Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2
Transition metal dichalcogenides (TMDs), compounds with the chemical structure − − where is a transition metal and is a chalcogen, have garnered significant interest due to their unique ability to form two-dimensional (2D) materials. This dimensionality enables TMDs to exhibit extraordinary thermody...
- Autores:
-
Pabón Londoño, Juan Pablo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75907
- Acceso en línea:
- https://hdl.handle.net/1992/75907
- Palabra clave:
- Transition metal dichalcogenides (TMD)
2D materials
Liquid phase exfoliation
X-ray attenuation
X-ray shielding
Gas electron multiplier (GEM detector)
CdTe TIMEPIX3 detector
Beer-Lambert law
UV-vis spectroscopy
Raman spectroscopy
Scanning electron microscopy (SEM)
Física
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_75a21f022868318d5db9f9a71f9e79e2 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75907 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2 |
title |
Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2 |
spellingShingle |
Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2 Transition metal dichalcogenides (TMD) 2D materials Liquid phase exfoliation X-ray attenuation X-ray shielding Gas electron multiplier (GEM detector) CdTe TIMEPIX3 detector Beer-Lambert law UV-vis spectroscopy Raman spectroscopy Scanning electron microscopy (SEM) Física |
title_short |
Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2 |
title_full |
Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2 |
title_fullStr |
Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2 |
title_full_unstemmed |
Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2 |
title_sort |
Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2 |
dc.creator.fl_str_mv |
Pabón Londoño, Juan Pablo |
dc.contributor.advisor.none.fl_str_mv |
Hernández Pico, Yenny Rocio Ávila Bernal, Carlos Arturo Hernández Pico, Yenny Rocio |
dc.contributor.author.none.fl_str_mv |
Pabón Londoño, Juan Pablo |
dc.contributor.jury.none.fl_str_mv |
Giraldo Gallo, Paula Liliana |
dc.subject.keyword.eng.fl_str_mv |
Transition metal dichalcogenides (TMD) 2D materials Liquid phase exfoliation X-ray attenuation X-ray shielding Gas electron multiplier (GEM detector) CdTe TIMEPIX3 detector Beer-Lambert law UV-vis spectroscopy Raman spectroscopy Scanning electron microscopy (SEM) |
topic |
Transition metal dichalcogenides (TMD) 2D materials Liquid phase exfoliation X-ray attenuation X-ray shielding Gas electron multiplier (GEM detector) CdTe TIMEPIX3 detector Beer-Lambert law UV-vis spectroscopy Raman spectroscopy Scanning electron microscopy (SEM) Física |
dc.subject.themes.spa.fl_str_mv |
Física |
description |
Transition metal dichalcogenides (TMDs), compounds with the chemical structure − − where is a transition metal and is a chalcogen, have garnered significant interest due to their unique ability to form two-dimensional (2D) materials. This dimensionality enables TMDs to exhibit extraordinary thermodynamic, electronic, and optical properties, making them versatile candidates for a wide range of applications. Among these, tungsten disulfide (WS2) stands out for its tunable electronic structure and optical behavior, as well as its potential utility in radiation shielding. This study investigates the X-ray attenuation properties of WS2, particularly its ability to serve as a lead-free alternative in shielding applications, given the environmental and health hazards associated with conventional lead-based materials. The WS2 samples were exfoliated using liquid-phase exfoliation (LPE) via lithium ion intercalation, a top-down method aimed at reducing the material to thin layers. Raman spectroscopy corroborated the exfoliation, identifying the vibrational modes 12 and 1 with interpeak frequency shifts indicative of the differences between bulk and exfoliated samples. Scanning electron microscopy (SEM) was used to examine the surface morphology and cross-sectional structures of raw powder and exfoliated samples, enabling the study of physical differences such as layer organization and thickness quantification. Furthermore, to calculate the shielding potential of WS2, X-ray attenuation experiments were conducted using GEM and CdTe Timepix3 detectors. These experiments measured the linear attenuation coefficients as a function of sample thickness and X-ray energy. This study highlights the potential of WS2 as a viable, lead-free material for X-ray attenuation. Its ability to function as a 2D material, coupled with its effectiveness in interacting with X-rays at low energies, positions it as a promising candidate for applications in radiation protection, medical imaging, and other fields requiring efficient, sustainable shielding solutions. These findings lay the groundwork for further exploration of TMDs and other 2D materials as next-generation shielding materials. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-12-10 |
dc.date.accessioned.none.fl_str_mv |
2025-01-31T15:15:32Z |
dc.date.available.none.fl_str_mv |
2025-01-31T15:15:32Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75907 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75907 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
1. Ávila, C. "Notas de clase: Fundamentos de electrodinámica e introducción a electrodinámica clásica." 260 (2024). 2. Walker, R. Synchrotron radiation. CAS- CERN Accelerator School : 5th General Accelerator Physics Course, 437–459 (1994). 3. Ahmed, S. N. in Physics and Engineering of Radiation Detection (Second Edition) (ed Ahmed, S. N.) Second Edition, 65–155 (Elsevier, 2015). isbn: 978-0-12-801363-2. https: //www.sciencedirect.com/science/article/pii/B9780128013632000024. 4. Cullity,B.&Stock,S.ElementsofX-rayDiffraction,ThirdEditionEnglish(US)(Prentice-Hall, 2001). 5. Huda, W. & Abrahams, R. B. X-ray-based medical imaging and resolution. American Journal of Roentgenology 204, W393–W397 (2015). 6. Neubauer, C. Intelligent X-ray inspection for quality control of solder joints. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C 20, 111–120 (1997). 7. Khan, S. U., Khan, I. U., Ullah, I., Saif, N. & Ullah, I. A review of airport dual energy X-ray baggage inspection techniques: Image enhancement and noise reduction. Journal of X-ray Science and Technology 28, 481–505 (2020). 8. Jackson, D. F. & Hawkes, D. X-ray attenuation coefficients of elements and mixtures. Physics Reports 70, 206–209. issn: 0370-1573. https://www.sciencedirect.com/scienc e/article/pii/0370157381900144 (1981). 9. Zamanian, A. &Hardiman, C. Electromagnetic radiation and human health: A review of sources and effects. High Frequency Electronics 4, 16–26 (2005). 10. DUSAN, L. et al. Patent Application WO 2023/019321 A1 (World Intellectual Property Organization). https://lens.org/132-726-070-689-448(2023). 11. Reading, J. F. & Ford, A. L. K-shell-hole production, multiple-hole production, charge transfer, and antisymmetry. Physical Review A 21, 124 (1980). 12. Thornton, S. T. & Rex, A. F. Modern physics for scientists and engineers Fourth edition. eng. isbn: 9781133103721 (Cengage Learning, Boston, MA, 2013- 2013). 13. Haug, E. &Nakel, W. The elementary process of bremsstrahlung (World Scientific, 2004). 14. Hubbell, J. & Seltzer, S. M. X-ray mass attenuation coefficients: NIST Standard Reference Database 126. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest*. 1995. Radiation Physics Division, PML, NIST (2004). 15. Deliormanlı, A. M. et al. WS2/bioactive glass composites: Fabrication, structural, mechanical and radiation attenuation properties. eng. Ceramics international 47, 29739–29747. issn: 0272-8842 (2021). 16. Ajayan,P.,Kim,P.&Banerjee,K.Two-dimensionalvanderWaalsmaterials.PhysicsToday 69, 38–44. issn: 0031-9228. eprint: https://pubs.aip.org/physicstoday/articlepdf/69/9/38/10117753/38\_1\_online.pdf. https://doi.org/10.1063/PT.3.3297 (Sept. 2016). 17. Fleischmann, S., Spencer, M. A. & Augustyn, V. Electrochemical reactivity under confinement enabled by molecularly pillared 2D and layered materials. Chemistry of Materials 32, 3325–3334 (2020). 18. Mir, S. H., Yadav, V. K. & Singh, J. K. Recent advances in the carrier mobility of two-dimensional materials: a theoretical perspective. ACS omega 5, 14203–14211 (2020). 19. Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS(2). Physical Review B 83, 245213 (June 2011). 20. Lan,C.,Li,C.,Ho,J.&Liu,Y.2DWS2:FromVaporPhaseSynthesistoDeviceApplications. Advanced Electronic Materials 7 (Sept. 2020). 21. Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nature Reviews Chemistry 1, 0014 (2017). 22. Splendiani, A. et al. Emerging Photoluminescence in Monolayer MoS2. eng. Nano letters 10, 1271–1275. issn: 1530-6984 (2010). 23. ’Rubio Cruz, T. ’Fabricación de dispositivos optoelectrónicos flexibles basados en dicalcogenuros de metales de transición’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2021). ’http://hdl.handle.net/1992/54581. 24. Huang, F., Jian, J. & Wu, R. Few-layer thick WS2 nanosheets produced by intercalation/exfoliation route. eng. Journal of materials science 51, 10160–10165. issn: 0022-2461 (2016). 25. Zeng, Z. et al. Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. ger. Angewandte Chemie 123, 11289–11293. issn: 0044-8249 (2011). 26. Serway,R.A.,Moses,C.J.&Moyer,C.A.Modernphysics3rdedition.eng.isbn:0534493394 (Thomson Brooks/Cole, Belmont, CA, 2005). 27. Chen,Z.,Dinh,H.N.&Miller,E.Photoelectrochemicalwatersplitting:standards,experimental methods, and protocols 1st ed. 2013. eng. isbn: 1-4614-8298-4 (Springer, New York, 2013). 28. Goswami, T. et al. Ultrafast Insights into High Energy (C and D) Excitons in Few Layer WS2. eng. The journal of physical chemistry letters 12, 6526–6534. issn: 1948-7185 (2021). 29. Orikasa, K. et al. Exploring thermal and in-situ mechanical properties of flexible 2D tungsten disulfide foam-polymer composite for thermal management. eng. Composites. Part B, Engineering 284, 111743–. issn: 1359-8368 (2024). 30. Gribov, L. The Theory of Raman Spectra: A New Approach. High Energy Chemistry 54, 233–236 (2020). 31. Keresztury, G., Chalmers, J. & Griffith, P. Raman spectroscopy: theory. Handbook of vibrational spectroscopy 1, 71–87 (2002). 32. Wang, X., Zheng, C. & Ning, J. Q. Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study. Scientific Reports 6, 33091 (Sept. 2016). 33. Sourisseau, C., Cruege, F., Fouassier, M. & Alba, M. Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chemical Physics 150, 281–293. issn: 0301-0104. https://www.sciencedirect.com/science/article/pii/ 0301010491801366 (1991). 34. Kittel, C. Introduction to solid state physics 8th edition. eng. isbn: 047141526X (John Wiley Sons, Hoboken, NJ, 2005). 35. Berkdemir, A. et al. Identification of individual and few layers of WS using Raman Spectroscopy. English. Scientific Reports 3. Copyright Nature Publishing Group Apr 2013, 1755. https://ezproxy.uniandes.edu.co:8443/login?url=https://www. proquest.com/scholarly-journals/identification-individual-few-layersws2-using/docview/1897428651/se-2 (Apr. 2013). 36. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today 20, 116–130 (2017). 37. Cong, C., Shang, J., Wang, Y. & Yu, T. Optical Properties of 2D Semiconductor WS2. Advanced Optical Materials 6. https://api.semanticscholar.org/CorpusID:10352172 9 (2018). 38. Sang, Y. et al. Measurement of Thermal Conductivity of Suspended and Supported Single-Layer WS2 Using Micro-photoluminescence Spectroscopy. The Journal of Physical Chemistry C 126, 6637–6645. eprint: https://doi.org/10.1021/acs.jpcc.2c00732. https://doi.org/10.1021/acs.jpcc.2c00732 (2022). 39. Faraj, K. & Mohammed, S. Effects of chronic exposure of X-ray on hematological parameters in human blood. Comp Clin Pathol 27 (2018). 40. Papanikolaou, N. C., Hatzidaki, E. G., Belivanis, S., Tzanakakis, G. N. & Tsatsakis, A. M. Lead toxicity update. A brief review. Medical science monitor 11, RA329–RA336 (2005). 41. Taqi, A. H., Faraj, K. A. & Zaynal, S. A. The Effect of Long-Term X-Ray Exposure on HumanLymphocyte. Journal of Biomedical Physics and Engineering, 127–132 (2019). 42. Joseph G. Hollowell, J. & Littlefield, L. G. Chromosome Damage Induced by Plasma of X-Rayed Patients: An Indirect Effect of X-Ray. Proceedings of the Society for Experimental Biology and Medicine 129, 240–244. eprint: https://doi.org/10.3181/00379727-12933295. https://doi.org/10.3181/00379727-129-33295 (1968). 43. Lead Industries Association, I. A guide to the use of lead for radiation shielding. Innovative Medical Engineering (2012). 44. Jayakumar, S., Saravanan, T. & Philip, J. A review on polymer nanocomposites as leadfree materials for diagnostic X-ray shielding: Recent advances, challenges and future perspectives. Hybrid Advances 4, 100100. issn: 2773-207X. https://www.sciencedirect. com/science/article/pii/S2773207X23000830 (2023). 45. Aral, N., Nergis, F. B. & Candan, C. An alternative X-ray shielding material based on coated textiles. Textile Research Journal 86, 803–811. eprint: https://doi.org/10.1177/ 0040517515590409. https://doi.org/10.1177/0040517515590409 (2016). 46. Nine,M.J.etal.LaminatedAntimoneneasanAlternativeandEfficientShieldingStrategy Against X-ray Radiation. eng. Applied Materials Today 29, 101566. issn: 2352-9407 (2022). 47. Montoya, A. & Sáenz, M. Evaluación de materiales de blindaje y filtrado para radiología médica mediante simulaciones de rayos X. Informe técnico, Departamento de Física, Universidad de los Andes (2024). 48. Huo,C., Yan, Z., Song, X. & Zeng, H. 2D materials via liquid exfoliation: a review on fabrication and applications. eng. Science bulletin (Beijing) 60, 1994–2008. issn: 2095-9273 (2015). 49. Sigma-Aldrich. Safety Data Sheet for N-Methyl-2-pyrrolidone (NMP). Merk (2024). 50. Sigma-Aldrich. Safety Data Sheet for Cyrene. Merk (2024). 51. Olaya Cortés, D. E. Lateral size dependence of piezoresistivity and photoconductivity in TMD networks eng. 2024. 52. Berman, M., Piters, T., Aceves, M., Berriel, V., Luna, L., et al. Fluorescence and thermoluminescence in silicon oxide films rich in silicon; Fluorescencia y termoluminiscencia en peliculas de oxido de silicio rico en silicio (2009). 53. DelosAndes, M. U. Equipos del Centro de Microscopía | MicroCore | Uniandes 54. ’Barreto Neira, C. A. ’Estudio computacional de un detector GEM para la producción de imágenes de rayos X’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2021). ’http://hdl.handle.net/1992/53638’. 55. ’Morelli Moreno, S. M. ’Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2022). ’http://hdl.handle.net/1992/60701’. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
71 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/880676a5-7d74-4e1e-995b-b345adc51766/download https://repositorio.uniandes.edu.co/bitstreams/756d0445-f480-45f6-b069-486349421284/download https://repositorio.uniandes.edu.co/bitstreams/0f44e9bb-f0c6-431e-a8c0-dc54564b3a42/download https://repositorio.uniandes.edu.co/bitstreams/286d0d9f-5c7b-4092-86f6-b0f3126363cf/download https://repositorio.uniandes.edu.co/bitstreams/6292e0b7-bb9e-4f03-950f-243ce3b12d28/download https://repositorio.uniandes.edu.co/bitstreams/62df2051-bc74-4c79-8401-c66f63e168b1/download https://repositorio.uniandes.edu.co/bitstreams/b79964e2-7f3b-49c7-946d-5e6fad803c62/download https://repositorio.uniandes.edu.co/bitstreams/7f4316a1-9f98-45bb-8eb1-ba24d366b7fd/download |
bitstream.checksum.fl_str_mv |
2e352a1d5a508ec317b1313d539b4a26 00646b161a4aeb315081715fff775839 4460e5956bc1d1639be9ae6146a50347 ae9e573a68e7f92501b6913cc846c39f c6b9b3fb0250cd81951c3033900e2f55 81e659c58ee84daad3bb3a794d43f4f9 6a2eb291236562cd8a40a2099a81fcab d4ed71b5f5133253dffca31977fd5deb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927679784321024 |
spelling |
Hernández Pico, Yenny RocioÁvila Bernal, Carlos Arturovirtual::22969-1Hernández Pico, Yenny Rociovirtual::22974-1Pabón Londoño, Juan PabloGiraldo Gallo, Paula Liliana2025-01-31T15:15:32Z2025-01-31T15:15:32Z2024-12-10https://hdl.handle.net/1992/75907instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Transition metal dichalcogenides (TMDs), compounds with the chemical structure − − where is a transition metal and is a chalcogen, have garnered significant interest due to their unique ability to form two-dimensional (2D) materials. This dimensionality enables TMDs to exhibit extraordinary thermodynamic, electronic, and optical properties, making them versatile candidates for a wide range of applications. Among these, tungsten disulfide (WS2) stands out for its tunable electronic structure and optical behavior, as well as its potential utility in radiation shielding. This study investigates the X-ray attenuation properties of WS2, particularly its ability to serve as a lead-free alternative in shielding applications, given the environmental and health hazards associated with conventional lead-based materials. The WS2 samples were exfoliated using liquid-phase exfoliation (LPE) via lithium ion intercalation, a top-down method aimed at reducing the material to thin layers. Raman spectroscopy corroborated the exfoliation, identifying the vibrational modes 12 and 1 with interpeak frequency shifts indicative of the differences between bulk and exfoliated samples. Scanning electron microscopy (SEM) was used to examine the surface morphology and cross-sectional structures of raw powder and exfoliated samples, enabling the study of physical differences such as layer organization and thickness quantification. Furthermore, to calculate the shielding potential of WS2, X-ray attenuation experiments were conducted using GEM and CdTe Timepix3 detectors. These experiments measured the linear attenuation coefficients as a function of sample thickness and X-ray energy. This study highlights the potential of WS2 as a viable, lead-free material for X-ray attenuation. Its ability to function as a 2D material, coupled with its effectiveness in interacting with X-rays at low energies, positions it as a promising candidate for applications in radiation protection, medical imaging, and other fields requiring efficient, sustainable shielding solutions. These findings lay the groundwork for further exploration of TMDs and other 2D materials as next-generation shielding materials.Los dicalcogenuros de metales de transición (TMDs, por sus siglas en inglés), compuestos con la estructura química − − , donde es un metal de transición y es un calcógeno, han suscitado un interés significativo debido a su capacidad única para formar materiales bidimensionales (2D). Esta dimensionalidad permite a los TMDs exhibir propiedades termodinámicas, electrónicas y ópticas extraordinarias, lo que los convierte en candidatos versátiles para una amplia gama de aplicaciones. Entre ellos, el disulfuro de tungsteno (WS2) destaca por su estructura electrónica ajustable, su comportamiento óptico y su potencial utilidad en el blindaje contra la radiación. Este estudio investiga las propiedades de atenuación de rayos X delWS2, particularmente su capacidad para servir como una alternativa sin plomo en aplicaciones de blindaje, dada la peligrosidad ambiental y sanitaria asociada con los materiales convencionales basados en plomo. Las muestras de WS2 se exfoliaron utilizando exfoliación en fase líquida (LPE, por sus siglas en inglés) mediante intercalación de iones de litio, un método de arriba hacia abajo diseñado para reducir el material a capas delgadas. La espectroscopía Raman corroboró la exfoliación, identificando los modos vibracionales 1 2 y 1 con desplazamientos de frecuencia entre picos indicativos de las diferencias entre las muestras a granel y las exfoliadas. La microscopía electrónica de barrido (SEM, por sus siglas en inglés) se utilizó para examinar la morfología superficial y las estructuras transversales de los polvos crudos y las muestras exfoliadas, lo que permitió estudiar diferencias físicas como la organización de las capas y la cuantificación del grosor. Además, para calcular el potencial de blindaje del WS2, se llevaron a cabo experimentos de atenuación de rayos X utilizando detectores GEM y CdTe Timepix3. Estos experimentos midieron los coeficientes de atenuación lineal en función del grosor de la muestra y la energía de los rayos X. Este estudio destaca el potencial del WS2 como un material viable y sin plomo para la atenuación de rayos X. Su capacidad para funcionar como un material 2D, junto con su eficacia en la interacción con rayos X a bajas energías, lo posiciona como un candidato prometedor para aplicaciones en protección contra radiación, imagenología médica y otros campos que requieren soluciones de blindaje eficientes y sostenibles. Estos hallazgos sientan las bases para una mayor exploración de los TMDs y otros materiales 2D como materiales de blindaje de próxima generación.Pregrado71 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPTransition metal dichalcogenides (TMD)2D materialsLiquid phase exfoliationX-ray attenuationX-ray shieldingGas electron multiplier (GEM detector)CdTe TIMEPIX3 detectorBeer-Lambert lawUV-vis spectroscopyRaman spectroscopyScanning electron microscopy (SEM)Física1. Ávila, C. "Notas de clase: Fundamentos de electrodinámica e introducción a electrodinámica clásica." 260 (2024).2. Walker, R. Synchrotron radiation. CAS- CERN Accelerator School : 5th General Accelerator Physics Course, 437–459 (1994).3. Ahmed, S. N. in Physics and Engineering of Radiation Detection (Second Edition) (ed Ahmed, S. N.) Second Edition, 65–155 (Elsevier, 2015). isbn: 978-0-12-801363-2. https: //www.sciencedirect.com/science/article/pii/B9780128013632000024.4. Cullity,B.&Stock,S.ElementsofX-rayDiffraction,ThirdEditionEnglish(US)(Prentice-Hall, 2001).5. Huda, W. & Abrahams, R. B. X-ray-based medical imaging and resolution. American Journal of Roentgenology 204, W393–W397 (2015).6. Neubauer, C. Intelligent X-ray inspection for quality control of solder joints. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C 20, 111–120 (1997).7. Khan, S. U., Khan, I. U., Ullah, I., Saif, N. & Ullah, I. A review of airport dual energy X-ray baggage inspection techniques: Image enhancement and noise reduction. Journal of X-ray Science and Technology 28, 481–505 (2020).8. Jackson, D. F. & Hawkes, D. X-ray attenuation coefficients of elements and mixtures. Physics Reports 70, 206–209. issn: 0370-1573. https://www.sciencedirect.com/scienc e/article/pii/0370157381900144 (1981).9. Zamanian, A. &Hardiman, C. Electromagnetic radiation and human health: A review of sources and effects. High Frequency Electronics 4, 16–26 (2005).10. DUSAN, L. et al. Patent Application WO 2023/019321 A1 (World Intellectual Property Organization). https://lens.org/132-726-070-689-448(2023).11. Reading, J. F. & Ford, A. L. K-shell-hole production, multiple-hole production, charge transfer, and antisymmetry. Physical Review A 21, 124 (1980).12. Thornton, S. T. & Rex, A. F. Modern physics for scientists and engineers Fourth edition. eng. isbn: 9781133103721 (Cengage Learning, Boston, MA, 2013- 2013).13. Haug, E. &Nakel, W. The elementary process of bremsstrahlung (World Scientific, 2004).14. Hubbell, J. & Seltzer, S. M. X-ray mass attenuation coefficients: NIST Standard Reference Database 126. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest*. 1995. Radiation Physics Division, PML, NIST (2004).15. Deliormanlı, A. M. et al. WS2/bioactive glass composites: Fabrication, structural, mechanical and radiation attenuation properties. eng. Ceramics international 47, 29739–29747. issn: 0272-8842 (2021).16. Ajayan,P.,Kim,P.&Banerjee,K.Two-dimensionalvanderWaalsmaterials.PhysicsToday 69, 38–44. issn: 0031-9228. eprint: https://pubs.aip.org/physicstoday/articlepdf/69/9/38/10117753/38\_1\_online.pdf. https://doi.org/10.1063/PT.3.3297 (Sept. 2016).17. Fleischmann, S., Spencer, M. A. & Augustyn, V. Electrochemical reactivity under confinement enabled by molecularly pillared 2D and layered materials. Chemistry of Materials 32, 3325–3334 (2020).18. Mir, S. H., Yadav, V. K. & Singh, J. K. Recent advances in the carrier mobility of two-dimensional materials: a theoretical perspective. ACS omega 5, 14203–14211 (2020).19. Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS(2). Physical Review B 83, 245213 (June 2011).20. Lan,C.,Li,C.,Ho,J.&Liu,Y.2DWS2:FromVaporPhaseSynthesistoDeviceApplications. Advanced Electronic Materials 7 (Sept. 2020).21. Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nature Reviews Chemistry 1, 0014 (2017).22. Splendiani, A. et al. Emerging Photoluminescence in Monolayer MoS2. eng. Nano letters 10, 1271–1275. issn: 1530-6984 (2010).23. ’Rubio Cruz, T. ’Fabricación de dispositivos optoelectrónicos flexibles basados en dicalcogenuros de metales de transición’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2021). ’http://hdl.handle.net/1992/54581.24. Huang, F., Jian, J. & Wu, R. Few-layer thick WS2 nanosheets produced by intercalation/exfoliation route. eng. Journal of materials science 51, 10160–10165. issn: 0022-2461 (2016).25. Zeng, Z. et al. Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. ger. Angewandte Chemie 123, 11289–11293. issn: 0044-8249 (2011).26. Serway,R.A.,Moses,C.J.&Moyer,C.A.Modernphysics3rdedition.eng.isbn:0534493394 (Thomson Brooks/Cole, Belmont, CA, 2005).27. Chen,Z.,Dinh,H.N.&Miller,E.Photoelectrochemicalwatersplitting:standards,experimental methods, and protocols 1st ed. 2013. eng. isbn: 1-4614-8298-4 (Springer, New York, 2013).28. Goswami, T. et al. Ultrafast Insights into High Energy (C and D) Excitons in Few Layer WS2. eng. The journal of physical chemistry letters 12, 6526–6534. issn: 1948-7185 (2021).29. Orikasa, K. et al. Exploring thermal and in-situ mechanical properties of flexible 2D tungsten disulfide foam-polymer composite for thermal management. eng. Composites. Part B, Engineering 284, 111743–. issn: 1359-8368 (2024).30. Gribov, L. The Theory of Raman Spectra: A New Approach. High Energy Chemistry 54, 233–236 (2020).31. Keresztury, G., Chalmers, J. & Griffith, P. Raman spectroscopy: theory. Handbook of vibrational spectroscopy 1, 71–87 (2002).32. Wang, X., Zheng, C. & Ning, J. Q. Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study. Scientific Reports 6, 33091 (Sept. 2016).33. Sourisseau, C., Cruege, F., Fouassier, M. & Alba, M. Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chemical Physics 150, 281–293. issn: 0301-0104. https://www.sciencedirect.com/science/article/pii/ 0301010491801366 (1991).34. Kittel, C. Introduction to solid state physics 8th edition. eng. isbn: 047141526X (John Wiley Sons, Hoboken, NJ, 2005).35. Berkdemir, A. et al. Identification of individual and few layers of WS using Raman Spectroscopy. English. Scientific Reports 3. Copyright Nature Publishing Group Apr 2013, 1755. https://ezproxy.uniandes.edu.co:8443/login?url=https://www. proquest.com/scholarly-journals/identification-individual-few-layersws2-using/docview/1897428651/se-2 (Apr. 2013).36. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today 20, 116–130 (2017).37. Cong, C., Shang, J., Wang, Y. & Yu, T. Optical Properties of 2D Semiconductor WS2. Advanced Optical Materials 6. https://api.semanticscholar.org/CorpusID:10352172 9 (2018).38. Sang, Y. et al. Measurement of Thermal Conductivity of Suspended and Supported Single-Layer WS2 Using Micro-photoluminescence Spectroscopy. The Journal of Physical Chemistry C 126, 6637–6645. eprint: https://doi.org/10.1021/acs.jpcc.2c00732. https://doi.org/10.1021/acs.jpcc.2c00732 (2022).39. Faraj, K. & Mohammed, S. Effects of chronic exposure of X-ray on hematological parameters in human blood. Comp Clin Pathol 27 (2018).40. Papanikolaou, N. C., Hatzidaki, E. G., Belivanis, S., Tzanakakis, G. N. & Tsatsakis, A. M. Lead toxicity update. A brief review. Medical science monitor 11, RA329–RA336 (2005).41. Taqi, A. H., Faraj, K. A. & Zaynal, S. A. The Effect of Long-Term X-Ray Exposure on HumanLymphocyte. Journal of Biomedical Physics and Engineering, 127–132 (2019).42. Joseph G. Hollowell, J. & Littlefield, L. G. Chromosome Damage Induced by Plasma of X-Rayed Patients: An Indirect Effect of X-Ray. Proceedings of the Society for Experimental Biology and Medicine 129, 240–244. eprint: https://doi.org/10.3181/00379727-12933295. https://doi.org/10.3181/00379727-129-33295 (1968).43. Lead Industries Association, I. A guide to the use of lead for radiation shielding. Innovative Medical Engineering (2012).44. Jayakumar, S., Saravanan, T. & Philip, J. A review on polymer nanocomposites as leadfree materials for diagnostic X-ray shielding: Recent advances, challenges and future perspectives. Hybrid Advances 4, 100100. issn: 2773-207X. https://www.sciencedirect. com/science/article/pii/S2773207X23000830 (2023).45. Aral, N., Nergis, F. B. & Candan, C. An alternative X-ray shielding material based on coated textiles. Textile Research Journal 86, 803–811. eprint: https://doi.org/10.1177/ 0040517515590409. https://doi.org/10.1177/0040517515590409 (2016).46. Nine,M.J.etal.LaminatedAntimoneneasanAlternativeandEfficientShieldingStrategy Against X-ray Radiation. eng. Applied Materials Today 29, 101566. issn: 2352-9407 (2022).47. Montoya, A. & Sáenz, M. Evaluación de materiales de blindaje y filtrado para radiología médica mediante simulaciones de rayos X. Informe técnico, Departamento de Física, Universidad de los Andes (2024).48. Huo,C., Yan, Z., Song, X. & Zeng, H. 2D materials via liquid exfoliation: a review on fabrication and applications. eng. Science bulletin (Beijing) 60, 1994–2008. issn: 2095-9273 (2015).49. Sigma-Aldrich. Safety Data Sheet for N-Methyl-2-pyrrolidone (NMP). Merk (2024).50. Sigma-Aldrich. Safety Data Sheet for Cyrene. Merk (2024).51. Olaya Cortés, D. E. Lateral size dependence of piezoresistivity and photoconductivity in TMD networks eng. 2024.52. Berman, M., Piters, T., Aceves, M., Berriel, V., Luna, L., et al. Fluorescence and thermoluminescence in silicon oxide films rich in silicon; Fluorescencia y termoluminiscencia en peliculas de oxido de silicio rico en silicio (2009).53. DelosAndes, M. U. Equipos del Centro de Microscopía | MicroCore | Uniandes54. ’Barreto Neira, C. A. ’Estudio computacional de un detector GEM para la producción de imágenes de rayos X’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2021). ’http://hdl.handle.net/1992/53638’.55. ’Morelli Moreno, S. M. ’Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2022). ’http://hdl.handle.net/1992/60701’.202112409Publicationhttps://scholar.google.es/citations?user=KXWwfMMAAAAJhttps://scholar.google.es/citations?user=jitNa1QAAAAJvirtual::22969-1https://scholar.google.es/citations?user=KXWwfMMAAAAJvirtual::22974-10000-0002-6980-88200000-0002-6980-8820virtual::22974-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318566https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000008370virtual::22969-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318566virtual::22974-1279f6f35-f4cc-429c-8e15-3e6dc77d8289virtual::22969-15ec439ad-c826-485e-8b94-d4fe2bfc1017virtual::22974-15ec439ad-c826-485e-8b94-d4fe2bfc1017279f6f35-f4cc-429c-8e15-3e6dc77d8289virtual::22969-15ec439ad-c826-485e-8b94-d4fe2bfc1017virtual::22974-1ORIGINALFormato autorización tesis Juan Pablo Pabón.pdfFormato autorización tesis Juan Pablo Pabón.pdfHIDEapplication/pdf213437https://repositorio.uniandes.edu.co/bitstreams/880676a5-7d74-4e1e-995b-b345adc51766/download2e352a1d5a508ec317b1313d539b4a26MD51Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdfMeasurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdfapplication/pdf7756621https://repositorio.uniandes.edu.co/bitstreams/756d0445-f480-45f6-b069-486349421284/download00646b161a4aeb315081715fff775839MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/0f44e9bb-f0c6-431e-a8c0-dc54564b3a42/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/286d0d9f-5c7b-4092-86f6-b0f3126363cf/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTFormato autorización tesis Juan Pablo Pabón.pdf.txtFormato autorización tesis Juan Pablo Pabón.pdf.txtExtracted texttext/plain2061https://repositorio.uniandes.edu.co/bitstreams/6292e0b7-bb9e-4f03-950f-243ce3b12d28/downloadc6b9b3fb0250cd81951c3033900e2f55MD55Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdf.txtMeasurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdf.txtExtracted texttext/plain101093https://repositorio.uniandes.edu.co/bitstreams/62df2051-bc74-4c79-8401-c66f63e168b1/download81e659c58ee84daad3bb3a794d43f4f9MD57THUMBNAILFormato autorización tesis Juan Pablo Pabón.pdf.jpgFormato autorización tesis Juan Pablo Pabón.pdf.jpgGenerated Thumbnailimage/jpeg11161https://repositorio.uniandes.edu.co/bitstreams/b79964e2-7f3b-49c7-946d-5e6fad803c62/download6a2eb291236562cd8a40a2099a81fcabMD56Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdf.jpgMeasurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdf.jpgGenerated Thumbnailimage/jpeg8438https://repositorio.uniandes.edu.co/bitstreams/7f4316a1-9f98-45bb-8eb1-ba24d366b7fd/downloadd4ed71b5f5133253dffca31977fd5debMD581992/75907oai:repositorio.uniandes.edu.co:1992/759072025-03-05 09:39:37.657http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |