quantité de charbon augmente. Néanmoins, en recouvrant le charbon de nanoparticules, l'effet photocatalytique parvient à compenser l'effet d'ombre, augmentant l'efficacité de l'élimination de E. coli. Ces résultats montrent que les effets synergiques entre les technologies améliorent l'efficacité du traitement, dépassant les résultats obtenus par chaque technologie indépendamment. Les résultats de cette étude suggèrent que l'intégration de ces technologies est non seulement faisable, mais qu'elle offre également une solution prometteuse pour améliorer la qualité de l'eau dans les zones rurales de Colombie. La capacité du système à inactiver les micro-organismes et à éliminer les contaminants organiques en fait une alternative durable, qui peut être adaptée aux besoins des communautés qui n'ont pas accès à des systèmes de traitement centralisés. En outre, l'utilisation de graines de chontaduro comme matière première pour la production de charbon actif contribue à l'approche durable du projet, en donnant la priorité aux objectifs de l'économie circulaire.Universidad de los AndesIMT AtlantiqueDoctorado167 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaDepartamento de Ingeniería Civil y AmbientalAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Integration of UV light, activated carbon and photocatalytic nanomaterial technologies for point-of-use water treatment in rural areas in Colombia: performance assessmentTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDActivated carbonNanotechnologyUV lightAdsorptionPhotocatalysisDisinfectionWater treatmentRural areasEmerging contaminantsEnvironmental sustainabilityIngeniería[1] OECD, OECD Economic Surveys: Colombia 2022. in OECD Economic Surveys: Colombia. OECD, 2022. doi: 10.1787/04bf9377-en.[2] Colombian Ministry of Housing, “Plan Nacional de Abastecimiento de Agua Potable Y Saneamiento Básico Rural,” Bogotá, 2021. [Online]. Available: https://minvivienda.gov.co/system/files/consultasp/plan-nacional-apsbr.pdf[3] L. A. Camacho Botero, “LA PARADOJA DE LA DISPONIBILIDAD DE AGUA DE MALA CALIDAD EN EL SECTOR RURAL COLOMBIANO,” Rev. Ing., no. 49, Art. no. 49, Jan. 2020, doi: 10.16924/revinge.49.6.[4] L. D. S. Torres and É. Q. Rubiano, “SOSTENIBILIDAD DE LAS TECNOLOGÍAS DE TRATAMIENTO DE AGUA PARA LA ZONA RURAL,” Rev. Ing., no. 49, Art. no. 49, Jan. 2020, doi: 10.16924/revinge.49.7.[5] Institute of Hydrology, Meteorology and Environmental Studies, “Oferta agua - IDEAM.” Accessed: Jun. 02, 2023. [Online]. Available: http://www.ideam.gov.co/web/siac/ofertaagua[6] O. F. Nwabor, E. Nnamonu, P. Martins, and A. Christiana, “Water and Waterborne Diseases: A Review,” Int. J. Trop. Dis. Health, vol. 12, pp. 1–14, Jan. 2016, doi: 10.9734/IJTDH/2016/21895.[7] M. S. Ruiz-Díaz, G. J. Mora-García, G. I. Salguedo-Madrid, Á. Alario, and D. E. Gómez-Camargo, “Analysis of Health Indicators in Two Rural Communities on the Colombian Caribbean Coast: Poor Water Supply and Education Level Are Associated with Water-Related Diseases,” Am. J. Trop. Med. Hyg., vol. 97, no. 5, pp. 1378–1392, Sep. 2017, doi: 10.4269/ajtmh.16-0305.[8] World Health Organization, Safer water, better health. Geneva: World Health Organization, 2019. [Online]. Available: https://apps.who.int/iris/handle/10665/329905[9] M. A. Galezzo Martínez, “Análisis de la problemática de la calidad del agua en área rural dispersa del departamento del Cesar y evaluación de LEDs UV como opción de desinfección en punto de uso,” 2020, [Online]. Available: http://hdl.handle.net/1992/48383[10] L. E. Angel, “Giardia y Cryptosporidium: una mirada retrospectiva a la situación en Colombia,” 2016.[11] S. Wong, N. Ngadi, I. M. Inuwa, and O. Hassan, “Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review,” J. Clean. Prod., vol. 175, pp. 361–375, Feb. 2018, doi: 10.1016/j.jclepro.2017.12.059.[12] M. J. Gil, A. M. Soto, J. I. Usma, and O. D. Gutiérrez, “Contaminantes emergentes en aguas, efectos y posibles tratamientos,” Prod. Limpia, vol. 7, no. 2, pp. 52–73, 2012.[13] C. Rabbat, A. Pinna, Y. Andres, A. Villot, and S. Awad, “Adsorption of ibuprofen from aqueous solution onto a raw and steam-activated biochar derived from recycled textiles insulation panels at end-of-life: Kinetic, isotherm and fixed-bed experiments,” J. Water Process Eng., vol. 53, p. 103830, Jul. 2023, doi: 10.1016/j.jwpe.2023.103830.[14] D. Bahamon, L. Carro, S. Guri, and L. F. Vega, “Computational study of ibuprofen removal from water by adsorption in realistic activated carbons,” J. Colloid Interface Sci., vol. 498, pp. 323–334, Jul. 2017, doi: 10.1016/j.jcis.2017.03.068.[15] M. Dubey, B. P. Vellanki, and A. A. Kazmi, “Fate of emerging contaminants in a sequencing batch reactor and potential of biological activated carbon as tertiary treatment for the removal of persisting contaminants,” J. Environ. Manage., vol. 338, p. 117802, Jul. 2023, doi: 10.1016/j.jenvman.2023.117802.[16] C. Bouissou-Schurtz et al., “Ecological risk assessment of the presence of pharmaceutical residues in a French national water survey,” Regul. Toxicol. Pharmacol., vol. 69, no. 3, pp. 296–303, Aug. 2014, doi: 10.1016/j.yrtph.2014.04.006.[17] International Initiative for Impact Evaluation (3ie), “Water, sanitation and hygiene interventions to combat childhood diarrhoea in developing countries,” 3ie, May 2012. doi: 10.23846/SR0017.[18] V. da S. Lacerda, “Aprovechamiento de residuos lignocelulósicos para la producción de biocombustibles y bioproductos,” 2015, doi: 10.35376/10324/16047.[19] Y. X. Gan, “Activated Carbon from Biomass Sustainable Sources,” C, vol. 7, no. 2, Art. no. 2, Jun. 2021, doi: 10.3390/c7020039.[20] A. H. Jawad, N. N. Mohd Firdaus Hum, A. S. Abdulhameed, and M. A. Mohd Ishak, “Mesoporous activated carbon from grass waste via H3PO4-activation for methylene blue dye removal: modelling, optimisation, and mechanism study,” Int. J. Environ. Anal. Chem., vol. 102, no. 17, pp. 6061–6077, Dec. 2022, doi: 10.1080/03067319.2020.1807529.[21] A. Vilén, P. Laurell, and R. Vahala, “Comparative life cycle assessment of activated carbon production from various raw materials,” J. Environ. Manage., vol. 324, p. 116356, Dec. 2022, doi: 10.1016/j.jenvman.2022.116356.[22] Z. Heidarinejad, M. H. Dehghani, M. Heidari, G. Javedan, I. Ali, and M. Sillanpää, “Methods for preparation and activation of activated carbon: a review,” Environ. Chem. Lett., vol. 18, no. 2, pp. 393–415, Mar. 2020, doi: 10.1007/s10311-019-00955-0.[23] G. Iacomino et al., “Potential of Biochar as a Peat Substitute in Growth Media for Lavandula angustifolia, Salvia rosmarinus and Fragaria × ananassa,” Plants, vol. 12, no. 21, Art. no. 21, Jan. 2023, doi: 10.3390/plants12213689.[24] K. Kanjana, P. Harding, T. Kwamman, W. Kingkam, and T. Chutimasakul, “Biomass-derived activated carbons with extremely narrow pore size distribution via eco-friendly synthesis for supercapacitor application,” Biomass Bioenergy, vol. 153, p. 106206, Oct. 2021, doi: 10.1016/j.biombioe.2021.106206.[25] J. Pallarés, A. González-Cencerrado, and I. Arauzo, “Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam,” Biomass Bioenergy, vol. 115, pp. 64–73, Aug. 2018, doi: 10.1016/j.biombioe.2018.04.015.[26] J. Peña, A. Villot, and C. Gerente, “Pyrolysis chars and physically activated carbons prepared from buckwheat husks for catalytic purification of syngas,” Biomass Bioenergy, vol. 132, p. 105435, Jan. 2020, doi: 10.1016/j.biombioe.2019.105435.[27] Stifel Investment Banking, “SPOTLIGHT Activated Carbon,” Dec. 2021. [Online]. Available: https://www.stifel.com/Newsletters/InvestmentBanking/BAL/Marketing/Europe/2021/StifelSpotlights_ActivatedCarbon171221.pdf[28] M. J. Prauchner and F. Rodríguez-Reinoso, “Chemical versus physical activation of coconut shell: A comparative study,” Microporous Mesoporous Mater., vol. 152, pp. 163–171, Apr. 2012, doi: 10.1016/j.micromeso.2011.11.040.[29] M. Danish and T. Ahmad, “A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application,” Renew. Sustain. Energy Rev., vol. 87, pp. 1–21, May 2018, doi: 10.1016/j.rser.2018.02.003.[30] N. Tancredi, N. Medero, F. Möller, J. Píriz, C. Plada, and T. Cordero, “Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood,” J. Colloid Interface Sci., vol. 279, no. 2, pp. 357–363, Nov. 2004, doi: 10.1016/j.jcis.2004.06.067.[31] J. L. Shmidt, A. V. Pimenov, A. I. Lieberman, and H. Y. Cheh, “Kinetics of Adsorption with Granular, Powdered, and Fibrous Activated Carbon,” Sep. Sci. Technol., vol. 32, no. 13, pp. 2105–2114, Aug. 1997, doi: 10.1080/01496399708000758.[32] J. Jjagwe, P. W. Olupot, E. Menya, and H. M. Kalibbala, “Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review,” J. Bioresour. Bioprod., vol. 6, no. 4, pp. 292–322, Nov. 2021, doi: 10.1016/j.jobab.2021.03.003.[33] M. Fazal-ur-Rehman, “Methodological Trends in Preparation of Activated Carbon from Local Sources and Their Impacts on Production-A Review,” Curr. Trends Chem. Eng. Process Technol., Feb. 2018, Accessed: Mar. 17, 2024. [Online]. Available: https://www.gavinpublishers.com/article/view/methodological-trends-in-preparation-of-activated-carbon-from-local-sources-and-their-impacts-on-production-a-review[34] J. J. Peña, “Study of chars prepared from biomass wastes : material and energy recovery,” phdthesis, Ecole nationale supérieure Mines-Télécom Atlantique, 2018. Accessed: Jun. 02, 2023. [Online]. Available: https://theses.hal.science/tel-03032643[35] F. C. C. Moura, R. D. F. Rios, and B. R. L. Galvão, “Emerging contaminants removal by granular activated carbon obtained from residual Macauba biomass,” Environ. Sci. Pollut. Res., vol. 25, no. 26, pp. 26482–26492, Sep. 2018, doi: 10.1007/s11356-018-2713-8.[36] H. Fu, L. Yang, Y. Wan, Z. Xu, and D. Zhu, “Adsorption of Pharmaceuticals to Microporous Activated Carbon Treated with Potassium Hydroxide, Carbon Dioxide, and Steam,” J. Environ. Qual., vol. 40, no. 6, pp. 1886–1894, 2011, doi: 10.2134/jeq2011.0109.[37] C.-T. Hsieh and H. Teng, “Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions,” Carbon, vol. 38, no. 6, pp. 863–869, Jan. 2000, doi: 10.1016/S0008-6223(99)00180-3.[38] P. Lawtae and C. Tangsathitkulchai, “The Use of High Surface Area Mesoporous-Activated Carbon from Longan Seed Biomass for Increasing Capacity and Kinetics of Methylene Blue Adsorption from Aqueous Solution,” Molecules, vol. 26, no. 21, Art. no. 21, Jan. 2021, doi: 10.3390/molecules26216521.[39] M. A. Nazem, M. H. Zare, and S. Shirazian, “Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes,” RSC Adv., vol. 10, no. 3, pp. 1463–1475, 2020, doi: 10.1039/C9RA07409K.[40] A. H. A. Abdelaal, “Industrial Char Recoveries in the Perspective of Circular Economy in the Wood Gasification Industry,” Free University of Bozen-Bolzano, Dec. 2023. Accessed: Oct. 04, 2024. [Online]. Available: https://bia.unibz.it/esploro/outputs/doctoral/Industrial-Char-Recoveries-in-the-Perspective/991006679498301241[41] Y. Tong, P. J. McNamara, and B. K. Mayer, “Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium,” Environ. Sci. Water Res. Technol., vol. 5, no. 5, pp. 821–838, Apr. 2019, doi: 10.1039/C8EW00938D.[42] M. M. Rao, D. H. K. K. Reddy, P. Venkateswarlu, and K. Seshaiah, “Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste,” J. Environ. Manage., vol. 90, no. 1, pp. 634–643, Jan. 2009, doi: 10.1016/j.jenvman.2007.12.019.[43] L. Xu, L. C. Campos, J. Li, K. Karu, and L. Ciric, “Removal of antibiotics in sand, GAC, GAC sandwich and anthracite/sand biofiltration systems,” Chemosphere, vol. 275, p. 130004, Jul. 2021, doi: 10.1016/j.chemosphere.2021.130004.[44] D. Eeshwarasinghe, P. Loganathan, and S. Vigneswaran, “Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon,” Chemosphere, vol. 223, pp. 616–627, May 2019, doi: 10.1016/j.chemosphere.2019.02.033.[45] M. Kobya, E. Demirbas, E. Senturk, and M. Ince, “Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone,” Bioresour. Technol., vol. 96, no. 13, pp. 1518–1521, Sep. 2005, doi: 10.1016/j.biortech.2004.12.005.[46] C. E. Choong, S. Ibrahim, and W. J. Basirun, “Mesoporous silica from batik sludge impregnated with aluminum hydroxide for the removal of bisphenol A and ibuprofen,” J. Colloid Interface Sci., vol. 541, pp. 12–17, Apr. 2019, doi: 10.1016/j.jcis.2019.01.071.[47] W. Sun, H. Li, H. Li, S. Li, and X. Cao, “Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: Batch experiment and DFT calculation,” Chem. Eng. J., vol. 360, pp. 645–653, Mar. 2019, doi: 10.1016/j.cej.2018.12.021.[48] K. Kuśmierek, L. Dąbek, and A. Świątkowski, “Comparative study on the adsorption kinetics and equilibrium of common water contaminants onto bentonite,” Desalination Water Treat., vol. 186, pp. 373–381, May 2020, doi: 10.5004/dwt.2020.25476.[49] M. E. M. Ali, A. M. Abd El-Aty, M. I. Badawy, and R. K. Ali, “Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus,” Ecotoxicol. Environ. Saf., vol. 151, pp. 144–152, Apr. 2018, doi: 10.1016/j.ecoenv.2018.01.012.[50] X. Yang, J. Wang, A. M. El-Sherbeeny, A. A. AlHammadi, W. H. Park, and M. R. Abukhadra, “Insight into the adsorption and oxidation activity of a ZnO/piezoelectric quartz core-shell for enhanced decontamination of ibuprofen: Steric, energetic, and oxidation studies,” Chem. Eng. J., vol. 431, p. 134312, Mar. 2022, doi: 10.1016/j.cej.2021.134312.