Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2

Transition metal dichalcogenides (TMDs), compounds with the chemical structure − − where is a transition metal and is a chalcogen, have garnered significant interest due to their unique ability to form two-dimensional (2D) materials. This dimensionality enables TMDs to exhibit extraordinary thermody...

Full description

Autores:
Pabón Londoño, Juan Pablo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75907
Acceso en línea:
https://hdl.handle.net/1992/75907
Palabra clave:
Transition metal dichalcogenides (TMD)
2D materials
Liquid phase exfoliation
X-ray attenuation
X-ray shielding
Gas electron multiplier (GEM detector)
CdTe TIMEPIX3 detector
Beer-Lambert law
UV-vis spectroscopy
Raman spectroscopy
Scanning electron microscopy (SEM)
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_75a21f022868318d5db9f9a71f9e79e2
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75907
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2
title Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2
spellingShingle Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2
Transition metal dichalcogenides (TMD)
2D materials
Liquid phase exfoliation
X-ray attenuation
X-ray shielding
Gas electron multiplier (GEM detector)
CdTe TIMEPIX3 detector
Beer-Lambert law
UV-vis spectroscopy
Raman spectroscopy
Scanning electron microscopy (SEM)
Física
title_short Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2
title_full Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2
title_fullStr Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2
title_full_unstemmed Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2
title_sort Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2
dc.creator.fl_str_mv Pabón Londoño, Juan Pablo
dc.contributor.advisor.none.fl_str_mv Hernández Pico, Yenny Rocio
Ávila Bernal, Carlos Arturo
Hernández Pico, Yenny Rocio
dc.contributor.author.none.fl_str_mv Pabón Londoño, Juan Pablo
dc.contributor.jury.none.fl_str_mv Giraldo Gallo, Paula Liliana
dc.subject.keyword.eng.fl_str_mv Transition metal dichalcogenides (TMD)
2D materials
Liquid phase exfoliation
X-ray attenuation
X-ray shielding
Gas electron multiplier (GEM detector)
CdTe TIMEPIX3 detector
Beer-Lambert law
UV-vis spectroscopy
Raman spectroscopy
Scanning electron microscopy (SEM)
topic Transition metal dichalcogenides (TMD)
2D materials
Liquid phase exfoliation
X-ray attenuation
X-ray shielding
Gas electron multiplier (GEM detector)
CdTe TIMEPIX3 detector
Beer-Lambert law
UV-vis spectroscopy
Raman spectroscopy
Scanning electron microscopy (SEM)
Física
dc.subject.themes.spa.fl_str_mv Física
description Transition metal dichalcogenides (TMDs), compounds with the chemical structure − − where is a transition metal and is a chalcogen, have garnered significant interest due to their unique ability to form two-dimensional (2D) materials. This dimensionality enables TMDs to exhibit extraordinary thermodynamic, electronic, and optical properties, making them versatile candidates for a wide range of applications. Among these, tungsten disulfide (WS2) stands out for its tunable electronic structure and optical behavior, as well as its potential utility in radiation shielding. This study investigates the X-ray attenuation properties of WS2, particularly its ability to serve as a lead-free alternative in shielding applications, given the environmental and health hazards associated with conventional lead-based materials. The WS2 samples were exfoliated using liquid-phase exfoliation (LPE) via lithium ion intercalation, a top-down method aimed at reducing the material to thin layers. Raman spectroscopy corroborated the exfoliation, identifying the vibrational modes 12 and 1 with interpeak frequency shifts indicative of the differences between bulk and exfoliated samples. Scanning electron microscopy (SEM) was used to examine the surface morphology and cross-sectional structures of raw powder and exfoliated samples, enabling the study of physical differences such as layer organization and thickness quantification. Furthermore, to calculate the shielding potential of WS2, X-ray attenuation experiments were conducted using GEM and CdTe Timepix3 detectors. These experiments measured the linear attenuation coefficients as a function of sample thickness and X-ray energy. This study highlights the potential of WS2 as a viable, lead-free material for X-ray attenuation. Its ability to function as a 2D material, coupled with its effectiveness in interacting with X-rays at low energies, positions it as a promising candidate for applications in radiation protection, medical imaging, and other fields requiring efficient, sustainable shielding solutions. These findings lay the groundwork for further exploration of TMDs and other 2D materials as next-generation shielding materials.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-12-10
dc.date.accessioned.none.fl_str_mv 2025-01-31T15:15:32Z
dc.date.available.none.fl_str_mv 2025-01-31T15:15:32Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75907
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75907
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv 1. Ávila, C. "Notas de clase: Fundamentos de electrodinámica e introducción a electrodinámica clásica." 260 (2024).
2. Walker, R. Synchrotron radiation. CAS- CERN Accelerator School : 5th General Accelerator Physics Course, 437–459 (1994).
3. Ahmed, S. N. in Physics and Engineering of Radiation Detection (Second Edition) (ed Ahmed, S. N.) Second Edition, 65–155 (Elsevier, 2015). isbn: 978-0-12-801363-2. https: //www.sciencedirect.com/science/article/pii/B9780128013632000024.
4. Cullity,B.&Stock,S.ElementsofX-rayDiffraction,ThirdEditionEnglish(US)(Prentice-Hall, 2001).
5. Huda, W. & Abrahams, R. B. X-ray-based medical imaging and resolution. American Journal of Roentgenology 204, W393–W397 (2015).
6. Neubauer, C. Intelligent X-ray inspection for quality control of solder joints. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C 20, 111–120 (1997).
7. Khan, S. U., Khan, I. U., Ullah, I., Saif, N. & Ullah, I. A review of airport dual energy X-ray baggage inspection techniques: Image enhancement and noise reduction. Journal of X-ray Science and Technology 28, 481–505 (2020).
8. Jackson, D. F. & Hawkes, D. X-ray attenuation coefficients of elements and mixtures. Physics Reports 70, 206–209. issn: 0370-1573. https://www.sciencedirect.com/scienc e/article/pii/0370157381900144 (1981).
9. Zamanian, A. &Hardiman, C. Electromagnetic radiation and human health: A review of sources and effects. High Frequency Electronics 4, 16–26 (2005).
10. DUSAN, L. et al. Patent Application WO 2023/019321 A1 (World Intellectual Property Organization). https://lens.org/132-726-070-689-448(2023).
11. Reading, J. F. & Ford, A. L. K-shell-hole production, multiple-hole production, charge transfer, and antisymmetry. Physical Review A 21, 124 (1980).
12. Thornton, S. T. & Rex, A. F. Modern physics for scientists and engineers Fourth edition. eng. isbn: 9781133103721 (Cengage Learning, Boston, MA, 2013- 2013).
13. Haug, E. &Nakel, W. The elementary process of bremsstrahlung (World Scientific, 2004).
14. Hubbell, J. & Seltzer, S. M. X-ray mass attenuation coefficients: NIST Standard Reference Database 126. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest*. 1995. Radiation Physics Division, PML, NIST (2004).
15. Deliormanlı, A. M. et al. WS2/bioactive glass composites: Fabrication, structural, mechanical and radiation attenuation properties. eng. Ceramics international 47, 29739–29747. issn: 0272-8842 (2021).
16. Ajayan,P.,Kim,P.&Banerjee,K.Two-dimensionalvanderWaalsmaterials.PhysicsToday 69, 38–44. issn: 0031-9228. eprint: https://pubs.aip.org/physicstoday/articlepdf/69/9/38/10117753/38\_1\_online.pdf. https://doi.org/10.1063/PT.3.3297 (Sept. 2016).
17. Fleischmann, S., Spencer, M. A. & Augustyn, V. Electrochemical reactivity under confinement enabled by molecularly pillared 2D and layered materials. Chemistry of Materials 32, 3325–3334 (2020).
18. Mir, S. H., Yadav, V. K. & Singh, J. K. Recent advances in the carrier mobility of two-dimensional materials: a theoretical perspective. ACS omega 5, 14203–14211 (2020).
19. Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS(2). Physical Review B 83, 245213 (June 2011).
20. Lan,C.,Li,C.,Ho,J.&Liu,Y.2DWS2:FromVaporPhaseSynthesistoDeviceApplications. Advanced Electronic Materials 7 (Sept. 2020).
21. Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nature Reviews Chemistry 1, 0014 (2017).
22. Splendiani, A. et al. Emerging Photoluminescence in Monolayer MoS2. eng. Nano letters 10, 1271–1275. issn: 1530-6984 (2010).
23. ’Rubio Cruz, T. ’Fabricación de dispositivos optoelectrónicos flexibles basados en dicalcogenuros de metales de transición’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2021). ’http://hdl.handle.net/1992/54581.
24. Huang, F., Jian, J. & Wu, R. Few-layer thick WS2 nanosheets produced by intercalation/exfoliation route. eng. Journal of materials science 51, 10160–10165. issn: 0022-2461 (2016).
25. Zeng, Z. et al. Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. ger. Angewandte Chemie 123, 11289–11293. issn: 0044-8249 (2011).
26. Serway,R.A.,Moses,C.J.&Moyer,C.A.Modernphysics3rdedition.eng.isbn:0534493394 (Thomson Brooks/Cole, Belmont, CA, 2005).
27. Chen,Z.,Dinh,H.N.&Miller,E.Photoelectrochemicalwatersplitting:standards,experimental methods, and protocols 1st ed. 2013. eng. isbn: 1-4614-8298-4 (Springer, New York, 2013).
28. Goswami, T. et al. Ultrafast Insights into High Energy (C and D) Excitons in Few Layer WS2. eng. The journal of physical chemistry letters 12, 6526–6534. issn: 1948-7185 (2021).
29. Orikasa, K. et al. Exploring thermal and in-situ mechanical properties of flexible 2D tungsten disulfide foam-polymer composite for thermal management. eng. Composites. Part B, Engineering 284, 111743–. issn: 1359-8368 (2024).
30. Gribov, L. The Theory of Raman Spectra: A New Approach. High Energy Chemistry 54, 233–236 (2020).
31. Keresztury, G., Chalmers, J. & Griffith, P. Raman spectroscopy: theory. Handbook of vibrational spectroscopy 1, 71–87 (2002).
32. Wang, X., Zheng, C. & Ning, J. Q. Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study. Scientific Reports 6, 33091 (Sept. 2016).
33. Sourisseau, C., Cruege, F., Fouassier, M. & Alba, M. Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chemical Physics 150, 281–293. issn: 0301-0104. https://www.sciencedirect.com/science/article/pii/ 0301010491801366 (1991).
34. Kittel, C. Introduction to solid state physics 8th edition. eng. isbn: 047141526X (John Wiley Sons, Hoboken, NJ, 2005).
35. Berkdemir, A. et al. Identification of individual and few layers of WS using Raman Spectroscopy. English. Scientific Reports 3. Copyright Nature Publishing Group Apr 2013, 1755. https://ezproxy.uniandes.edu.co:8443/login?url=https://www. proquest.com/scholarly-journals/identification-individual-few-layersws2-using/docview/1897428651/se-2 (Apr. 2013).
36. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today 20, 116–130 (2017).
37. Cong, C., Shang, J., Wang, Y. & Yu, T. Optical Properties of 2D Semiconductor WS2. Advanced Optical Materials 6. https://api.semanticscholar.org/CorpusID:10352172 9 (2018).
38. Sang, Y. et al. Measurement of Thermal Conductivity of Suspended and Supported Single-Layer WS2 Using Micro-photoluminescence Spectroscopy. The Journal of Physical Chemistry C 126, 6637–6645. eprint: https://doi.org/10.1021/acs.jpcc.2c00732. https://doi.org/10.1021/acs.jpcc.2c00732 (2022).
39. Faraj, K. & Mohammed, S. Effects of chronic exposure of X-ray on hematological parameters in human blood. Comp Clin Pathol 27 (2018).
40. Papanikolaou, N. C., Hatzidaki, E. G., Belivanis, S., Tzanakakis, G. N. & Tsatsakis, A. M. Lead toxicity update. A brief review. Medical science monitor 11, RA329–RA336 (2005).
41. Taqi, A. H., Faraj, K. A. & Zaynal, S. A. The Effect of Long-Term X-Ray Exposure on HumanLymphocyte. Journal of Biomedical Physics and Engineering, 127–132 (2019).
42. Joseph G. Hollowell, J. & Littlefield, L. G. Chromosome Damage Induced by Plasma of X-Rayed Patients: An Indirect Effect of X-Ray. Proceedings of the Society for Experimental Biology and Medicine 129, 240–244. eprint: https://doi.org/10.3181/00379727-12933295. https://doi.org/10.3181/00379727-129-33295 (1968).
43. Lead Industries Association, I. A guide to the use of lead for radiation shielding. Innovative Medical Engineering (2012).
44. Jayakumar, S., Saravanan, T. & Philip, J. A review on polymer nanocomposites as leadfree materials for diagnostic X-ray shielding: Recent advances, challenges and future perspectives. Hybrid Advances 4, 100100. issn: 2773-207X. https://www.sciencedirect. com/science/article/pii/S2773207X23000830 (2023).
45. Aral, N., Nergis, F. B. & Candan, C. An alternative X-ray shielding material based on coated textiles. Textile Research Journal 86, 803–811. eprint: https://doi.org/10.1177/ 0040517515590409. https://doi.org/10.1177/0040517515590409 (2016).
46. Nine,M.J.etal.LaminatedAntimoneneasanAlternativeandEfficientShieldingStrategy Against X-ray Radiation. eng. Applied Materials Today 29, 101566. issn: 2352-9407 (2022).
47. Montoya, A. & Sáenz, M. Evaluación de materiales de blindaje y filtrado para radiología médica mediante simulaciones de rayos X. Informe técnico, Departamento de Física, Universidad de los Andes (2024).
48. Huo,C., Yan, Z., Song, X. & Zeng, H. 2D materials via liquid exfoliation: a review on fabrication and applications. eng. Science bulletin (Beijing) 60, 1994–2008. issn: 2095-9273 (2015).
49. Sigma-Aldrich. Safety Data Sheet for N-Methyl-2-pyrrolidone (NMP). Merk (2024).
50. Sigma-Aldrich. Safety Data Sheet for Cyrene. Merk (2024).
51. Olaya Cortés, D. E. Lateral size dependence of piezoresistivity and photoconductivity in TMD networks eng. 2024.
52. Berman, M., Piters, T., Aceves, M., Berriel, V., Luna, L., et al. Fluorescence and thermoluminescence in silicon oxide films rich in silicon; Fluorescencia y termoluminiscencia en peliculas de oxido de silicio rico en silicio (2009).
53. DelosAndes, M. U. Equipos del Centro de Microscopía | MicroCore | Uniandes
54. ’Barreto Neira, C. A. ’Estudio computacional de un detector GEM para la producción de imágenes de rayos X’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2021). ’http://hdl.handle.net/1992/53638’.
55. ’Morelli Moreno, S. M. ’Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2022). ’http://hdl.handle.net/1992/60701’.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 71 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/880676a5-7d74-4e1e-995b-b345adc51766/download
https://repositorio.uniandes.edu.co/bitstreams/756d0445-f480-45f6-b069-486349421284/download
https://repositorio.uniandes.edu.co/bitstreams/0f44e9bb-f0c6-431e-a8c0-dc54564b3a42/download
https://repositorio.uniandes.edu.co/bitstreams/286d0d9f-5c7b-4092-86f6-b0f3126363cf/download
https://repositorio.uniandes.edu.co/bitstreams/6292e0b7-bb9e-4f03-950f-243ce3b12d28/download
https://repositorio.uniandes.edu.co/bitstreams/62df2051-bc74-4c79-8401-c66f63e168b1/download
https://repositorio.uniandes.edu.co/bitstreams/b79964e2-7f3b-49c7-946d-5e6fad803c62/download
https://repositorio.uniandes.edu.co/bitstreams/7f4316a1-9f98-45bb-8eb1-ba24d366b7fd/download
bitstream.checksum.fl_str_mv 2e352a1d5a508ec317b1313d539b4a26
00646b161a4aeb315081715fff775839
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
c6b9b3fb0250cd81951c3033900e2f55
81e659c58ee84daad3bb3a794d43f4f9
6a2eb291236562cd8a40a2099a81fcab
d4ed71b5f5133253dffca31977fd5deb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927679784321024
spelling Hernández Pico, Yenny RocioÁvila Bernal, Carlos Arturovirtual::22969-1Hernández Pico, Yenny Rociovirtual::22974-1Pabón Londoño, Juan PabloGiraldo Gallo, Paula Liliana2025-01-31T15:15:32Z2025-01-31T15:15:32Z2024-12-10https://hdl.handle.net/1992/75907instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Transition metal dichalcogenides (TMDs), compounds with the chemical structure − − where is a transition metal and is a chalcogen, have garnered significant interest due to their unique ability to form two-dimensional (2D) materials. This dimensionality enables TMDs to exhibit extraordinary thermodynamic, electronic, and optical properties, making them versatile candidates for a wide range of applications. Among these, tungsten disulfide (WS2) stands out for its tunable electronic structure and optical behavior, as well as its potential utility in radiation shielding. This study investigates the X-ray attenuation properties of WS2, particularly its ability to serve as a lead-free alternative in shielding applications, given the environmental and health hazards associated with conventional lead-based materials. The WS2 samples were exfoliated using liquid-phase exfoliation (LPE) via lithium ion intercalation, a top-down method aimed at reducing the material to thin layers. Raman spectroscopy corroborated the exfoliation, identifying the vibrational modes 12 and 1 with interpeak frequency shifts indicative of the differences between bulk and exfoliated samples. Scanning electron microscopy (SEM) was used to examine the surface morphology and cross-sectional structures of raw powder and exfoliated samples, enabling the study of physical differences such as layer organization and thickness quantification. Furthermore, to calculate the shielding potential of WS2, X-ray attenuation experiments were conducted using GEM and CdTe Timepix3 detectors. These experiments measured the linear attenuation coefficients as a function of sample thickness and X-ray energy. This study highlights the potential of WS2 as a viable, lead-free material for X-ray attenuation. Its ability to function as a 2D material, coupled with its effectiveness in interacting with X-rays at low energies, positions it as a promising candidate for applications in radiation protection, medical imaging, and other fields requiring efficient, sustainable shielding solutions. These findings lay the groundwork for further exploration of TMDs and other 2D materials as next-generation shielding materials.Los dicalcogenuros de metales de transición (TMDs, por sus siglas en inglés), compuestos con la estructura química − − , donde es un metal de transición y es un calcógeno, han suscitado un interés significativo debido a su capacidad única para formar materiales bidimensionales (2D). Esta dimensionalidad permite a los TMDs exhibir propiedades termodinámicas, electrónicas y ópticas extraordinarias, lo que los convierte en candidatos versátiles para una amplia gama de aplicaciones. Entre ellos, el disulfuro de tungsteno (WS2) destaca por su estructura electrónica ajustable, su comportamiento óptico y su potencial utilidad en el blindaje contra la radiación. Este estudio investiga las propiedades de atenuación de rayos X delWS2, particularmente su capacidad para servir como una alternativa sin plomo en aplicaciones de blindaje, dada la peligrosidad ambiental y sanitaria asociada con los materiales convencionales basados en plomo. Las muestras de WS2 se exfoliaron utilizando exfoliación en fase líquida (LPE, por sus siglas en inglés) mediante intercalación de iones de litio, un método de arriba hacia abajo diseñado para reducir el material a capas delgadas. La espectroscopía Raman corroboró la exfoliación, identificando los modos vibracionales 1 2 y 1 con desplazamientos de frecuencia entre picos indicativos de las diferencias entre las muestras a granel y las exfoliadas. La microscopía electrónica de barrido (SEM, por sus siglas en inglés) se utilizó para examinar la morfología superficial y las estructuras transversales de los polvos crudos y las muestras exfoliadas, lo que permitió estudiar diferencias físicas como la organización de las capas y la cuantificación del grosor. Además, para calcular el potencial de blindaje del WS2, se llevaron a cabo experimentos de atenuación de rayos X utilizando detectores GEM y CdTe Timepix3. Estos experimentos midieron los coeficientes de atenuación lineal en función del grosor de la muestra y la energía de los rayos X. Este estudio destaca el potencial del WS2 como un material viable y sin plomo para la atenuación de rayos X. Su capacidad para funcionar como un material 2D, junto con su eficacia en la interacción con rayos X a bajas energías, lo posiciona como un candidato prometedor para aplicaciones en protección contra radiación, imagenología médica y otros campos que requieren soluciones de blindaje eficientes y sostenibles. Estos hallazgos sientan las bases para una mayor exploración de los TMDs y otros materiales 2D como materiales de blindaje de próxima generación.Pregrado71 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPTransition metal dichalcogenides (TMD)2D materialsLiquid phase exfoliationX-ray attenuationX-ray shieldingGas electron multiplier (GEM detector)CdTe TIMEPIX3 detectorBeer-Lambert lawUV-vis spectroscopyRaman spectroscopyScanning electron microscopy (SEM)Física1. Ávila, C. "Notas de clase: Fundamentos de electrodinámica e introducción a electrodinámica clásica." 260 (2024).2. Walker, R. Synchrotron radiation. CAS- CERN Accelerator School : 5th General Accelerator Physics Course, 437–459 (1994).3. Ahmed, S. N. in Physics and Engineering of Radiation Detection (Second Edition) (ed Ahmed, S. N.) Second Edition, 65–155 (Elsevier, 2015). isbn: 978-0-12-801363-2. https: //www.sciencedirect.com/science/article/pii/B9780128013632000024.4. Cullity,B.&Stock,S.ElementsofX-rayDiffraction,ThirdEditionEnglish(US)(Prentice-Hall, 2001).5. Huda, W. & Abrahams, R. B. X-ray-based medical imaging and resolution. American Journal of Roentgenology 204, W393–W397 (2015).6. Neubauer, C. Intelligent X-ray inspection for quality control of solder joints. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C 20, 111–120 (1997).7. Khan, S. U., Khan, I. U., Ullah, I., Saif, N. & Ullah, I. A review of airport dual energy X-ray baggage inspection techniques: Image enhancement and noise reduction. Journal of X-ray Science and Technology 28, 481–505 (2020).8. Jackson, D. F. & Hawkes, D. X-ray attenuation coefficients of elements and mixtures. Physics Reports 70, 206–209. issn: 0370-1573. https://www.sciencedirect.com/scienc e/article/pii/0370157381900144 (1981).9. Zamanian, A. &Hardiman, C. Electromagnetic radiation and human health: A review of sources and effects. High Frequency Electronics 4, 16–26 (2005).10. DUSAN, L. et al. Patent Application WO 2023/019321 A1 (World Intellectual Property Organization). https://lens.org/132-726-070-689-448(2023).11. Reading, J. F. & Ford, A. L. K-shell-hole production, multiple-hole production, charge transfer, and antisymmetry. Physical Review A 21, 124 (1980).12. Thornton, S. T. & Rex, A. F. Modern physics for scientists and engineers Fourth edition. eng. isbn: 9781133103721 (Cengage Learning, Boston, MA, 2013- 2013).13. Haug, E. &Nakel, W. The elementary process of bremsstrahlung (World Scientific, 2004).14. Hubbell, J. & Seltzer, S. M. X-ray mass attenuation coefficients: NIST Standard Reference Database 126. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest*. 1995. Radiation Physics Division, PML, NIST (2004).15. Deliormanlı, A. M. et al. WS2/bioactive glass composites: Fabrication, structural, mechanical and radiation attenuation properties. eng. Ceramics international 47, 29739–29747. issn: 0272-8842 (2021).16. Ajayan,P.,Kim,P.&Banerjee,K.Two-dimensionalvanderWaalsmaterials.PhysicsToday 69, 38–44. issn: 0031-9228. eprint: https://pubs.aip.org/physicstoday/articlepdf/69/9/38/10117753/38\_1\_online.pdf. https://doi.org/10.1063/PT.3.3297 (Sept. 2016).17. Fleischmann, S., Spencer, M. A. & Augustyn, V. Electrochemical reactivity under confinement enabled by molecularly pillared 2D and layered materials. Chemistry of Materials 32, 3325–3334 (2020).18. Mir, S. H., Yadav, V. K. & Singh, J. K. Recent advances in the carrier mobility of two-dimensional materials: a theoretical perspective. ACS omega 5, 14203–14211 (2020).19. Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS(2). Physical Review B 83, 245213 (June 2011).20. Lan,C.,Li,C.,Ho,J.&Liu,Y.2DWS2:FromVaporPhaseSynthesistoDeviceApplications. Advanced Electronic Materials 7 (Sept. 2020).21. Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nature Reviews Chemistry 1, 0014 (2017).22. Splendiani, A. et al. Emerging Photoluminescence in Monolayer MoS2. eng. Nano letters 10, 1271–1275. issn: 1530-6984 (2010).23. ’Rubio Cruz, T. ’Fabricación de dispositivos optoelectrónicos flexibles basados en dicalcogenuros de metales de transición’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2021). ’http://hdl.handle.net/1992/54581.24. Huang, F., Jian, J. & Wu, R. Few-layer thick WS2 nanosheets produced by intercalation/exfoliation route. eng. Journal of materials science 51, 10160–10165. issn: 0022-2461 (2016).25. Zeng, Z. et al. Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. ger. Angewandte Chemie 123, 11289–11293. issn: 0044-8249 (2011).26. Serway,R.A.,Moses,C.J.&Moyer,C.A.Modernphysics3rdedition.eng.isbn:0534493394 (Thomson Brooks/Cole, Belmont, CA, 2005).27. Chen,Z.,Dinh,H.N.&Miller,E.Photoelectrochemicalwatersplitting:standards,experimental methods, and protocols 1st ed. 2013. eng. isbn: 1-4614-8298-4 (Springer, New York, 2013).28. Goswami, T. et al. Ultrafast Insights into High Energy (C and D) Excitons in Few Layer WS2. eng. The journal of physical chemistry letters 12, 6526–6534. issn: 1948-7185 (2021).29. Orikasa, K. et al. Exploring thermal and in-situ mechanical properties of flexible 2D tungsten disulfide foam-polymer composite for thermal management. eng. Composites. Part B, Engineering 284, 111743–. issn: 1359-8368 (2024).30. Gribov, L. The Theory of Raman Spectra: A New Approach. High Energy Chemistry 54, 233–236 (2020).31. Keresztury, G., Chalmers, J. & Griffith, P. Raman spectroscopy: theory. Handbook of vibrational spectroscopy 1, 71–87 (2002).32. Wang, X., Zheng, C. & Ning, J. Q. Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study. Scientific Reports 6, 33091 (Sept. 2016).33. Sourisseau, C., Cruege, F., Fouassier, M. & Alba, M. Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chemical Physics 150, 281–293. issn: 0301-0104. https://www.sciencedirect.com/science/article/pii/ 0301010491801366 (1991).34. Kittel, C. Introduction to solid state physics 8th edition. eng. isbn: 047141526X (John Wiley Sons, Hoboken, NJ, 2005).35. Berkdemir, A. et al. Identification of individual and few layers of WS using Raman Spectroscopy. English. Scientific Reports 3. Copyright Nature Publishing Group Apr 2013, 1755. https://ezproxy.uniandes.edu.co:8443/login?url=https://www. proquest.com/scholarly-journals/identification-individual-few-layersws2-using/docview/1897428651/se-2 (Apr. 2013).36. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today 20, 116–130 (2017).37. Cong, C., Shang, J., Wang, Y. & Yu, T. Optical Properties of 2D Semiconductor WS2. Advanced Optical Materials 6. https://api.semanticscholar.org/CorpusID:10352172 9 (2018).38. Sang, Y. et al. Measurement of Thermal Conductivity of Suspended and Supported Single-Layer WS2 Using Micro-photoluminescence Spectroscopy. The Journal of Physical Chemistry C 126, 6637–6645. eprint: https://doi.org/10.1021/acs.jpcc.2c00732. https://doi.org/10.1021/acs.jpcc.2c00732 (2022).39. Faraj, K. & Mohammed, S. Effects of chronic exposure of X-ray on hematological parameters in human blood. Comp Clin Pathol 27 (2018).40. Papanikolaou, N. C., Hatzidaki, E. G., Belivanis, S., Tzanakakis, G. N. & Tsatsakis, A. M. Lead toxicity update. A brief review. Medical science monitor 11, RA329–RA336 (2005).41. Taqi, A. H., Faraj, K. A. & Zaynal, S. A. The Effect of Long-Term X-Ray Exposure on HumanLymphocyte. Journal of Biomedical Physics and Engineering, 127–132 (2019).42. Joseph G. Hollowell, J. & Littlefield, L. G. Chromosome Damage Induced by Plasma of X-Rayed Patients: An Indirect Effect of X-Ray. Proceedings of the Society for Experimental Biology and Medicine 129, 240–244. eprint: https://doi.org/10.3181/00379727-12933295. https://doi.org/10.3181/00379727-129-33295 (1968).43. Lead Industries Association, I. A guide to the use of lead for radiation shielding. Innovative Medical Engineering (2012).44. Jayakumar, S., Saravanan, T. & Philip, J. A review on polymer nanocomposites as leadfree materials for diagnostic X-ray shielding: Recent advances, challenges and future perspectives. Hybrid Advances 4, 100100. issn: 2773-207X. https://www.sciencedirect. com/science/article/pii/S2773207X23000830 (2023).45. Aral, N., Nergis, F. B. & Candan, C. An alternative X-ray shielding material based on coated textiles. Textile Research Journal 86, 803–811. eprint: https://doi.org/10.1177/ 0040517515590409. https://doi.org/10.1177/0040517515590409 (2016).46. Nine,M.J.etal.LaminatedAntimoneneasanAlternativeandEfficientShieldingStrategy Against X-ray Radiation. eng. Applied Materials Today 29, 101566. issn: 2352-9407 (2022).47. Montoya, A. & Sáenz, M. