Pricing Techniques for Crypto Asset Markets

This thesis explores how traditional asset pricing theory grounded in models such as the Capital Asset Pricing Model (CAPM), provides a foundation for understanding how assets are valued under equilibrium conditions that assume rational expectations and efficient markets. However, the emergence of d...

Full description

Autores:
Martínez Patiño, Manuel Andrés
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/76378
Acceso en línea:
https://hdl.handle.net/1992/76378
Palabra clave:
Crypto-Asstes
Asset Pricing
Bayesian Satistics
Administración
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_8e30f9c4516613fb9ee8f76d5bca5f7d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/76378
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Pricing Techniques for Crypto Asset Markets
title Pricing Techniques for Crypto Asset Markets
spellingShingle Pricing Techniques for Crypto Asset Markets
Crypto-Asstes
Asset Pricing
Bayesian Satistics
Administración
title_short Pricing Techniques for Crypto Asset Markets
title_full Pricing Techniques for Crypto Asset Markets
title_fullStr Pricing Techniques for Crypto Asset Markets
title_full_unstemmed Pricing Techniques for Crypto Asset Markets
title_sort Pricing Techniques for Crypto Asset Markets
dc.creator.fl_str_mv Martínez Patiño, Manuel Andrés
dc.contributor.advisor.none.fl_str_mv Malagón Penen, Juliana
Ter Horst, Enrique Alejandro
dc.contributor.author.none.fl_str_mv Martínez Patiño, Manuel Andrés
dc.contributor.jury.none.fl_str_mv Pombo Vejarano, Carlos
Rodríguez, Rosa
dc.subject.keyword.none.fl_str_mv Crypto-Asstes
Asset Pricing
Bayesian Satistics
topic Crypto-Asstes
Asset Pricing
Bayesian Satistics
Administración
dc.subject.themes.spa.fl_str_mv Administración
description This thesis explores how traditional asset pricing theory grounded in models such as the Capital Asset Pricing Model (CAPM), provides a foundation for understanding how assets are valued under equilibrium conditions that assume rational expectations and efficient markets. However, the emergence of decentralized markets, particularly in the context of crypto-assets, raises critical challenges to the applicability of these frameworks. Unlike traditional financial markets, crypto markets lack a clear fundamental value, exhibit fragmented information channels, limited institutional oversight, and are dominated by retail investors, which results in price formation processes that deviate significantly from classical theory. Crypto-assets are traded on platforms without centralized regulation or standard governance. Their prices are influenced not only by technological adoption or project fundamentals but also by asset-specific mechanisms, investor sentiment, and the amplification effects of digital media. These conditions generate high short-term volatility and hinder convergence toward long-term value, as arbitrage mechanisms are weakened by market fragmentation, heterogeneous transaction costs, and liquidity asymmetries. The central research question guiding this thesis is how prices are formed in crypto-asset markets in the absence of fundamental value. This question invites a reassessment of asset pricing principles under decentralized and speculative conditions. The study is structured around three key inquiries: the role of volatility and market risk premium in the absence of traditional valuation anchors; the impact of heterogeneous investor behavior and asymmetric information on speculative dynamics and price distortion; and the development of a pricing model that reflects the structural features of crypto markets, shaped by noise, sentiment, and fragmentation. Throughout the thesis, a comparative perspective is maintained to contrast traditional financial markets with crypto-asset markets. Traditional markets are characterized by institutional investors and regulatory oversight, providing a stable structure for risk pricing. In contrast, crypto markets operate without such anchors, and prices are often guided by behavioral reference points such as recent price trends or the relative performance of prominent tokens. These informal anchors enable market participants to form expectations and transact, despite the absence of intrinsic valuation measures. The resulting prices reflect speculative interactions among diverse investors navigating uncertainty, consistent with behavioral theories where prices emerge from the interplay between informed and heuristic-driven agents in inefficient informational settings. The contribution of this thesis lies in presenting a coherent alternative explanation of price formation in crypto markets, accounting for investor behavior and the decentralized structure of these ecosystems. The first chapter focuses on the lack of fundamental value in crypto markets and argues, through Prospect Theory, that investors use recent price levels as behavioral anchors, amplifying speculative dynamics and noise. The second chapter examines herding behavior and social learning mechanisms, employing statistical tools to assess the influence of collective behavior on short-term price movements. The final chapter introduces an asset pricing model based on the Heston stochastic volatility framework, modified to incorporate behavioral factors and market segmentation. This integrated approach addresses the limitations of traditional asset pricing models in the context of decentralized and speculative environments.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-24T20:11:35Z
dc.date.available.none.fl_str_mv 2025-06-24T20:11:35Z
dc.date.issued.none.fl_str_mv 2025-05-19
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/76378
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/76378
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Allen, F., Litov, L., and Mei, J. (2006). Large investors, price manipulation, and limits to arbitrage: An anatomy of market corners. Review of Finance, 10(4):645–693.
Back, K. (2010). Martingale pricing. Annual review of financial economics, 2(1):235– 250.
Baker, M. and Wurgler, J. (2007). Investor sentiment in the stock market. Journal of Economic Perspectives, 21(2):129–152.
Bandi, F. M. and Russell, J. R. (2006). Separating microstructure noise from volatility. Journal of Financial Economics, 79(3):655–692.
Banerjee, A. V. (1992). A simple model of herd behavior*. The Quarterly Journal of Economics, 107(3):797–817.
Bansal, R. and Viswanathan, S. (1993). No arbitrage and arbitrage pricing: A new approach. The Journal of Finance, 48(4):1231–1262.
Bartov, E., Radhakrishnan, S., and Krinsky, I. (2000). Investor sophistication and patterns in stock returns after earnings announcements. The Accounting Review, 75(1):43–63.
Barucci, E., Moncayo, G. G., and Marazzina, D. (2022). Cryptocurrencies and stable- coins: a high-frequency analysis. Digital Finance, 4(2-3):217–239.
Bassetti, F., Casarin, R., and Leisen, F. (2014). Beta-product dependent pitman–yor processes for bayesian inference. Journal of Econometrics, 180(1):49–72.
Bassetti, F., Casarin, R., and Ravazzolo, F. (2018). Bayesian Nonparametric Calibration and Combination of Predictive Distributions. Journal of the American Statistical Association, 113(522):675–685.
Bassetti, F., Casarin, R., and Rossini, L. (2020). Hierarchical Species Sampling Models. Bayesian Analysis, 15(3):809 – 838.
Beckers, B. and Bernoth, K. (2024). Monetary policy and mispricing in stock markets. Journal of Money, Credit and Banking, 56(7):1887–1904.
Bekaert, G., Engstrom, E., and Xing, Y. (2009). Risk, uncertainty, and asset prices. Journal of Financial Economics, 91(1):59–82.
Benetton, M. and Compiani, G. (2024). Investors’ beliefs and cryptocurrency prices. The Review of Asset Pricing Studies, 14(2):197–236.
Berg, C., Davidson, S., and Potts, J. (2019). Understanding the blockchain economy: An introduction to institutional cryptoeconomics, chapter 2. Edward Elgar Publishing
Berkman, H. and Koch, P. D. (2008). Noise trading and the price formation process. Journal of Empirical Finance, 15(2):232–250.
Betancourt, M. (2012). Cruising the simplex: Hamiltonian monte carlo and the dirichlet distribution. In AIP Conference Proceedings 31st, volume 1443, pages 157–164. American Institute of Physics.
Betancourt, M. (2017). A conceptual introduction to hamiltonian monte carlo. arXiv preprint arXiv:1701.02434.
Betancourt, M. (2019). The convergence of markov chain monte carlo methods: From the metropolis method to hamiltonian monte carlo. Annalen der Physik, 531(3):1700214.
Bikhchandani, S., Hirshleifer, D., and Welch, I. (1992). A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of political Economy, 100(5):992–1026.
Bikhchandani, S. and Sharma, S. (2000). Herd behavior in financial markets. IMF Staff papers, 47(3):279–310.
Billio, M., Casarin, R., and Rossini, L. (2019). Bayesian Nonparametric Sparse VAR Models. Journal of Econometrics, 212(1):97–115.
Bischi, G.-I., Gallegati, M., Gardini, L., Leombruni, R., and Palestrini, A. (2006). Herd behavior and nonfundamental asset price fluctuations in financial markets. Macroe- conomic Dynamics, 10(4):502–528.
Bloomfield, R., O’hara, M., and Saar, G. (2009). How noise trading affects markets: An experimental analysis. The Review of Financial Studies, 22(6):2275–2302.
Bodó, B. and De Filippi, P. (2022). Trust in context: The impact of regulation on blockchain and defi. Blockchain & Society Policy Research Lab Research Nodes, 1.
Bonini, N. and Rumiati, R. (1996). Mental accounting and acceptance of a price discount. Acta Psychologica, 93(1):149–160. Contributions to Decision Making II.
Borup, D. (2019). Asset pricing model uncertainty. Journal of Empirical Finance, 54:166–189.
Brauneis, A., Mestel, R., and Theissen, E. (2021). What drives the liquidity of cryp- tocurrencies? a long-term analysis. Finance Research Letters, 39:101537.
Brini, A. and Lenz, J. (2024). A comparison of cryptocurrency volatility-benchmarking new and mature asset classes. Financial Innovation, 10(1):122.
Campbell, J. Y. (2000). Asset pricing at the millennium. The Journal of Finance, 55(4):1515–1567.
Campbell, J. Y. and Shiller, R. J. (1988). The dividend-price ratio and expectations of future dividends and discount factors. The review of financial studies, 1(3):195–228.
Casarin, R., Costantini, M., and Osuntuyi, A. (2023). Bayesian nonparametric panel markov-switching garch models. Journal of Business & Economic Statistics, pages 1–25.
Cederburg, S. and O’Doherty, M. S. (2015). Asset-pricing anomalies at the firm level. Journal of Econometrics, 186(1):113–128.
Chang, E. C., Cheng, J. W., and Khorana, A. (2000). An examination of herd behavior in equity markets: An international perspective. Journal of Banking & Finance, 24(10):1651–1679.
Cheah, E.-T. and Fry, J. (2015). Speculative bubbles in bitcoin markets? an empirical investigation into the fundamental value of bitcoin. Economics Letters, 130:32–36.
Chen, C. R., Lung, P. P., and Wang, F. A. (2009). Stock market mispricing: money illusion or resale option? Journal of Financial and Quantitative Analysis, 44(5):1125–1147.
Christie, W. G. and Huang, R. D. (1995). Following the pied piper: do individual returns herd around the market? Financial Analysts Journal, 51(4):31–37.
Chu, J., Zhang, Y., and Chan, S. (2019). The adaptive market hypothesis in the high frequency cryptocurrency market. International Review of Financial Analysis, 64:221–231.
Cipriani, M. and Guarino, A. (2014). Estimating a structural model of herd behavior in financial markets. American Economic Review, 104(1):224–51.
Cochrane, J. H. (1991). Production-based asset pricing and the link between stock returns and economic fluctuations. The Journal of Finance, 46(1):209–237.
Cochrane, J. H. (2009). Asset pricing: Revised edition. Princeton university press.
Cohen, R. B., Gompers, P. A., and Vuolteenaho, T. (2002). Who underreacts to cash- flow news? evidence from trading between individuals and institutions. Journal of Financial Economics, 66(2):409–462. Limits on Arbitrage.
Collomb, A., De Filippi, P., and Klara, S. (2019). Blockchain technology and financial regulation: A risk-based approach to the regulation of icos. European Journal of Risk Regulation, 10(2):263–314.
Cong, L. W., He, Z., and Li, J. (2020). Decentralized mining in centralized pools. The Review of Financial Studies, 34(3):1191–1235.
Cong, L. W., Li, Y., and Wang, N. (2021). Tokenomics: Dynamic adoption and valuation. The Review of Financial Studies, 34(3):1105–1155.
Cox, A. M., Hou, Z., and Obłój, J. (2016). Robust pricing and hedging under trading restrictions and the emergence of local martingale models. Finance and Stochastics, 20:669–704.
De Long, J. B., Shleifer, A., Summers, L. H., and Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of political Economy, 98(4):703–738.
De Luca, G. et al. (2006). Forecasting volatility using high-frequency data. Statistica Applicata, 18:407–422.
Delfabbro, P., King, D. L., and Williams, J. (2021). The psychology of cryptocurrency trading: Risk and protective factors. Journal of behavioral addictions, 10(2):201– 207.
Devenow, A. and Welch, I. (1996). Rational herding in financial economics. European Economic Review, 40(3):603–615. Papers and Proceedings of the Tenth Annual Congress of the European Economic Association
Dimpfl, T. and Peter, F. J. (2021). Nothing but noise? price discovery across cryptocur- rency exchanges. Journal of Financial Markets, 54:100584.
Dobrynskaya, V. (2024). Is downside risk priced in cryptocurrency market? Interna- tional Review of Financial Analysis, 91:102947.
Duffie, D. (2010). Dynamic asset pricing theory. Princeton University Press.
Dunbar, K. and Owusu-Amoako, J. (2022). Cryptocurrency returns under empirical asset pricing. International Review of Financial Analysis, 82:102216.
Fama, E. F. (1965). The behavior of stock-market prices. The journal of Business, 38(1):34–105.
Fama, E. F. (1970). Efficient capital markets. Journal of finance, 25(2):383–417.
Fama, E. F. and French, K. R. (2004). The capital asset pricing model: Theory and evidence. Journal of economic perspectives, 18(3):25–46.
Feldman, T. and Lepori, G. (2016). Asset price formation and behavioral biases. Review of Behavioral Finance, 8(2):137–155.
Feng, G. and He, J. (2022). Factor investing: A bayesian hierarchical approach. Journal of Econometrics, 230(1):183–200.
Fenzl, T. and Pelzmann, L. (2012). Psychological and social forces behind aggregate financial market behavior. Journal of Behavioral Finance, 13(1):56–65.
Fisher, M. and Jensen, M. J. (2022). Bayesian nonparametric learning of how skill is distributed across the mutual fund industry. Journal of Econometrics, 230(1):131– 153.
Frolov, D. (2021). Blockchain and institutional complexity: An extended institutional approach. Journal of Institutional Economics, 17(1):21–36.
Gadi, M. F. A., Schmidt, M., Ruemmele, N., and Sicilia, M.-A. (2024). An empirical approach and practical framework for a decentralized ethereum ecosystem index (eei). PeerJ Computer Science, 10:e1766.
Galati, L. (2024). Exchange market share, market makers, and murky behavior: The impact of no-fee trading on cryptocurrency market quality. Journal of Banking & Finance, page 107222.
García-Monleón, F., del Valle, I. D., and Lara, F. J. (2021). Intrinsic value in crypto currencies. Technological Forecasting and Social Change, 162:120393.
Ghazani, M. M. and Ebrahimi, S. B. (2019). Testing the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the crude oil prices. Finance Research Letters, 30:60–68.
Giudici, G., Milne, A., and Vinogradov, D. (2020). Cryptocurrencies: market analysis and perspectives. Journal of Industrial and Business Economics, 47:1–18
Goldstein, I. and Yang, L. (2017). Information disclosure in financial markets. Annual Review of Financial Economics, 9(Volume 9, 2017):101–125.
Gordon, M. J. (1959). Dividends, earnings, and stock prices. The Review of Economics and Statistics, 41(2):99–105.
Gordon, M. J. (1962). The savings investment and valuation of a corporation. The review of economics and statistics, 44(1):37–51.
Griffin, J. and Kalli, M. (2018). Bayesian Nonparametric Vector Autoregressive Models. Journal of Econometrics, 203(2):267–282.
Griffin, J., Liu, J., and Maheu, J. M. (2021). Bayesian nonparametric estimation of ex post variance. Journal of Financial Econometrics, 19(5):823–859.
Griffin, J. E. and Steel, M. F. J. (2011). Stick-breaking Autoregressive Processes. Journal of Econometrics, 162(2):383–396.
Griffin, J. M. and Shams, A. (2020). Is bitcoin really untethered? The Journal of Finance, 75(4):1913–1964.
Grossman, S. J. and Stiglitz, J. E. (1980). On the impossibility of informationally efficient markets. The American economic review, 70(3):393–408.
Gurdgiev, C. and O’Loughlin, D. (2020). Herding and anchoring in cryptocurrency markets: Investor reaction to fear and uncertainty. Journal of Behavioral and Experimental Finance, 25:100271.
Hackethal, A., Hanspal, T., Lammer, D. M., and Rink, K. (2022). The characteristics and portfolio behavior of bitcoin investors: Evidence from indirect cryptocurrency investments. Review of Finance, 26(4):855–898.
Hansen, L. P. and Jagannathan, R. (1991). Implications of security market data for models of dynamic economies. Journal of Political Economy, 99(2):225–262.
Hansen, L. P. and Jagannathan, R. (1997). Assessing specification errors in stochastic discount factor models. The Journal of Finance, 52(2):557–590.
Hansen, L. P. and Singleton, K. J. (1982). Generalized instrumental variables estimation of nonlinear rational expectations models. Econometrica, 50(5):1269–1286.
Hasso, T., Pelster, M., and Breitmayer, B. (2019). Who trades cryptocurrencies, how do they trade it, and how do they perform? evidence from brokerage accounts. Journal of Behavioral and Experimental Finance, 23:64–74.
Hatjispyros, S. J., Nicoleris, T. N., and Walker, S. G. (2011). Dependent Mixtures of Dirichlet Processes. Computational Statistics & Data Analysis, 55(6):2011–2025.
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of financial studies, 6(2):327– 343
Heston, S. L. and Nandi, S. (2015). A closed-form garch option valuation model. The Review of Financial Studies, 13(3):585–625.
Hirano, K. (2002). Semiparametric Bayesian Inference in Autoregressive Panel Data Models. Econometrica, 70(2):781–799.
Hirshleifer, D. and Hong Teoh, S. (2003). Herd behaviour and cascading in capital markets: A review and synthesis. European Financial Management, 9(1):25–66.
Ho, T. S. and Michaely, R. (1988). Information quality and market efficiency. Journal of Financial and Quantitative Analysis, 23(1):53–70.
Howell, S. T., Niessner, M., and Yermack, D. (2020). Initial coin offerings: Financing growth with cryptocurrency token sales. The Review of Financial Studies, 33(9):3925– 3974.
Huang, E. J. (2015). The role of institutional investors and individual investors in financial markets: Evidence from closed-end funds. Review of Financial Economics, 26:1–11.
Hwang, I. and Kwon, J. H. (2024). Cryptocurrency returns and consumption-based asset pricing. Applied Economics, pages 1–16.
Jensen, J. M. and Maheu, M. J. (2010). Bayesian Semiparametric Stochastic Volatility Modeling. Journal of Econometrics, 157(2):306–316.
Jiang, F., Kang, J., and Meng, L. (2024). Certainty of uncertainty for asset pricing. Journal of Empirical Finance, 78:101501.
Jouini, E. and Kallal, H. (1995). Martingales and arbitrage in securities markets with transaction costs. Journal of Economic Theory, 66(1):178–197.
Kaddouhah, M. (2024). An economic definition of ‘fear of missing out’ (fomo). Finance Research Letters, 63:105344.
Kahneman, D., Sibony, O., and Sunstein, C. R. (2021). Noise: A flaw in human judgment. Hachette UK.
Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2):263–291.
Kalli, M., Griffin, J. E., and Walker, S. G. (2011). Slice Sampling Mixture Models. Statistics and Computing, 21(1):93–105.
Kalyanaram, G. and Winer, R. S. (1995). Empirical generalizations from reference price research. Marketing Science, 14(3):G161–G169.
Katsiampa, P. (2019). Volatility co-movement between bitcoin and ether. Finance Research Letters, 30:221–227.
Kogan, S., Makarov, I., Niessner, M., and Schoar, A. (2024). Are cryptos different? evidence from retail trading. Journal of Financial Economics, 159:103897.
Kon, S. J. and Jen, F. C. (1979). The investment performance of mutual funds: An empirical investigation of timing, selectivity, and market efficiency. The Journal of Business, 52(2):263–289.
Kyriazis, N. A. (2020). Herding behaviour in digital currency markets: An integrated survey and empirical estimation. Heliyon, 6(8).
Lehar, A. and Parlour, C. A. (2021). Decentralized exchange: The uniswap automated market maker. Journal of Finance forthcoming.
Lemperiere, Y., Deremble, C., Nguyen, T.-T., Seager, P., Potters, M., and Bouchaud, J.-P. (2017). Risk premia: Asymmetric tail risks and excess returns. Quantitative Finance, 17(1):1–14.
Liang, R., Qin, B., and Xia, Q. (2022). Bayesian inference for mixed gaussian garch- type model by hamiltonian monte carlo algorithm. Computational Economics, pages 1–28.
Lintner, J. (1975). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. In Stochastic optimization models in finance, pages 131–155. Elsevier.
Liu, Y. and Tsyvinski, A. (2021). Risks and returns of cryptocurrency. The Review of Financial Studies, 34(6):2689–2727
Liu, Y., Tsyvinski, A., and Wu, X. (2022). Common risk factors in cryptocurrency. The Journal of Finance, 77(2):1133–1177.
Lo, A. W. (2005). Reconciling efficient markets with behavioral finance: the adaptive markets hypothesis. Journal of investment consulting, 7(2):21–44.
Lo, A. W. (2012). Adaptive markets and the new world order (corrected may 2012). Financial analysts journal, 68(2):18–29.
Loewenstein, M. and Willard, G. A. (2000). Rational equilibrium asset-pricing bubbles in continuous trading models. Journal of Economic Theory, 91(1):17–58.
Long, J. B. D., Shleifer, A., Summers, L. H., and Waldmann, R. J. (1991). The survival of noise traders in financial markets. The Journal of Business, 64(1):1–19.
Lucas, R. E. (1978). Asset prices in an exchange economy. Econometrica, 46(6):1429– 1445.
Lucey, B. M., Vigne, S. A., Yarovaya, L., and Wang, Y. (2022). The cryptocurrency uncertainty index. Finance Research Letters, 45:102147.
Mak, C., Zaiser, F., and Ong, L. (2021). Nonparametric hamiltonian monte carlo. In International Conference on Machine Learning, pages 7336–7347. PMLR.
Makarov, I. and Schoar, A. (2020). Trading and arbitrage in cryptocurrency markets. Journal of Financial Economics, 135(2):293–319.
Malamud, S. and Rostek, M. (2017). Decentralized exchange. American Economic Review, 107(11):3320–3362.
Markowitz, H. (1952). Portfolio selection. The Journal of finance (New York), 7(1):77–.
Marsat, S. and Williams, B. (2013). Does price influence assessment of fundamental value? experimental evidence. Journal of Behavioral Finance, 14(4):268–275.
Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous- time case. The review of economics and statistics, 51(3):247–257.
Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. Journal of economic theory, 3(4):373–413.
Merton, R. C. (1973). An intertemporal capital asset pricing model. Econometrica, 41(5):867–887.
Merton, R. C. (1998). Applications of option-pricing theory: Twenty-five years later. The American Economic Review, 88(3):323–349.
Merton, R. C. and Bodie, Z. (2004). The design of financial systems: Towards a synthesis of function and structure. Working Paper 10620, National Bureau of Economic Research.
Miller, E. M. (1977). Risk, uncertainty, and divergence of opinion. The Journal of Finance, 32(4):1151–1168.
Miyazaki, H. (2007). Between arbitrage and speculation: an economy of belief and doubt. Economy and Society, 36(3):396–415.
Narayanan, M. (1985). Managerial incentives for short-term results. The Journal of Finance, 40(5):1469–1484.
Neal, P. and Kypraios, T. (2015). Exact bayesian inference via data augmentation. Statistics and Computing, 25:333–347.
Ng, S.-H., Zhuang, Z., Toh, M.-Y., Ong, T.-S., and Teh, B.-H. (2022). Exploring herding behavior in an innovative-oriented stock market: evidence from chinext. Journal of Applied Economics, 25(1):523–542.
Nofsinger, J. R. and Sias, R. W. (1999). Herding and feedback trading by institutional and individual investors. The Journal of finance, 54(6):2263–2295.
Noreen, U., Shafique, A., Ayub, U., and Saeed, S. K. (2022). Does the adaptive market hypothesis reconcile the behavioral finance and the efficient market hypothesis? Risks, 10(9):168.
Nuhiu, A., Aliu, F., Horák, J., and Peci, B. (2023). Making informed decisions in the volatile crypto market: an analysis of portfolio risk and return. SAGE Open, 13(3):21582440231193600.
Ozdamar, M., Sensoy, A., and Akdeniz, L. (2022). Retail vs institutional investor attention in the cryptocurrency market. Journal of International Financial Markets, Institutions and Money, 81:101674.
Palamalai, S., Kumar, K. K., and Maity, B. (2021). Testing the random walk hypothesis for leading cryptocurrencies. Borsa Istanbul Review, 21(3):256–268.
Peng, L. and Röell, A. (2014). Managerial incentives and stock price manipulation. The Journal of Finance, 69(2):487–526.
Pyle, D. H. (1972). Descriptive theories of financial institutions under uncertainty. The Journal of Financial and Quantitative Analysis, 7(5):2009–2029.
Rabaa Karaa, Skander Slim, J. W. G. A. G. and Kallinterakis, V. (2024). Do investors feed- back trade in the bitcoin—and why? The European Journal of Finance, 30(16):1951– 1971.
Ranyard, R., Charlton, J. P., and Williamson, J. (2001). The role of internal refer- ence prices in consumers’ willingness to pay judgments: Thaler’s beer pricing task revisited. Acta Psychologica, 106(3):265–283.
Reinganum, M. R. (1981). The arbitrage pricing theory: Some empirical results. The Journal of Finance, 36(2):313–321.
Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3):341–360.
Ross, S. A. (2013). The arbitrage theory of capital asset pricing. In Handbook of the fundamentals of financial decision making: Part I, pages 11–30. World Scientific.
Samuelson, P. A. (1973). Mathematics of speculative price. SIAM Review, 15(1):1–42.
Samuelson, P. A. (1975). Lifetime portfolio selection by dynamic stochastic program- ming. In ZIEMBA, W. and VICKSON, R., editors, Stochastic Optimization Models in Finance, pages 517–524. Academic Press.
Samuelson, P. A. (2015). Rational Theory of Warrant Pricing, pages 195–232. Springer International Publishing, Cham.
Samuelson, P. A. (2016). Proof that properly anticipated prices fluctuate randomly. In The world scientific handbook of futures markets, pages 25–38. World Scientific.
Schilling, L. and Uhlig, H. (2019). Some simple bitcoin economics. Journal of Monetary Economics, 106:16–26. SPECIAL CONFERENCE ISSUE: “Money Creation and Cur- rency Competition” October 19-20, 2018 Sponsored by the Study Center Gerzensee and Swiss National Bank.
Schnaubelt, M., Rende, J., and Krauss, C. (2019). Testing stylized facts of bitcoin limit order books. Journal of Risk and Financial Management, 12(1).
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3):425–442.
Shen, D., Urquhart, A., and Wang, P. (2020). A three-factor pricing model for cryp- tocurrencies. Finance Research Letters, 34:101248.
Shiller, R. (1988). Fashion, fadsandbubbles in financial markets. Knights, Raidersand Targets, der. J. Coffee ve diğerleri, New York.
Shiller, R. J. (1981). Do stock prices move too much to be justified by subsequent changes in dividends? The American Economic Review, 71(3):421–436.
Shiller, R. J. (1995). Conversation, information, and herd behavior. The American Economic Review, 85(2):181–185.
Shiller, R. J., Fischer, S., and Friedman, B. M. (1984). Stock prices and social dynamics. Brookings Papers on Economic Activity, 1984(2):457–510.
Shleifer, A. and Summers, L. H. (1990). The noise trader approach to finance. Journal of Economic perspectives, 4(2):19–33.
Sias, R., Starks, L., and Titman, S. (2006). Changes in institutional ownership and stock returns: Assessment and methodology. The Journal of Business, 79(6):2869–2910.
Siddiqi, H. (2018). Anchoring-adjusted capital asset pricing model. Journal of Behav- ioral Finance, 19(3):249–270
Smales, L. A. (2022). Investor attention in cryptocurrency markets. International Review of Financial Analysis, 79:101972.
Sockin, M. and Xiong, W. (2023). A model of cryptocurrencies. Management Science, 69(11):6684–6707.
Sornette, D. (2003). Critical market crashes. Physics Reports, 378(1):1–98.
Taddy, M. A. and Kottas, A. (2009). Markov Switching Dirichlet Process Mixture Regression. Bayesian Analysis, 4(4):793–816.
Tanner, M. and Wong, W. (1987). The Calculation of Posterior Distributions by Data Augmentation. Journal of the American Statistical Association, (82):528–550.
Thomas, S. and Tu, W. (2021). Learning hamiltonian monte carlo in r. The American Statistician, 75(4):403–413.
Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157):1124–1131.
Tversky, A. and Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and uncertainty, 5:297–323.
Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of financial economics, 5(2):177–188.
Wagner, W. (2008). The homogenization of the financial system and financial crises. Journal of Financial Intermediation, 17(3):330–356.
Walker, S. G. (2007). Sampling the Dirichlet Mixture Model with Slices. Communications in Statistics - Simulation and Computation, 36(1):45–54.
Wang, H. (2010). Sparse Seemingly Unrelated Regression Modelling: Applications in Finance and Econometrics. Computational Statistics & Data Analysis, 54(11):2866– 2877.
Yermack, D. (2017). Corporate governance and blockchains. Review of finance, 21(1):7–31.
Young, M. R. and Lenk, P. J. (1998). Hierarchical bayes methods for multifactor model estimation and portfolio selection. Management Science, 44(11-part-2):S111– S124.
Zeng, Y. (2016). Institutional investors: Arbitrageurs or rational trend chasers. Inter- national Review of Financial Analysis, 45:240–262.
Zhang, W. and Li, Y. (2020). Is idiosyncratic volatility priced in cryptocurrency markets? Research in International Business and Finance, 54:101252.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 106 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Administración
dc.publisher.faculty.none.fl_str_mv Facultad de Administración
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/cf57759c-960b-41d1-901a-9a98993b78da/download
https://repositorio.uniandes.edu.co/bitstreams/5c4de308-2995-493b-893f-00aa71cc5d84/download
https://repositorio.uniandes.edu.co/bitstreams/4cb23c81-1bd5-4d84-ad7d-caeaefbf4924/download
https://repositorio.uniandes.edu.co/bitstreams/f6b56ff6-3f4b-4972-951c-3d12521de197/download
https://repositorio.uniandes.edu.co/bitstreams/36ce45c4-58ab-4931-8847-b104611f7385/download
https://repositorio.uniandes.edu.co/bitstreams/862f4e82-d430-407e-9914-7a78d42b0724/download
https://repositorio.uniandes.edu.co/bitstreams/82dfec7e-862e-4212-9209-6692e0e35634/download
https://repositorio.uniandes.edu.co/bitstreams/bcdf8ee3-22b4-4fd8-b591-146d2849b60a/download
bitstream.checksum.fl_str_mv 28984c2e4c5532a5653113124548bb25
58c6e4d1a7d04b1c1e8e6e15bd87f85b
ae9e573a68e7f92501b6913cc846c39f
4460e5956bc1d1639be9ae6146a50347
4eac3d5d890a9fb5155943f0b42b5629
96b1658fdfabdb2d5c8d7e2cde4ceebd
5144c9ca8914526b8230243f3a7862aa
96f2adde65bc26ea23122affdc4909fc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1837005461819228160
spelling Malagón Penen, Julianavirtual::24337-1Ter Horst, Enrique Alejandrovirtual::24338-1Martínez Patiño, Manuel AndrésPombo Vejarano, CarlosRodríguez, Rosa2025-06-24T20:11:35Z2025-06-24T20:11:35Z2025-05-19https://hdl.handle.net/1992/76378instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This thesis explores how traditional asset pricing theory grounded in models such as the Capital Asset Pricing Model (CAPM), provides a foundation for understanding how assets are valued under equilibrium conditions that assume rational expectations and efficient markets. However, the emergence of decentralized markets, particularly in the context of crypto-assets, raises critical challenges to the applicability of these frameworks. Unlike traditional financial markets, crypto markets lack a clear fundamental value, exhibit fragmented information channels, limited institutional oversight, and are dominated by retail investors, which results in price formation processes that deviate significantly from classical theory. Crypto-assets are traded on platforms without centralized regulation or standard governance. Their prices are influenced not only by technological adoption or project fundamentals but also by asset-specific mechanisms, investor sentiment, and the amplification effects of digital media. These conditions generate high short-term volatility and hinder convergence toward long-term value, as arbitrage mechanisms are weakened by market fragmentation, heterogeneous transaction costs, and liquidity asymmetries. The central research question guiding this thesis is how prices are formed in crypto-asset markets in the absence of fundamental value. This question invites a reassessment of asset pricing principles under decentralized and speculative conditions. The study is structured around three key inquiries: the role of volatility and market risk premium in the absence of traditional valuation anchors; the impact of heterogeneous investor behavior and asymmetric information on speculative dynamics and price distortion; and the development of a pricing model that reflects the structural features of crypto markets, shaped by noise, sentiment, and fragmentation. Throughout the thesis, a comparative perspective is maintained to contrast traditional financial markets with crypto-asset markets. Traditional markets are characterized by institutional investors and regulatory oversight, providing a stable structure for risk pricing. In contrast, crypto markets operate without such anchors, and prices are often guided by behavioral reference points such as recent price trends or the relative performance of prominent tokens. These informal anchors enable market participants to form expectations and transact, despite the absence of intrinsic valuation measures. The resulting prices reflect speculative interactions among diverse investors navigating uncertainty, consistent with behavioral theories where prices emerge from the interplay between informed and heuristic-driven agents in inefficient informational settings. The contribution of this thesis lies in presenting a coherent alternative explanation of price formation in crypto markets, accounting for investor behavior and the decentralized structure of these ecosystems. The first chapter focuses on the lack of fundamental value in crypto markets and argues, through Prospect Theory, that investors use recent price levels as behavioral anchors, amplifying speculative dynamics and noise. The second chapter examines herding behavior and social learning mechanisms, employing statistical tools to assess the influence of collective behavior on short-term price movements. The final chapter introduces an asset pricing model based on the Heston stochastic volatility framework, modified to incorporate behavioral factors and market segmentation. This integrated approach addresses the limitations of traditional asset pricing models in the context of decentralized and speculative environments.Doctorado106 páginasapplication/pdfengUniversidad de los AndesDoctorado en AdministraciónFacultad de AdministraciónAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pricing Techniques for Crypto Asset MarketsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDCrypto-AsstesAsset PricingBayesian SatisticsAdministraciónAllen, F., Litov, L., and Mei, J. (2006). Large investors, price manipulation, and limits to arbitrage: An anatomy of market corners. Review of Finance, 10(4):645–693.Back, K. (2010). Martingale pricing. Annual review of financial economics, 2(1):235– 250.Baker, M. and Wurgler, J. (2007). Investor sentiment in the stock market. Journal of Economic Perspectives, 21(2):129–152.Bandi, F. M. and Russell, J. R. (2006). Separating microstructure noise from volatility. Journal of Financial Economics, 79(3):655–692.Banerjee, A. V. (1992). A simple model of herd behavior*. The Quarterly Journal of Economics, 107(3):797–817.Bansal, R. and Viswanathan, S. (1993). No arbitrage and arbitrage pricing: A new approach. The Journal of Finance, 48(4):1231–1262.Bartov, E., Radhakrishnan, S., and Krinsky, I. (2000). Investor sophistication and patterns in stock returns after earnings announcements. The Accounting Review, 75(1):43–63.Barucci, E., Moncayo, G. G., and Marazzina, D. (2022). Cryptocurrencies and stable- coins: a high-frequency analysis. Digital Finance, 4(2-3):217–239.Bassetti, F., Casarin, R., and Leisen, F. (2014). Beta-product dependent pitman–yor processes for bayesian inference. Journal of Econometrics, 180(1):49–72.Bassetti, F., Casarin, R., and Ravazzolo, F. (2018). Bayesian Nonparametric Calibration and Combination of Predictive Distributions. Journal of the American Statistical Association, 113(522):675–685.Bassetti, F., Casarin, R., and Rossini, L. (2020). Hierarchical Species Sampling Models. Bayesian Analysis, 15(3):809 – 838.Beckers, B. and Bernoth, K. (2024). Monetary policy and mispricing in stock markets. Journal of Money, Credit and Banking, 56(7):1887–1904.Bekaert, G., Engstrom, E., and Xing, Y. (2009). Risk, uncertainty, and asset prices. Journal of Financial Economics, 91(1):59–82.Benetton, M. and Compiani, G. (2024). Investors’ beliefs and cryptocurrency prices. The Review of Asset Pricing Studies, 14(2):197–236.Berg, C., Davidson, S., and Potts, J. (2019). Understanding the blockchain economy: An introduction to institutional cryptoeconomics, chapter 2. Edward Elgar PublishingBerkman, H. and Koch, P. D. (2008). Noise trading and the price formation process. Journal of Empirical Finance, 15(2):232–250.Betancourt, M. (2012). Cruising the simplex: Hamiltonian monte carlo and the dirichlet distribution. In AIP Conference Proceedings 31st, volume 1443, pages 157–164. American Institute of Physics.Betancourt, M. (2017). A conceptual introduction to hamiltonian monte carlo. arXiv preprint arXiv:1701.02434.Betancourt, M. (2019). The convergence of markov chain monte carlo methods: From the metropolis method to hamiltonian monte carlo. Annalen der Physik, 531(3):1700214.Bikhchandani, S., Hirshleifer, D., and Welch, I. (1992). A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of political Economy, 100(5):992–1026.Bikhchandani, S. and Sharma, S. (2000). Herd behavior in financial markets. IMF Staff papers, 47(3):279–310.Billio, M., Casarin, R., and Rossini, L. (2019). Bayesian Nonparametric Sparse VAR Models. Journal of Econometrics, 212(1):97–115.Bischi, G.-I., Gallegati, M., Gardini, L., Leombruni, R., and Palestrini, A. (2006). Herd behavior and nonfundamental asset price fluctuations in financial markets. Macroe- conomic Dynamics, 10(4):502–528.Bloomfield, R., O’hara, M., and Saar, G. (2009). How noise trading affects markets: An experimental analysis. The Review of Financial Studies, 22(6):2275–2302.Bodó, B. and De Filippi, P. (2022). Trust in context: The impact of regulation on blockchain and defi. Blockchain & Society Policy Research Lab Research Nodes, 1.Bonini, N. and Rumiati, R. (1996). Mental accounting and acceptance of a price discount. Acta Psychologica, 93(1):149–160. Contributions to Decision Making II.Borup, D. (2019). Asset pricing model uncertainty. Journal of Empirical Finance, 54:166–189.Brauneis, A., Mestel, R., and Theissen, E. (2021). What drives the liquidity of cryp- tocurrencies? a long-term analysis. Finance Research Letters, 39:101537.Brini, A. and Lenz, J. (2024). A comparison of cryptocurrency volatility-benchmarking new and mature asset classes. Financial Innovation, 10(1):122.Campbell, J. Y. (2000). Asset pricing at the millennium. The Journal of Finance, 55(4):1515–1567.Campbell, J. Y. and Shiller, R. J. (1988). The dividend-price ratio and expectations of future dividends and discount factors. The review of financial studies, 1(3):195–228.Casarin, R., Costantini, M., and Osuntuyi, A. (2023). Bayesian nonparametric panel markov-switching garch models. Journal of Business & Economic Statistics, pages 1–25.Cederburg, S. and O’Doherty, M. S. (2015). Asset-pricing anomalies at the firm level. Journal of Econometrics, 186(1):113–128.Chang, E. C., Cheng, J. W., and Khorana, A. (2000). An examination of herd behavior in equity markets: An international perspective. Journal of Banking & Finance, 24(10):1651–1679.Cheah, E.-T. and Fry, J. (2015). Speculative bubbles in bitcoin markets? an empirical investigation into the fundamental value of bitcoin. Economics Letters, 130:32–36.Chen, C. R., Lung, P. P., and Wang, F. A. (2009). Stock market mispricing: money illusion or resale option? Journal of Financial and Quantitative Analysis, 44(5):1125–1147.Christie, W. G. and Huang, R. D. (1995). Following the pied piper: do individual returns herd around the market? Financial Analysts Journal, 51(4):31–37.Chu, J., Zhang, Y., and Chan, S. (2019). The adaptive market hypothesis in the high frequency cryptocurrency market. International Review of Financial Analysis, 64:221–231.Cipriani, M. and Guarino, A. (2014). Estimating a structural model of herd behavior in financial markets. American Economic Review, 104(1):224–51.Cochrane, J. H. (1991). Production-based asset pricing and the link between stock returns and economic fluctuations. The Journal of Finance, 46(1):209–237.Cochrane, J. H. (2009). Asset pricing: Revised edition. Princeton university press.Cohen, R. B., Gompers, P. A., and Vuolteenaho, T. (2002). Who underreacts to cash- flow news? evidence from trading between individuals and institutions. Journal of Financial Economics, 66(2):409–462. Limits on Arbitrage.Collomb, A., De Filippi, P., and Klara, S. (2019). Blockchain technology and financial regulation: A risk-based approach to the regulation of icos. European Journal of Risk Regulation, 10(2):263–314.Cong, L. W., He, Z., and Li, J. (2020). Decentralized mining in centralized pools. The Review of Financial Studies, 34(3):1191–1235.Cong, L. W., Li, Y., and Wang, N. (2021). Tokenomics: Dynamic adoption and valuation. The Review of Financial Studies, 34(3):1105–1155.Cox, A. M., Hou, Z., and Obłój, J. (2016). Robust pricing and hedging under trading restrictions and the emergence of local martingale models. Finance and Stochastics, 20:669–704.De Long, J. B., Shleifer, A., Summers, L. H., and Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of political Economy, 98(4):703–738.De Luca, G. et al. (2006). Forecasting volatility using high-frequency data. Statistica Applicata, 18:407–422.Delfabbro, P., King, D. L., and Williams, J. (2021). The psychology of cryptocurrency trading: Risk and protective factors. Journal of behavioral addictions, 10(2):201– 207.Devenow, A. and Welch, I. (1996). Rational herding in financial economics. European Economic Review, 40(3):603–615. Papers and Proceedings of the Tenth Annual Congress of the European Economic AssociationDimpfl, T. and Peter, F. J. (2021). Nothing but noise? price discovery across cryptocur- rency exchanges. Journal of Financial Markets, 54:100584.Dobrynskaya, V. (2024). Is downside risk priced in cryptocurrency market? Interna- tional Review of Financial Analysis, 91:102947.Duffie, D. (2010). Dynamic asset pricing theory. Princeton University Press.Dunbar, K. and Owusu-Amoako, J. (2022). Cryptocurrency returns under empirical asset pricing. International Review of Financial Analysis, 82:102216.Fama, E. F. (1965). The behavior of stock-market prices. The journal of Business, 38(1):34–105.Fama, E. F. (1970). Efficient capital markets. Journal of finance, 25(2):383–417.Fama, E. F. and French, K. R. (2004). The capital asset pricing model: Theory and evidence. Journal of economic perspectives, 18(3):25–46.Feldman, T. and Lepori, G. (2016). Asset price formation and behavioral biases. Review of Behavioral Finance, 8(2):137–155.Feng, G. and He, J. (2022). Factor investing: A bayesian hierarchical approach. Journal of Econometrics, 230(1):183–200.Fenzl, T. and Pelzmann, L. (2012). Psychological and social forces behind aggregate financial market behavior. Journal of Behavioral Finance, 13(1):56–65.Fisher, M. and Jensen, M. J. (2022). Bayesian nonparametric learning of how skill is distributed across the mutual fund industry. Journal of Econometrics, 230(1):131– 153.Frolov, D. (2021). Blockchain and institutional complexity: An extended institutional approach. Journal of Institutional Economics, 17(1):21–36.Gadi, M. F. A., Schmidt, M., Ruemmele, N., and Sicilia, M.-A. (2024). An empirical approach and practical framework for a decentralized ethereum ecosystem index (eei). PeerJ Computer Science, 10:e1766.Galati, L. (2024). Exchange market share, market makers, and murky behavior: The impact of no-fee trading on cryptocurrency market quality. Journal of Banking & Finance, page 107222.García-Monleón, F., del Valle, I. D., and Lara, F. J. (2021). Intrinsic value in crypto currencies. Technological Forecasting and Social Change, 162:120393.Ghazani, M. M. and Ebrahimi, S. B. (2019). Testing the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the crude oil prices. Finance Research Letters, 30:60–68.Giudici, G., Milne, A., and Vinogradov, D. (2020). Cryptocurrencies: market analysis and perspectives. Journal of Industrial and Business Economics, 47:1–18Goldstein, I. and Yang, L. (2017). Information disclosure in financial markets. Annual Review of Financial Economics, 9(Volume 9, 2017):101–125.Gordon, M. J. (1959). Dividends, earnings, and stock prices. The Review of Economics and Statistics, 41(2):99–105.Gordon, M. J. (1962). The savings investment and valuation of a corporation. The review of economics and statistics, 44(1):37–51.Griffin, J. and Kalli, M. (2018). Bayesian Nonparametric Vector Autoregressive Models. Journal of Econometrics, 203(2):267–282.Griffin, J., Liu, J., and Maheu, J. M. (2021). Bayesian nonparametric estimation of ex post variance. Journal of Financial Econometrics, 19(5):823–859.Griffin, J. E. and Steel, M. F. J. (2011). Stick-breaking Autoregressive Processes. Journal of Econometrics, 162(2):383–396.Griffin, J. M. and Shams, A. (2020). Is bitcoin really untethered? The Journal of Finance, 75(4):1913–1964.Grossman, S. J. and Stiglitz, J. E. (1980). On the impossibility of informationally efficient markets. The American economic review, 70(3):393–408.Gurdgiev, C. and O’Loughlin, D. (2020). Herding and anchoring in cryptocurrency markets: Investor reaction to fear and uncertainty. Journal of Behavioral and Experimental Finance, 25:100271.Hackethal, A., Hanspal, T., Lammer, D. M., and Rink, K. (2022). The characteristics and portfolio behavior of bitcoin investors: Evidence from indirect cryptocurrency investments. Review of Finance, 26(4):855–898.Hansen, L. P. and Jagannathan, R. (1991). Implications of security market data for models of dynamic economies. Journal of Political Economy, 99(2):225–262.Hansen, L. P. and Jagannathan, R. (1997). Assessing specification errors in stochastic discount factor models. The Journal of Finance, 52(2):557–590.Hansen, L. P. and Singleton, K. J. (1982). Generalized instrumental variables estimation of nonlinear rational expectations models. Econometrica, 50(5):1269–1286.Hasso, T., Pelster, M., and Breitmayer, B. (2019). Who trades cryptocurrencies, how do they trade it, and how do they perform? evidence from brokerage accounts. Journal of Behavioral and Experimental Finance, 23:64–74.Hatjispyros, S. J., Nicoleris, T. N., and Walker, S. G. (2011). Dependent Mixtures of Dirichlet Processes. Computational Statistics & Data Analysis, 55(6):2011–2025.Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of financial studies, 6(2):327– 343Heston, S. L. and Nandi, S. (2015). A closed-form garch option valuation model. The Review of Financial Studies, 13(3):585–625.Hirano, K. (2002). Semiparametric Bayesian Inference in Autoregressive Panel Data Models. Econometrica, 70(2):781–799.Hirshleifer, D. and Hong Teoh, S. (2003). Herd behaviour and cascading in capital markets: A review and synthesis. European Financial Management, 9(1):25–66.Ho, T. S. and Michaely, R. (1988). Information quality and market efficiency. Journal of Financial and Quantitative Analysis, 23(1):53–70.Howell, S. T., Niessner, M., and Yermack, D. (2020). Initial coin offerings: Financing growth with cryptocurrency token sales. The Review of Financial Studies, 33(9):3925– 3974.Huang, E. J. (2015). The role of institutional investors and individual investors in financial markets: Evidence from closed-end funds. Review of Financial Economics, 26:1–11.Hwang, I. and Kwon, J. H. (2024). Cryptocurrency returns and consumption-based asset pricing. Applied Economics, pages 1–16.Jensen, J. M. and Maheu, M. J. (2010). Bayesian Semiparametric Stochastic Volatility Modeling. Journal of Econometrics, 157(2):306–316.Jiang, F., Kang, J., and Meng, L. (2024). Certainty of uncertainty for asset pricing. Journal of Empirical Finance, 78:101501.Jouini, E. and Kallal, H. (1995). Martingales and arbitrage in securities markets with transaction costs. Journal of Economic Theory, 66(1):178–197.Kaddouhah, M. (2024). An economic definition of ‘fear of missing out’ (fomo). Finance Research Letters, 63:105344.Kahneman, D., Sibony, O., and Sunstein, C. R. (2021). Noise: A flaw in human judgment. Hachette UK.Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2):263–291.Kalli, M., Griffin, J. E., and Walker, S. G. (2011). Slice Sampling Mixture Models. Statistics and Computing, 21(1):93–105.Kalyanaram, G. and Winer, R. S. (1995). Empirical generalizations from reference price research. Marketing Science, 14(3):G161–G169.Katsiampa, P. (2019). Volatility co-movement between bitcoin and ether. Finance Research Letters, 30:221–227.Kogan, S., Makarov, I., Niessner, M., and Schoar, A. (2024). Are cryptos different? evidence from retail trading. Journal of Financial Economics, 159:103897.Kon, S. J. and Jen, F. C. (1979). The investment performance of mutual funds: An empirical investigation of timing, selectivity, and market efficiency. The Journal of Business, 52(2):263–289.Kyriazis, N. A. (2020). Herding behaviour in digital currency markets: An integrated survey and empirical estimation. Heliyon, 6(8).Lehar, A. and Parlour, C. A. (2021). Decentralized exchange: The uniswap automated market maker. Journal of Finance forthcoming.Lemperiere, Y., Deremble, C., Nguyen, T.-T., Seager, P., Potters, M., and Bouchaud, J.-P. (2017). Risk premia: Asymmetric tail risks and excess returns. Quantitative Finance, 17(1):1–14.Liang, R., Qin, B., and Xia, Q. (2022). Bayesian inference for mixed gaussian garch- type model by hamiltonian monte carlo algorithm. Computational Economics, pages 1–28.Lintner, J. (1975). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. In Stochastic optimization models in finance, pages 131–155. Elsevier.Liu, Y. and Tsyvinski, A. (2021). Risks and returns of cryptocurrency. The Review of Financial Studies, 34(6):2689–2727Liu, Y., Tsyvinski, A., and Wu, X. (2022). Common risk factors in cryptocurrency. The Journal of Finance, 77(2):1133–1177.Lo, A. W. (2005). Reconciling efficient markets with behavioral finance: the adaptive markets hypothesis. Journal of investment consulting, 7(2):21–44.Lo, A. W. (2012). Adaptive markets and the new world order (corrected may 2012). Financial analysts journal, 68(2):18–29.Loewenstein, M. and Willard, G. A. (2000). Rational equilibrium asset-pricing bubbles in continuous trading models. Journal of Economic Theory, 91(1):17–58.Long, J. B. D., Shleifer, A., Summers, L. H., and Waldmann, R. J. (1991). The survival of noise traders in financial markets. The Journal of Business, 64(1):1–19.Lucas, R. E. (1978). Asset prices in an exchange economy. Econometrica, 46(6):1429– 1445.Lucey, B. M., Vigne, S. A., Yarovaya, L., and Wang, Y. (2022). The cryptocurrency uncertainty index. Finance Research Letters, 45:102147.Mak, C., Zaiser, F., and Ong, L. (2021). Nonparametric hamiltonian monte carlo. In International Conference on Machine Learning, pages 7336–7347. PMLR.Makarov, I. and Schoar, A. (2020). Trading and arbitrage in cryptocurrency markets. Journal of Financial Economics, 135(2):293–319.Malamud, S. and Rostek, M. (2017). Decentralized exchange. American Economic Review, 107(11):3320–3362.Markowitz, H. (1952). Portfolio selection. The Journal of finance (New York), 7(1):77–.Marsat, S. and Williams, B. (2013). Does price influence assessment of fundamental value? experimental evidence. Journal of Behavioral Finance, 14(4):268–275.Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous- time case. The review of economics and statistics, 51(3):247–257.Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. Journal of economic theory, 3(4):373–413.Merton, R. C. (1973). An intertemporal capital asset pricing model. Econometrica, 41(5):867–887.Merton, R. C. (1998). Applications of option-pricing theory: Twenty-five years later. The American Economic Review, 88(3):323–349.Merton, R. C. and Bodie, Z. (2004). The design of financial systems: Towards a synthesis of function and structure. Working Paper 10620, National Bureau of Economic Research.Miller, E. M. (1977). Risk, uncertainty, and divergence of opinion. The Journal of Finance, 32(4):1151–1168.Miyazaki, H. (2007). Between arbitrage and speculation: an economy of belief and doubt. Economy and Society, 36(3):396–415.Narayanan, M. (1985). Managerial incentives for short-term results. The Journal of Finance, 40(5):1469–1484.Neal, P. and Kypraios, T. (2015). Exact bayesian inference via data augmentation. Statistics and Computing, 25:333–347.Ng, S.-H., Zhuang, Z., Toh, M.-Y., Ong, T.-S., and Teh, B.-H. (2022). Exploring herding behavior in an innovative-oriented stock market: evidence from chinext. Journal of Applied Economics, 25(1):523–542.Nofsinger, J. R. and Sias, R. W. (1999). Herding and feedback trading by institutional and individual investors. The Journal of finance, 54(6):2263–2295.Noreen, U., Shafique, A., Ayub, U., and Saeed, S. K. (2022). Does the adaptive market hypothesis reconcile the behavioral finance and the efficient market hypothesis? Risks, 10(9):168.Nuhiu, A., Aliu, F., Horák, J., and Peci, B. (2023). Making informed decisions in the volatile crypto market: an analysis of portfolio risk and return. SAGE Open, 13(3):21582440231193600.Ozdamar, M., Sensoy, A., and Akdeniz, L. (2022). Retail vs institutional investor attention in the cryptocurrency market. Journal of International Financial Markets, Institutions and Money, 81:101674.Palamalai, S., Kumar, K. K., and Maity, B. (2021). Testing the random walk hypothesis for leading cryptocurrencies. Borsa Istanbul Review, 21(3):256–268.Peng, L. and Röell, A. (2014). Managerial incentives and stock price manipulation. The Journal of Finance, 69(2):487–526.Pyle, D. H. (1972). Descriptive theories of financial institutions under uncertainty. The Journal of Financial and Quantitative Analysis, 7(5):2009–2029.Rabaa Karaa, Skander Slim, J. W. G. A. G. and Kallinterakis, V. (2024). Do investors feed- back trade in the bitcoin—and why? The European Journal of Finance, 30(16):1951– 1971.Ranyard, R., Charlton, J. P., and Williamson, J. (2001). The role of internal refer- ence prices in consumers’ willingness to pay judgments: Thaler’s beer pricing task revisited. Acta Psychologica, 106(3):265–283.Reinganum, M. R. (1981). The arbitrage pricing theory: Some empirical results. The Journal of Finance, 36(2):313–321.Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3):341–360.Ross, S. A. (2013). The arbitrage theory of capital asset pricing. In Handbook of the fundamentals of financial decision making: Part I, pages 11–30. World Scientific.Samuelson, P. A. (1973). Mathematics of speculative price. SIAM Review, 15(1):1–42.Samuelson, P. A. (1975). Lifetime portfolio selection by dynamic stochastic program- ming. In ZIEMBA, W. and VICKSON, R., editors, Stochastic Optimization Models in Finance, pages 517–524. Academic Press.Samuelson, P. A. (2015). Rational Theory of Warrant Pricing, pages 195–232. Springer International Publishing, Cham.Samuelson, P. A. (2016). Proof that properly anticipated prices fluctuate randomly. In The world scientific handbook of futures markets, pages 25–38. World Scientific.Schilling, L. and Uhlig, H. (2019). Some simple bitcoin economics. Journal of Monetary Economics, 106:16–26. SPECIAL CONFERENCE ISSUE: “Money Creation and Cur- rency Competition” October 19-20, 2018 Sponsored by the Study Center Gerzensee and Swiss National Bank.Schnaubelt, M., Rende, J., and Krauss, C. (2019). Testing stylized facts of bitcoin limit order books. Journal of Risk and Financial Management, 12(1).Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3):425–442.Shen, D., Urquhart, A., and Wang, P. (2020). A three-factor pricing model for cryp- tocurrencies. Finance Research Letters, 34:101248.Shiller, R. (1988). Fashion, fadsandbubbles in financial markets. Knights, Raidersand Targets, der. J. Coffee ve diğerleri, New York.Shiller, R. J. (1981). Do stock prices move too much to be justified by subsequent changes in dividends? The American Economic Review, 71(3):421–436.Shiller, R. J. (1995). Conversation, information, and herd behavior. The American Economic Review, 85(2):181–185.Shiller, R. J., Fischer, S., and Friedman, B. M. (1984). Stock prices and social dynamics. Brookings Papers on Economic Activity, 1984(2):457–510.Shleifer, A. and Summers, L. H. (1990). The noise trader approach to finance. Journal of Economic perspectives, 4(2):19–33.Sias, R., Starks, L., and Titman, S. (2006). Changes in institutional ownership and stock returns: Assessment and methodology. The Journal of Business, 79(6):2869–2910.Siddiqi, H. (2018). Anchoring-adjusted capital asset pricing model. Journal of Behav- ioral Finance, 19(3):249–270Smales, L. A. (2022). Investor attention in cryptocurrency markets. International Review of Financial Analysis, 79:101972.Sockin, M. and Xiong, W. (2023). A model of cryptocurrencies. Management Science, 69(11):6684–6707.Sornette, D. (2003). Critical market crashes. Physics Reports, 378(1):1–98.Taddy, M. A. and Kottas, A. (2009). Markov Switching Dirichlet Process Mixture Regression. Bayesian Analysis, 4(4):793–816.Tanner, M. and Wong, W. (1987). The Calculation of Posterior Distributions by Data Augmentation. Journal of the American Statistical Association, (82):528–550.Thomas, S. and Tu, W. (2021). Learning hamiltonian monte carlo in r. The American Statistician, 75(4):403–413.Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157):1124–1131.Tversky, A. and Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and uncertainty, 5:297–323.Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of financial economics, 5(2):177–188.Wagner, W. (2008). The homogenization of the financial system and financial crises. Journal of Financial Intermediation, 17(3):330–356.Walker, S. G. (2007). Sampling the Dirichlet Mixture Model with Slices. Communications in Statistics - Simulation and Computation, 36(1):45–54.Wang, H. (2010). Sparse Seemingly Unrelated Regression Modelling: Applications in Finance and Econometrics. Computational Statistics & Data Analysis, 54(11):2866– 2877.Yermack, D. (2017). Corporate governance and blockchains. Review of finance, 21(1):7–31.Young, M. R. and Lenk, P. J. (1998). Hierarchical bayes methods for multifactor model estimation and portfolio selection. Management Science, 44(11-part-2):S111– S124.Zeng, Y. (2016). Institutional investors: Arbitrageurs or rational trend chasers. Inter- national Review of Financial Analysis, 45:240–262.Zhang, W. and Li, Y. (2020). Is idiosyncratic volatility priced in cryptocurrency markets? Research in International Business and Finance, 54:101252.200310542Publicationhttps://scholar.google.es/citations?user=TJoz-30AAAAJvirtual::24337-10000-0002-9198-6359virtual::24337-12f3bb4be-b08f-40cb-abad-751f8f2104e0virtual::24337-1b4dbb5e2-384d-41ba-a1b0-728efa1713d0virtual::24338-12f3bb4be-b08f-40cb-abad-751f8f2104e0virtual::24337-1b4dbb5e2-384d-41ba-a1b0-728efa1713d0virtual::24338-1ORIGINALPricing Techniques for Crypto Asset MarketsPricing Techniques for Crypto Asset Marketsapplication/pdf7030386https://repositorio.uniandes.edu.co/bitstreams/cf57759c-960b-41d1-901a-9a98993b78da/download28984c2e4c5532a5653113124548bb25MD51documento biblioteca-JMP (1).pdfdocumento biblioteca-JMP (1).pdfHIDEapplication/pdf455625https://repositorio.uniandes.edu.co/bitstreams/5c4de308-2995-493b-893f-00aa71cc5d84/download58c6e4d1a7d04b1c1e8e6e15bd87f85bMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/4cb23c81-1bd5-4d84-ad7d-caeaefbf4924/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/f6b56ff6-3f4b-4972-951c-3d12521de197/download4460e5956bc1d1639be9ae6146a50347MD54TEXTPricing Techniques for Crypto Asset Markets.txtPricing Techniques for Crypto Asset Markets.txtExtracted texttext/plain101111https://repositorio.uniandes.edu.co/bitstreams/36ce45c4-58ab-4931-8847-b104611f7385/download4eac3d5d890a9fb5155943f0b42b5629MD56documento biblioteca-JMP (1).pdf.txtdocumento biblioteca-JMP (1).pdf.txtExtracted texttext/plain1502https://repositorio.uniandes.edu.co/bitstreams/862f4e82-d430-407e-9914-7a78d42b0724/download96b1658fdfabdb2d5c8d7e2cde4ceebdMD58THUMBNAILPricing Techniques for Crypto Asset Markets.jpgPricing Techniques for Crypto Asset Markets.jpgIM Thumbnailimage/jpeg12182https://repositorio.uniandes.edu.co/bitstreams/82dfec7e-862e-4212-9209-6692e0e35634/download5144c9ca8914526b8230243f3a7862aaMD57documento biblioteca-JMP (1).pdf.jpgdocumento biblioteca-JMP (1).pdf.jpgIM Thumbnailimage/jpeg15126https://repositorio.uniandes.edu.co/bitstreams/bcdf8ee3-22b4-4fd8-b591-146d2849b60a/download96f2adde65bc26ea23122affdc4909fcMD591992/76378oai:repositorio.uniandes.edu.co:1992/763782025-06-25 04:11:55.06http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K