[51] S. Ganesan et al., “Facile and low-cost production of Lantana camara stalk-derived porous carbon nanostructures with excellent supercapacitance and adsorption performance,” Int. J. Energy Res., vol. 45, no. 12, pp. 17440–17449, 2021, doi: 10.1002/er.5730.[52] H. Guedidi, L. Reinert, J.-M. Lévêque, Y. Soneda, N. Bellakhal, and L. Duclaux, “The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen,” Carbon, vol. 54, pp. 432–443, Apr. 2013, doi: 10.1016/j.carbon.2012.11.059.[53] “Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment | Wiley.” Accessed: Jan. 28, 2025. [Online]. Available: https://www.wiley.com/en-us/Activated+Carbon+for+Water+and+Wastewater+Treatment%3A+Integration+of+Adsorption+and+Biological+Treatment-p-9783527324712[54] E. Tchikuala, P. Mourão, and J. Nabais, “Valorisation of Natural Fibres from African Baobab Wastes by the Production of Activated Carbons for Adsorption of Diuron,” Procedia Eng., vol. 200, pp. 399–407, Jan. 2017, doi: 10.1016/j.proeng.2017.07.056.[55] W.-T. Tsai and T.-J. Jiang, “Optimization of physical activation process for activated carbon preparation from water caltrop husk,” Biomass Convers. Biorefinery, vol. 13, no. 8, pp. 6875–6884, Jun. 2023, doi: 10.1007/s13399-021-01729-x.[56] Chairunnisa, N. Takata, K. Thu, T. Miyazaki, K. Nakabayashi, and J. Miyawaki, “Camphor leaf-derived activated carbon prepared by conventional physical activation and its water adsorption profile,” Carbon Lett., vol. 31, no. 4, pp. 737–748, Aug. 2021, doi: 10.1007/s42823-020-00204-3.[57] C.-H. Tsai and W.-T. Tsai, “Optimization of Physical Activation Process by CO2 for Activated Carbon Preparation from Honduras Mahogany Pod Husk,” Materials, vol. 16, no. 19, Art. no. 19, Jan. 2023, doi: 10.3390/ma16196558.[58] N. A. Rashidi and S. Yusup, “Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption,” Environ. Sci. Pollut. Res., vol. 26, no. 33, pp. 33732–33746, Nov. 2019, doi: 10.1007/s11356-018-1903-8.[59] H. Albatrni, H. Qiblawey, and M. J. Al-Marri, “Walnut shell based adsorbents: A review study on preparation, mechanism, and application,” J. Water Process Eng., vol. 45, p. 102527, Feb. 2022, doi: 10.1016/j.jwpe.2021.102527.[60] Colombian Ministry of Agriculture, “Evaluaciones Agropecuarias Municipales EVA | Datos Abiertos Colombia.” [Online]. Available: https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Evaluaciones-Agropecuarias-Municipales-EVA/2pnw-mmge[61] J. G. Henao, G. G. Mancheno, A. Patiño, E. E. Peña, and M. I. Páez, “Elaboración de una Pasta Emulsionada de Cáscara de Chontaduro (Bactris gasipaes),” Rev. Tecnológica - ESPOL, vol. 33, no. 1, Art. no. 1, Jun. 2021, doi: 10.37815/rte.v33n1.794.[62] V. Ortega Bermúdez and J. J. Valderrama Artunduaga, “Aprovechamiento de los residuos sólidos de cáscara y semilla de Bactris Gasipaes y Euterpe Oleracea mediante el análisis composicional y la aplicación de los extractos en la formulación de un producto de valor agregado,” 2020, [Online]. Available: http://hdl.handle.net/1992/48970[63] O. L. Torres-Vargas, I. Luzardo-Ocampo, E. Hernandez-Becerra, and M. E. Rodríguez-García, “Physicochemical Characterization of Unripe and Ripe Chontaduro (Bactris gasipaes Kunth) Fruit Flours and Starches,” Starch - Stärke, vol. 73, no. 7–8, p. 2000242, 2021, doi: 10.1002/star.202000242.[64] El Espectador, “El chontaduro, un potenciador sexual natural,” REVISTACROMOS.COM. Accessed: Jun. 02, 2023. [Online]. Available: https://www.elespectador.com/cromos/estilo-de-vida/el-chontaduro-un-potenciador-sexual-natural/[65] J. J. Zuluaga Peláez, J. Rojas Molina, C. A. Yasno Cabrera, C. A. Cárdenas Guzmán, and C. J. Escobar Acevedo, El cultivo de chontaduro (Bactris gasipaes H.B.K) para fruto y palmito. Corporación colombiana de investigación agropecuaria - AGROSAVIA, 1998. Accessed: May 14, 2024. [Online]. Available: https://repository.agrosavia.co/handle/20.500.12324/15990[66] A. F. R. Gonzalez and C. Flórez, “Valorización de residuos de frutas para combustión y pirólisis,” Rev. Politécnica, vol. 15, no. 28, Art. no. 28, Jun. 2019, doi: 10.33571/rpolitec.v15n28a4.[67] K. MacDermid-Watts, R. Pradhan, and A. Dutta, “Catalytic Hydrothermal Carbonization Treatment of Biomass for Enhanced Activated Carbon: A Review,” Waste Biomass Valorization, vol. 12, no. 5, pp. 2171–2186, May 2021, doi: 10.1007/s12649-020-01134-x.[68] M. Tripathi, J. N. Sahu, and P. Ganesan, “Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review,” Renew. Sustain. Energy Rev., vol. 55, pp. 467–481, Mar. 2016, doi: 10.1016/j.rser.2015.10.122.[69] R.-L. Tseng, F.-C. Wu, and R.-S. Juang, “Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons,” Carbon, vol. 41, no. 3, pp. 487–495, Jan. 2003, doi: 10.1016/S0008-6223(02)00367-6.[70] M. A. Dı́az-Dı́ez, V. Gómez-Serrano, C. Fernández González, E. M. Cuerda-Correa, and A. Macı́as-Garcı́a, “Porous texture of activated carbons prepared by phosphoric acid activation of woods,” Appl. Surf. Sci., vol. 238, no. 1, pp. 309–313, Nov. 2004, doi: 10.1016/j.apsusc.2004.05.228.[71] P. Madhu, H. Kanagasabapathy, and I. Neethi Manickam, “Cotton shell utilization as a source of biomass energy for bio-oil by flash pyrolysis on electrically heated fluidized bed reactor,” J. Mater. Cycles Waste Manag., vol. 18, no. 1, pp. 146–155, Jan. 2016, doi: 10.1007/s10163-014-0318-y.[72] T. Y. A. Fahmy, Y. Fahmy, F. Mobarak, M. El-Sakhawy, and R. E. Abou-Zeid, “Biomass pyrolysis: past, present, and future,” Environ. Dev. Sustain., vol. 22, no. 1, pp. 17–32, Jan. 2020, doi: 10.1007/s10668-018-0200-5.[73] F. Rodríguez-Reinoso and M. Molina-Sabio, “Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview,” Carbon, vol. 30, no. 7, pp. 1111–1118, Jan. 1992, doi: 10.1016/0008-6223(92)90143-K.[74] A. Aworn, P. Thiravetyan, and W. Nakbanpote, “Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores,” J. Anal. Appl. Pyrolysis, vol. 82, no. 2, pp. 279–285, Jul. 2008, doi: 10.1016/j.jaap.2008.04.007.[75] G. M. Brito, D. F. Cipriano, M. Â. Schettino, A. G. Cunha, E. R. C. Coelho, and J. C. Checon Freitas, “One-step methodology for preparing physically activated biocarbons from agricultural biomass waste,” J. Environ. Chem. Eng., vol. 7, no. 3, p. 103113, Jun. 2019, doi: 10.1016/j.jece.2019.103113.[76] P. González-García, “Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications,” Renew. Sustain. Energy Rev., vol. 82, pp. 1393–1414, Feb. 2018, doi: 10.1016/j.rser.2017.04.117.[77] D. Bergna, T. Hu, H. Prokkola, H. Romar, and U. Lassi, “Effect of Some Process Parameters on the Main Properties of Activated Carbon Produced from Peat in a Lab-Scale Process,” Waste Biomass Valorization, vol. 11, no. 6, pp. 2837–2848, Jun. 2020, doi: 10.1007/s12649-019-00584-2.[78] G. K. P. Lopes et al., “Steam-activated carbon from malt bagasse: Optimization of preparation conditions and adsorption studies of sunset yellow food dye,” Arab. J. Chem., vol. 14, no. 3, p. 103001, Mar. 2021, doi: 10.1016/j.arabjc.2021.103001.[79] U. Moralı, H. Demiral, and S. Şensöz, “Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance,” J. Clean. Prod., vol. 189, pp. 602–611, Jul. 2018, doi: 10.1016/j.jclepro.2018.04.084.[80] A. Kundu, B. Sen Gupta, M. A. Hashim, and G. Redzwan, “Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating,” J. Clean. Prod., vol. 105, pp. 420–427, Oct. 2015, doi: 10.1016/j.jclepro.2014.06.093.[81] F. Ghorbani, S. Kamari, S. Zamani, S. Akbari, and M. Salehi, “Optimization and modeling of aqueous Cr(VI) adsorption onto activated carbon prepared from sugar beet bagasse agricultural waste by application of response surface methodology,” Surf. Interfaces, vol. 18, p. 100444, Mar. 2020, doi: 10.1016/j.surfin.2020.100444.[82] S. Dhanapala, H. Nilmalgoda, M. B. Gunathilake, U. Rathnayake, and E. M. Wimalasiri, “Energy Balance Assessment in Agricultural Systems; An Approach to Diversification,” AgriEngineering, vol. 5, no. 2, Art. no. 2, Jun. 2023, doi: 10.3390/agriengineering5020059.[83] D. C. Montgomery, Design and Analysis of Experiments, 8th Edition. John Wiley & Sons, Incorporated, 2012. [Online]. Available: https://books.google.fr/books?id=XQAcAAAAQBAJ[84] W. Edwards, R. F. Miles Jr., and D. von Winterfeldt, Eds., Advances in Decision Analysis: From Foundations to Applications. Cambridge: Cambridge University Press, 2007. doi: 10.1017/CBO9780511611308.[85] M. M. A. Daouda, ´esime Akowanou Akuemaho V. On, S. E. R. Mahunon, C. K. Adjinda, M. P. Aina, and P. Drogui, “Optimal removal of diclofenac and amoxicillin by activated carbon prepared from coconut shell through response surface methodology,” South Afr. J. Chem. Eng., vol. 38, no. 1, pp. 78–89, Dec. 2021, doi: 10.1016/j.sajce.2021.08.004.[86] Y. Wang et al., “Efficient removal of acetochlor pesticide from water using magnetic activated carbon: Adsorption performance, mechanism, and regeneration exploration,” Sci. Total Environ., vol. 778, p. 146353, Jul. 2021, doi: 10.1016/j.scitotenv.2021.146353.[87] S. G. Mohammad, S. M. Ahmed, A. E.-G. E. Amr, and A. H. Kamel, “Porous Activated Carbon from Lignocellulosic Agricultural Waste for the Removal of Acetampirid Pesticide from Aqueous Solutions,” Molecules, vol. 25, no. 10, Art. no. 10, Jan. 2020, doi: 10.3390/molecules25102339.[88] S. Mondal, S. Patel, and S. K. Majumder, “Naproxen Removal Capacity Enhancement by Transforming the Activated Carbon into a Blended Composite Material,” Water. Air. Soil Pollut., vol. 231, no. 2, p. 37, Jan. 2020, doi: 10.1007/s11270-020-4411-7.[89] M. M. Rao, G. P. C. Rao, K. Seshaiah, N. V. Choudary, and M. C. Wang, “Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions,” Waste Manag., vol. 28, no. 5, pp. 849–858, Jan. 2008, doi: 10.1016/j.wasman.2007.01.017.[90] B. Tu et al., “Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass,” J. Colloid Interface Sci., vol. 560, pp. 649–658, Feb. 2020, doi: 10.1016/j.jcis.2019.10.103.[91] S. Mandal, J. Calderon, S. B. Marpu, M. A. Omary, and S. Q. Shi, “Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies,” J. Contam. Hydrol., vol. 243, p. 103869, Dec. 2021, doi: 10.1016/j.jconhyd.2021.103869.[92] E. Menya, P. W. Olupot, H. Storz, M. Lubwama, and Y. Kiros, “Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review,” Chem. Eng. Res. Des., vol. 129, pp. 271–296, Jan. 2018, doi: 10.1016/j.cherd.2017.11.008.[93] W. Li and S. Liu, “Bifunctional activated carbon with dual photocatalysis and adsorption capabilities for efficient phenol removal,” Adsorption, vol. 18, no. 2, pp. 67–74, Oct. 2012, doi: 10.1007/s10450-011-9381-z.[94] O. Garcia-Rodriguez, A. Villot, H. Olvera-Vargas, C. Gerente, Y. Andres, and O. Lefebvre, “Impact of the saturation level on the electrochemical regeneration of activated carbon in a single sequential reactor,” Carbon, vol. 163, pp. 265–275, Aug. 2020, doi: 10.1016/j.carbon.2020.02.041.[95] N. M. Hull, W. H. Herold, and K. G. Linden, “UV LED water disinfection: Validation and small system demonstration study,” AWWA Water Sci., vol. 1, no. 4, p. e1148, 2019, doi: 10.1002/aws2.1148.[96] United States Environmental Protection Agency, “ULTRAVIOLET DISINFECTION GUIDANCE MANUAL FOR THE FINAL LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE,” Washington DC, 2006. [Online]. Available: https://www.epa.gov/system/files/documents/2022-10/ultraviolet-disinfection-guidance-manual-2006.pdf[97] P. Jarvis, O. Autin, E. H. Goslan, and F. Hassard, “Application of Ultraviolet Light-Emitting Diodes (UV-LED) to Full-Scale Drinking-Water Disinfection,” Water, vol. 11, no. 9, Art. no. 9, Sep. 2019, doi: 10.3390/w11091894.[98] M. Mori et al., “Development of a new water sterilization device with a 365 nm UV-LED,” Med. Biol. Eng. Comput., vol. 45, no. 12, pp. 1237–1241, Dec. 2007, doi: 10.1007/s11517-007-0263-1.[99] E. J. Wurtmann and S. L. Wolin, “RNA under attack: Cellular handling of RNA damage,” Crit. Rev. Biochem. Mol. Biol., vol. 44, no. 1, pp. 34–49, 2009, doi: 10.1080/10409230802594043.[100] G.-Q. Li, W.-L. Wang, Z.-Y. Huo, Y. Lu, and H.-Y. Hu, “Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli,” Water Res., vol. 126, pp. 134–143, Dec. 2017, doi: 10.1016/j.watres.2017.09.030.[101] J. Zibo et al., “Which UV wavelength is the most effective for chlorine-resistant bacteria in terms of the impact of activity, cell membrane and DNA?,” Chem. Eng. J., vol. 447, p. 137584, Nov. 2022, doi: 10.1016/j.cej.2022.137584.[102] J. R. Bolton and C. A. Cotton, The Ultraviolet Disinfection Handbook. American Water Works Association, 2011.[103] R. Z. Chen, S. A. Craik, and J. R. Bolton, “Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: Information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water,” Water Res., vol. 43, no. 20, pp. 5087–5096, Dec. 2009, doi: 10.1016/j.watres.2009.08.032.[104] S. Vilhunen, H. Särkkä, and M. Sillanpää, “Ultraviolet light-emitting diodes in water disinfection,” Environ. Sci. Pollut. Res., vol. 16, no. 4, pp. 439–442, Jun. 2009, doi: 10.1007/s11356-009-0103-y.[105] K. Song, M. Mohseni, and F. Taghipour, “Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review,” Water Res., vol. 94, pp. 341–349, May 2016, doi: 10.1016/j.watres.2016.03.003.[106] A. B. Petersen, R. Gniadecki, J. Vicanova, T. Thorn, and H. C. Wulf, “Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes,” J. Photochem. Photobiol. B, vol. 59, no. 1, pp. 123–131, Dec. 2000, doi: 10.1016/S1011-1344(00)00149-4.[107] G. Zarić et al., “Escherichia coli as Microbiological Quality Water Indicator:A High Importance for Human and Animal Health: Microbiological water quality,” J. Hell. Vet. Med. Soc., vol. 74, no. 3, Art. no. 3, Oct. 2023, doi: 10.12681/jhvms.30878.[108] D. Pousty, R. Hofmann, Y. Gerchman, and H. Mamane, “Wavelength-dependent time–dose reciprocity and stress mechanism for UV-LED disinfection of Escherichia coli,” J. Photochem. Photobiol. B, vol. 217, p. 112129, Apr. 2021, doi: 10.1016/j.jphotobiol.2021.112129.[109] N. M. Hull and K. G. Linden, “Synergy of MS2 disinfection by sequential exposure to tailored UV wavelengths,” Water Res., vol. 143, pp. 292–300, Oct. 2018, doi: 10.1016/j.watres.2018.06.017.[110] K. M. S. Hansen, R. Zortea, A. Piketty, S. R. Vega, and H. R. Andersen, “Photolytic removal of DBPs by medium pressure UV in swimming pool water,” Sci. Total Environ., vol. 443, pp. 850–856, Jan. 2013, doi: 10.1016/j.scitotenv.2012.11.064.[111] N. P. F. Gonçalves, O. del Puerto, C. Medana, P. Calza, and P. Roslev, “Degradation of the antifungal pharmaceutical clotrimazole by UVC and vacuum-UV irradiation: Kinetics, transformation products and attenuation of toxicity,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 106275, Oct. 2021, doi: 10.1016/j.jece.2021.106275.[112] K. Kawabata, K. Sugihara, S. Sanoh, S. Kitamura, and S. Ohta, “Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation,” J. Toxicol. Sci., vol. 38, no. 2, pp. 215–223, 2013, doi: 10.2131/jts.38.215.[113] G. Wen et al., “Reactivation of fungal spores in water following UV disinfection: Effect of temperature, dark delay, and real water matrices,” Chemosphere, vol. 237, p. 124490, Dec. 2019, doi: 10.1016/j.chemosphere.2019.124490.[114] A. A. Zewde, Z. Li, L. Zhang, E. A. Odey, and Z. Xiaoqin, “Utilisation of appropriately treated wastewater for some further beneficial purposes: a review of the disinfection method of treated wastewater using UV radiation technology,” Rev. Environ. Health, vol. 35, no. 2, pp. 139–146, Jun. 2020, doi: 10.1515/reveh-2019-0066.[115] C. Jing et al., “Oxidation of ibuprofen in water by UV/O3 process: Removal, byproducts, and degradation pathways,” J. Water Process Eng., vol. 53, p. 103721, Jul. 2023, doi: 10.1016/j.jwpe.2023.103721.[116] W. Sanders, Basic Principles of Nanotechnology. Boca Raton: CRC Press, 2018. doi: 10.1201/9781351054423.[117] N. Puri, A. Gupta, and A. Mishra, “Recent advances on nano-adsorbents and nanomembranes for the remediation of water,” J. Clean. Prod., vol. 322, p. 129051, Nov. 2021, doi: 10.1016/j.jclepro.2021.129051.[118] P. Westerhoff, P. Alvarez, Q. Li, J. Gardea-Torresdey, and J. Zimmerman, “Overcoming implementation barriers for nanotechnology in drinking water treatment,” Environ. Sci. Nano, vol. 3, no. 6, pp. 1241–1253, Dec. 2016, doi: 10.1039/C6EN00183A.[119] W. Xu et al., “Synergy mechanism for TiO2/activated carbon composite material: Photocatalytic degradation of methylene blue solution,” Can. J. Chem. Eng., vol. 100, no. 2, pp. 276–290, 2022, doi: 10.1002/cjce.24097.[120] H. A. Foster, I. B. Ditta, S. Varghese, and A. Steele, “Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity,” Appl. Microbiol. Biotechnol., vol. 90, no. 6, pp. 1847–1868, Jun. 2011, doi: 10.1007/s00253-011-3213-7.[121] M. A. Lazar, S. Varghese, and S. S. Nair, “Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates,” Catalysts, vol. 2, no. 4, Art. no. 4, Dec. 2012, doi: 10.3390/catal2040572.[122] N. Yahya et al., “A review of integrated photocatalyst adsorbents for wastewater treatment,” J. Environ. Chem. Eng., vol. 6, no. 6, pp. 7411–7425, Dec. 2018, doi: 10.1016/j.jece.2018.06.051.[123] G. Di et al., “Simultaneous removal of several pharmaceuticals and arsenic on Zn-Fe mixed metal oxides: Combination of photocatalysis and adsorption,” Chem. Eng. J., vol. 328, pp. 141–151, Nov. 2017, doi: 10.1016/j.cej.2017.06.112.[124] P. Benjwal and K. K. Kar, “Simultaneous photocatalysis and adsorption based removal of inorganic and organic impurities from water by titania/activated carbon/carbonized epoxy nanocomposite,” J. Environ. Chem. Eng., vol. 3, no. 3, pp. 2076–2083, Sep. 2015, doi: 10.1016/j.jece.2015.07.009.[125] M. Chen, C. Bao, T. Cun, and Q. Huang, “One-pot synthesis of ZnO/oligoaniline nanocomposites with improved removal of organic dyes in water: Effect of adsorption on photocatalytic degradation,” Mater. Res. Bull., vol. 95, pp. 459–467, Nov. 2017, doi: 10.1016/j.materresbull.2017.08.017.[126] K. Badvi and V. Javanbakht, “Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles,” J. Clean. Prod., vol. 280, p. 124518, Jan. 2021, doi: 10.1016/j.jclepro.2020.124518.[127] D. D. Sun, J. H. Tay, and K. M. Tan, “Photocatalytic degradation of E. coliform in water,” Water Res., vol. 37, no. 14, pp. 3452–3462, Aug. 2003, doi: 10.1016/S0043-1354(03)00228-8.[128] M. V. Liga, E. L. Bryant, V. L. Colvin, and Q. Li, “Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment,” Water Res., vol. 45, no. 2, pp. 535–544, Jan. 2011, doi: 10.1016/j.watres.2010.09.012.[129] O. Baaloudj, N. Nasrallah, M. Kebir, L. Khezami, A. Amrane, and A. A. Assadi, “A comparative study of ceramic nanoparticles synthesized for antibiotic removal: catalysis characterization and photocatalytic performance modeling,” Environ. Sci. Pollut. Res., vol. 28, no. 11, pp. 13900–13912, Mar. 2021, doi: 10.1007/s11356-020-11616-z.[130] F. Tagnaouti Moumnani et al., “Synthesis and characterization of Zn3V2O8 nanoparticles: mechanism and factors influencing crystal violet photodegradation,” React. Kinet. Mech. Catal., vol. 137, no. 2, pp. 1157–1174, Apr. 2024, doi: 10.1007/s11144-023-02553-2.[131] K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 Photocatalysis: A Historical Overview and Future Prospects,” Jpn. J. Appl. Phys., vol. 44, no. 12R, p. 8269, Dec. 2005, doi: 10.1143/JJAP.44.8269.[132] X. Qu, P. J. J. Alvarez, and Q. Li, “Applications of nanotechnology in water and wastewater treatment,” Water Res., vol. 47, no. 12, pp. 3931–3946, Aug. 2013, doi: 10.1016/j.watres.2012.09.058.[133] H. D. Pascagaza-Rubio et al., “Disinfection of Outdoor Livestock Water Troughs: Effect of TiO2-Based Coatings and UV-A LED,” Water, vol. 14, no. 23, Art. no. 23, Jan. 2022, doi: 10.3390/w14233808.[134] M. Pavel, C. Anastasescu, R.-N. State, A. Vasile, F. Papa, and I. Balint, “Photocatalytic Degradation of Organic and Inorganic Pollutants to Harmless End Products: Assessment of Practical Application Potential for Water and Air Cleaning,” Catalysts, vol. 13, no. 2, Art. no. 2, Feb. 2023, doi: 10.3390/catal13020380.[135] S. N. A. Shah, Z. Shah, M. Hussain, and M. Khan, “Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem,” Bioinorg. Chem. Appl., vol. 2017, p. 4101735, Mar. 2017, doi: 10.1155/2017/4101735.[136] G. Guan, E. Ye, M. You, and Z. Li, “Hybridized 2D Nanomaterials Toward Highly Efficient Photocatalysis for Degrading Pollutants: Current Status and Future Perspectives,” Small, vol. 16, no. 19, p. 1907087, May 2020, doi: 10.1002/smll.201907087.[137] Y. Chen and D. D. Dionysiou, “Sol-Gel Synthesis of Nanostructured TiO2 Films for Water Purification,” in Sol-Gel Methods for Materials Processing, P. Innocenzi, Y. L. Zub, and V. G. Kessler, Eds., in NATO Science for Peace and Security Series C: Environmental Security. Dordrecht: Springer Netherlands, 2008, pp. 67–75. doi: 10.1007/978-1-4020-8514-7_4.[138] D. Bokov et al., “Nanomaterial by Sol-Gel Method: Synthesis and Application,” Adv. Mater. Sci. Eng., vol. 2021, p. e5102014, Dec. 2021, doi: 10.1155/2021/5102014.[139] J. Jaramillo, B. A. Garzón, and L. T. Mejía, “Influence of the pH of the synthesis using sol-gel method on the structural and optical properties of TiO2,” J. Phys. Conf. Ser., vol. 687, no. 1, p. 012099, Feb. 2016, doi: 10.1088/1742-6596/687/1/012099.[140] Y. Ioni, A. Popova, S. Maksimov, and I. Kozerozhets, “Ni Nanoparticles on the Reduced Graphene Oxide Surface Synthesized in Supercritical Isopropanol,” Nanomaterials, vol. 13, no. 22, Art. no. 22, Jan. 2023, doi: 10.3390/nano13222923.[141] M. Hakamizadeh, S. Afshar, A. Tadjarodi, R. Khajavian, M. R. Fadaie, and B. Bozorgi, “Improving hydrogen production via water splitting over Pt/TiO2/activated carbon nanocomposite,” Int. J. Hydrog. Energy, vol. 39, no. 14, pp. 7262–7269, May 2014, doi: 10.1016/j.ijhydene.2014.03.048.[142] U. Schubert, “Chemistry and Fundamentals of the Sol–Gel Process,” in The Sol-Gel Handbook, John Wiley & Sons, Ltd, 2015, pp. 1–28. doi: 10.1002/9783527670819.ch01.[143] S. Benjedim et al., “Activated carbon-based coloured titania nanoparticles with high visible radiation absorption and excellent photoactivity in the degradation of emerging drugs of wastewater,” Carbon, vol. 178, pp. 753–766, Jun. 2021, doi: 10.1016/j.carbon.2021.03.044.[144] Y. Li, S. Zhang, Q. Yu, and W. Yin, “The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol–gel method,” Appl. Surf. Sci., vol. 253, no. 23, pp. 9254–9258, Sep. 2007, doi: 10.1016/j.apsusc.2007.05.057.[145] E. Carpio, P. Zúñiga, S. Ponce, J. Solis, J. Rodriguez, and W. Estrada, “Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon,” J. Mol. Catal. Chem., vol. 228, no. 1, pp. 293–298, Mar. 2005, doi: 10.1016/j.molcata.2004.09.066.[146] Colombian Superintendency of Public Services, “Sistema Único de Información.” Accessed: Jun. 05, 2023. [Online]. Available: http://reportes.sui.gov.co/fabricaReportes/frameSet.jsp?idreporte=acu_tec_039[147] E. J. Smith, W. Davison, and J. Hamilton-Taylor, “Methods for preparing synthetic freshwaters,” Water Res., vol. 36, no. 5, pp. 1286–1296, Mar. 2002, doi: 10.1016/S0043-1354(01)00341-4.[148] Acueducto, agua y alcantarillado de Bogotá, “Plan Maestro de Calidad de Agua Potable,” Bogotá, 2022.[149] “Multi-Attribute Utility Theory and Multi-Criteria Decision Making (Chapter 6) - Theory and Practice in Policy Analysis.” Accessed: Sep. 03, 2024. [Online]. Available: https://www.cambridge.org/core/books/abs/theory-and-practice-in-policy-analysis/multiattribute-utility-theory-and-multicriteria-decision-making/3523324FC20E8D28A191FC5F59F956A8[150] H. Taherdoost and M. Madanchian, “Multi-Criteria Decision Making (MCDM) Methods and Concepts,” Encyclopedia, vol. 3, no. 1, Art. no. 1, Mar. 2023, doi: 10.3390/encyclopedia3010006.[151] R. J. Dombrowski, C. M. Lastoskie, and D. R. Hyduke, “The Horvath–Kawazoe method revisited,” Colloids Surf. Physicochem. Eng. Asp., vol. 187–188, pp. 23–39, Aug. 2001, doi: 10.1016/S0927-7757(01)00618-5.[152] B. Coasne, K. E. Gubbins, and R. J.-M. Pellenq, “A Grand Canonical Monte Carlo Study of Adsorption and Capillary Phenomena in Nanopores of Various Morphologies and Topologies: Testing the BET and BJH Characterization Methods,” Part. Part. Syst. Charact., vol. 21, no. 2, pp. 149–160, 2004, doi: 10.1002/ppsc.200400928.[153] J. Torres-Perez, C. Gerente, and Y. Andres, “Conversion of agricultural residues into activated carbons for water purification: Application to arsenate removal,” J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., vol. 47, no. 8, pp. 1173–1185, 2012, doi: 10.1080/10934529.2012.668390.[154] G. J. Tortora, B. R. Funke, and C. L. Case, Introducción a la microbiología. Ed. Médica Panamericana, 2007.[155] C. Giannini and R. Roani, Diccionario de restauración y diagnóstico. Editorial NEREA, 2008.[156] C. M. Sayes and A. B. Santamaria, “Chapter 5 - Toxicological Issues to Consider When Evaluating the Safety of Consumer Products Containing Nanomaterials,” in Nanotechnology Environmental Health and Safety (Second Edition), M. S. Hull and D. M. Bowman, Eds., in Micro and Nano Technologies. , Oxford: William Andrew Publishing, 2014, pp. 77–115. doi: 10.1016/B978-1-4557-3188-6.00005-0.[157] P. Chakraborty, S. D. Singh, I. Gorai, D. Singh, W.-U. Rahman, and G. Halder, “Explication of physically and chemically treated date stone biochar for sorptive remotion of ibuprofen from aqueous solution,” J. Water Process Eng., vol. 33, p. 101022, Feb. 2020, doi: 10.1016/j.jwpe.2019.101022.[158] F. Hernández et al., “LC-QTOF MS screening of more than 1,000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia,” Anal. Bioanal. Chem., vol. 407, no. 21, pp. 6405–6416, Aug. 2015, doi: 10.1007/s00216-015-8796-x.[159] C. Aristizabal-Ciro, A. M. Botero-Coy, F. J. López, and G. A. Peñuela, “Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply,” Environ. Sci. Pollut. Res., vol. 24, no. 8, pp. 7335–7347, Mar. 2017, doi: 10.1007/s11356-016-8253-1.[160] S. Zhang, Q. Zhang, S. Darisaw, O. Ehie, and G. Wang, “Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA,” Chemosphere, vol. 66, no. 6, pp. 1057–1069, Jan. 2007, doi: 10.1016/j.chemosphere.2006.06.067.[161] L. M. Madikizela and L. Chimuka, “Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa,” Environ. Monit. Assess., vol. 189, no. 7, p. 348, Jul. 2017, doi: 10.1007/s10661-017-6069-1.[162] P. Paíga et al., “Pilot monitoring study of ibuprofen in surface waters of north of Portugal,” Environ. Sci. Pollut. Res., vol. 20, no. 4, pp. 2410–2420, Apr. 2013, doi: 10.1007/s11356-012-1128-1.[163] “Stereoisomeric profiling of pharmaceuticals ibuprofen and iopromide in wastewater and river water, China | Environmental Geochemistry and Health.” Accessed: Jul. 03, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s10653-013-9551-x[164] D. Ramírez-Morales et al., “Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ecotoxicity in a swine production area in Costa Rica,” Chemosphere, vol. 272, p. 129574, Jun. 2021, doi: 10.1016/j.chemosphere.2021.129574.[165] G. Labuto et al., “Individual and competitive adsorption of ibuprofen and caffeine from primary sewage effluent by yeast-based activated carbon and magnetic carbon nanocomposite,” Sustain. Chem. Pharm., vol. 28, p. 100703, Sep. 2022, doi: 10.1016/j.scp.2022.100703.[166] T. R. Sahoo and B. Prelot, “Chapter 7 - Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology,” in Nanomaterials for the Detection and Removal of Wastewater Pollutants, B. Bonelli, F. S. Freyria, I. Rossetti, and R. Sethi, Eds., in Micro and Nano Technologies. , Elsevier, 2020, pp. 161–222. doi: 10.1016/B978-0-12-818489-9.00007-4.[167] E. D. Revellame, D. L. Fortela, W. Sharp, R. Hernandez, and M. E. Zappi, “Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review,” Clean. Eng. Technol., vol. 1, p. 100032, Dec. 2020, doi: 10.1016/j.clet.2020.100032.[168] I. Langmuir, “THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM.,” J. Am. Chem. Soc., vol. 40, no. 9, pp. 1361–1403, Sep. 1918, doi: 10.1021/ja02242a004.[169] H. Freundlich, “Über die Adsorption in Lösungen,” Z. Für Phys. Chem., vol. 57U, no. 1, pp. 385–470, Oct. 1907, doi: 10.1515/zpch-1907-5723.[170] W. W. Loo, Y. L. Pang, S. Lim, K. H. Wong, C. W. Lai, and A. Z. Abdullah, “Enhancement of photocatalytic degradation of Malachite Green using iron doped titanium dioxide loaded on oil palm empty fruit bunch-derived activated carbon,” Chemosphere, vol. 272, p. 129588, Jun. 2021, doi: 10.1016/j.chemosphere.2021.129588.[171] K. Li, L. Yu, J. Cai, and L. Zhang, “C@TiO2 core-shell adsorbents for efficient rhodamine B adsorption from aqueous solution,” Microporous Mesoporous Mater., vol. 320, p. 111110, Jun. 2021, doi: 10.1016/j.micromeso.2021.111110.[172] X.-P. Guo, P. Zang, Y.-M. Li, and D.-S. Bi, “TiO2-Powdered Activated Carbon (TiO2/PAC) for Removal and Photocatalytic Properties of 2-Methylisoborneol (2-MIB) in Water,” Water, vol. 13, no. 12, Art. no. 12, Jan. 2021, doi: 10.3390/w13121622.[173] S. Ntakirutimana and W. Tan, “Electrochemical capacitive behaviors of carbon/titania composite prepared by Tween 80-assisted sol-gel process for capacitive deionization,” Desalination, vol. 512, p. 115131, Sep. 2021, doi: 10.1016/j.desal.2021.115131.[174] A. Amorós-Pérez, M. Á. Lillo-Ródenas, M. del C. Román-Martínez, P. García-Muñoz, and N. Keller, “TiO2 and TiO2-Carbon Hybrid Photocatalysts for Diuron Removal from Water,” Catalysts, vol. 11, no. 4, Art. no. 4, Apr. 2021, doi: 10.3390/catal11040457.[175] Y. Li, X. Li, J. Li, and J. Yin, “TiO2-coated active carbon composites with increased photocatalytic activity prepared by a properly controlled sol–gel method,” Mater. Lett., vol. 59, no. 21, pp. 2659–2663, Sep. 2005, doi: 10.1016/j.matlet.2005.03.050.[176] A. C. Martins et al., “Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline,” Ceram. Int., vol. 43, no. 5, pp. 4411–4418, Apr. 2017, doi: 10.1016/j.ceramint.2016.12.088.[177] R. R. Bhosale, S. R. Pujari, M. K. Lande, B. R. Arbad, S. B. Pawar, and A. B. Gambhire, “Photocatalytic activity and characterization of sol–gel-derived Ni-doped TiO2-coated active carbon composites,” Appl. Surf. Sci., vol. 261, pp. 835–841, Nov. 2012, doi: 10.1016/j.apsusc.2012.08.113.[178] H. Slimen, A. Houas, and J. P. Nogier, “Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light,” J. Photochem. Photobiol. Chem., vol. 221, no. 1, pp. 13–21, Jun. 2011, doi: 10.1016/j.jphotochem.2011.04.013.[179] V. Loryuenyong, A. Buasri, C. Srilachai, and H. Srimuang, “The synthesis of microporous and mesoporous titania with high specific surface area using sol–gel method and activated carbon templates,” Mater. Lett., vol. 87, pp. 47–50, Nov. 2012, doi: 10.1016/j.matlet.2012.07.090.[180] P.-I. Liu et al., “Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization,” Electrochimica Acta, vol. 96, pp. 173–179, Apr. 2013, doi: 10.1016/j.electacta.2013.02.099.[181] M.-A. Galezzo and M. R. Susa, “Effect of single and combined exposures to UV-C and UV-A LEDs on the inactivation of Klebsiella pneumoniae and Escherichia coli in water disinfection,” J. Water Sanit. Hyg. Dev., vol. 11, no. 6, pp. 1071–1082, Oct. 2021, doi: 10.2166/washdev.2021.105.[182] E. J. Cho, L. T. P. Trinh, Y. Song, Y. G. Lee, and H.-J. Bae, “Bioconversion of biomass waste into high value chemicals,” Bioresour. Technol., vol. 298, p. 122386, Feb. 2020, doi: 10.1016/j.biortech.2019.122386.[183] L. S. Queiroz et al., “Activated carbon obtained from amazonian biomass tailings (acai seed): Modification, characterization, and use for removal of metal ions from water,” J. Environ. Manage., vol. 270, p. 110868, Sep. 2020, doi: 10.1016/j.jenvman.2020.110868.[184] B. Janković et al., “Physico-chemical characterization of carbonized apricot kernel shell as precursor for activated carbon preparation in clean technology utilization,” J. Clean. Prod., vol. 236, p. 117614, Nov. 2019, doi: 10.1016/j.jclepro.2019.117614.[185] N. Gómez, J. G. Rosas, J. Cara, O. Martínez, J. A. Alburquerque, and M. E. Sánchez, “Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 1. Effect of temperature on process performance on a pilot scale,” J. Clean. Prod., vol. 120, pp. 181–190, May 2016, doi: 10.1016/j.jclepro.2014.10.082.[186] Y. D. Singh, P. Mahanta, and U. Bora, “Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production,” Renew. Energy, vol. 103, pp. 490–500, Apr. 2017, doi: 10.1016/j.renene.2016.11.039.[187] R. M. Braga et al., “Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass,” J. Therm. Anal. Calorim., vol. 115, no. 2, pp. 1915–1920, Feb. 2014, doi: 10.1007/s10973-013-3503-7.[188] O. Agboola et al., “Synthesis of activated carbon from olive seeds: investigating the yield, energy efficiency, and dye removal capacity,” SN Appl. Sci., vol. 1, no. 1, p. 85, Dec. 2018, doi: 10.1007/s42452-018-0089-5.[189] R. Pedicini, S. Maisano, V. Chiodo, G. Conte, A. Policicchio, and R. G. Agostino, “Posidonia Oceanica and Wood chips activated carbon as interesting materials for hydrogen storage,” Int. J. Hydrog. Energy, vol. 45, no. 27, pp. 14038–14047, May 2020, doi: 10.1016/j.ijhydene.2020.03.130.[190] X. Wang et al., “Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review,” Chemosphere, vol. 287, p. 131995, Jan. 2022, doi: 10.1016/j.chemosphere.2021.131995.[191] X. Xiao, Z. Chen, and B. Chen, “H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials,” Sci. Rep., vol. 6, p. 22644, Mar. 2016, doi: 10.1038/srep22644.[192] A. Amaya, N. Medero, N. Tancredi, H. Silva, and C. Deiana, “Activated carbon briquettes from biomass materials,” Bioresour. Technol., vol. 98, no. 8, pp. 1635–1641, May 2007, doi: 10.1016/j.biortech.2006.05.049.[193] A. M. Warhurst, G. D. Fowler, G. L. McConnachie, and S. J. T. Pollard, “Pore structure and adsorption characteristics of steam pyrolysis carbons from Moringa oleifera,” Carbon, vol. 35, no. 8, pp. 1039–1045, Jan. 1997, doi: 10.1016/S0008-6223(97)00053-5.[194] K. Wilson, H. Yang, C. W. Seo, and W. E. Marshall, “Select metal adsorption by activated carbon made from peanut shells,” Bioresour. Technol., vol. 97, no. 18, pp. 2266–2270, Dec. 2006, doi: 10.1016/j.biortech.2005.10.043.[195] S. Mopoung and N. Dejang, “Activated carbon preparation from eucalyptus wood chips using continuous carbonization–steam activation process in a batch intermittent rotary kiln,” Sci. Rep., vol. 11, no. 1, p. 13948, Jul. 2021, doi: 10.1038/s41598-021-93249-x.[196] “EBC and WBC guidelines & documents.” Accessed: Oct. 17, 2024. [Online]. Available: https://www.european-biochar.org/en/ct/2-EBC-and-WBC-guidelines-documents[197] T. Gandhi, Microelectronics Fialure Analysis Desk Reference, Seventh Edition. ASM International, 2019.[198] S. Chauhan, T. Shafi, B. K. Dubey, and S. Chowdhury, “Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption,” Waste Dispos. Sustain. Energy, vol. 5, no. 1, pp. 37–62, 2023, doi: 10.1007/s42768-022-00118-y.[199] S. Vito, I. Boci, S. Vishkulli, and M. Hoxhaj, “Investigation of Phenol Adsorption Process Utilizing Wood Sawdust,” J. Trans. Syst. Eng., vol. 2, no. 1, Art. no. 1, Jan. 2024, doi: 10.15157/JTSE.2024.2.1.148-155.[200] W. A. Shaikh et al., “Tailor-made biochar-based nanocomposite for enhancing aqueous phase antibiotic removal,” J. Water Process Eng., vol. 55, p. 104215, Oct. 2023, doi: 10.1016/j.jwpe.2023.104215.[201] S. Mondal, K. Bobde, K. Aikat, and G. Halder, “Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: Equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies,” J. Environ. Manage., vol. 182, pp. 581–594, Nov. 2016, doi: 10.1016/j.jenvman.2016.08.018.[202] S. Oh, W. S. Shin, and H. T. Kim, “Effects of pH, dissolved organic matter, and salinity on ibuprofen sorption on sediment,” Environ. Sci. Pollut. Res. Int., vol. 23, no. 22, pp. 22882–22889, 2016, doi: 10.1007/s11356-016-7503-6.[203] M. O. Omorogie et al., “Activated carbon from Nauclea diderrichii agricultural waste–a promising adsorbent for ibuprofen, methylene blue and CO2,” Adv. Powder Technol., vol. 32, no. 3, pp. 866–874, Mar. 2021, doi: 10.1016/j.apt.2021.01.031.[204] A. Arinkoola et al., “Adsorptive Removal of Ibuprofen, Ketoprofen and Naproxen from Aqueous Solution Using Coconut Shell Biomass,” Environ. Res. Eng. Manag., vol. 78, no. 2, Art. no. 2, Jul. 2022, doi: 10.5755/j01.erem.78.2.29695.[205] A. L. Bursztyn Fuentes, D. E. Benito, M. L. Montes, A. N. Scian, and M. B. Lombardi, “Paracetamol and Ibuprofen Removal from Aqueous Phase Using a Ceramic-Derived Activated Carbon,” Arab. J. Sci. Eng., vol. 48, no. 1, pp. 525–537, Jan. 2023, doi: 10.1007/s13369-022-07307-1.[206] L. Li, X. Yao, H. Li, Z. Liu, W. Ma, and X. Liang, “Thermal Stability of Oxygen-Containing Functional Groups on Activated Carbon Surfaces in a Thermal Oxidative Environment,” J. Chem. Eng. Jpn., vol. 47, no. 1, pp. 21–27, 2014, doi: 10.1252/jcej.13we193.[207] H. Ardebili, J. Zhang, and M. G. Pecht, “8 - Defect and failure analysis techniques for encapsulated microelectronics,” in Encapsulation Technologies for Electronic Applications (Second Edition), H. Ardebili, J. Zhang, and M. G. Pecht, Eds., in Materials and Processes for Electronic Applications. , William Andrew Publishing, 2019, pp. 317–373. doi: 10.1016/B978-0-12-811978-5.00008-0.[208] I. A. Olowonyo, K. K. Salam, M. O. Aremu, and A. Lateef, “Synthesis, characterization, and adsorptive performance of titanium dioxide nanoparticles modified groundnut shell activated carbon on ibuprofen removal from pharmaceutical wastewater,” Waste Manag. Bull., vol. 1, no. 4, pp. 217–233, Mar. 2024, doi: 10.1016/j.wmb.2023.11.003.201217699Publication0000-0003-4366-93800000-0003-4366-9380virtual::23075-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000391085https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000391085virtual::23075-1d8229db4-17c5-4b87-9bfe-b9a12e5be383virtual::23075-1d8229db4-17c5-4b87-9bfe-b9a12e5be383d8229db4-17c5-4b87-9bfe-b9a12e5be383virtual::23075-1LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/4810cc94-4be1-4e16-8fc9-6fb33f7a0acf/downloadae9e573a68e7f92501b6913cc846c39fMD53ORIGINALIntegration of UV light, activated carbon and photocatalytic.pdfIntegration of UV light, activated carbon and photocatalytic.pdfapplication/pdf7804388https://repositorio.uniandes.edu.co/bitstreams/0119ab75-b3eb-430b-9fec-4383ff19604b/download28e704fbcaf2a16cf11e9ab0fb399b3bMD54Autorización Tesis Uniandes_Luis ANGEL.pdfAutorización Tesis Uniandes_Luis ANGEL.pdfHIDEapplication/pdf388203https://repositorio.uniandes.edu.co/bitstreams/a677d1b9-588b-4346-9bec-c7bd37dfa7bc/download41fb817f1573568a90fbd3e1709f699cMD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/b6488a38-7682-43c9-952f-70d449940601/download4460e5956bc1d1639be9ae6146a50347MD56TEXTIntegration of UV light, activated carbon and photocatalytic.pdf.txtIntegration of UV light, activated carbon and photocatalytic.pdf.txtExtracted texttext/plain100603https://repositorio.uniandes.edu.co/bitstreams/b7316521-052c-455e-a247-028db1007454/download559cc13a7d53b46fe73cd72235725c11MD58Autorización Tesis Uniandes_Luis ANGEL.pdf.txtAutorización Tesis Uniandes_Luis ANGEL.pdf.txtExtracted texttext/plain2191https://repositorio.uniandes.edu.co/bitstreams/b16696be-3487-4c6d-8321-701338301872/download2a78b4bff3d7d1e4b72a0d2b479d788aMD510THUMBNAILIntegration of UV light, activated carbon and photocatalytic.pdf.jpgIntegration of UV light, activated carbon and photocatalytic.pdf.jpgGenerated Thumbnailimage/jpeg12691https://repositorio.uniandes.edu.co/bitstreams/ce7ea475-0e6e-419e-9c45-d47981719f94/download8fa5720934f073814d752aa379645086MD59Autorización Tesis Uniandes_Luis ANGEL.pdf.jpgAutorización Tesis Uniandes_Luis ANGEL.pdf.jpgGenerated Thumbnailimage/jpeg11288https://repositorio.uniandes.edu.co/bitstreams/08a30662-1f29-4988-be3a-2ceb6d816719/download85a0fb1d7a7bb5388358680424fccf6bMD5111992/75976oai:repositorio.uniandes.edu.co:1992/759762025-03-05 10:11:42.573http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |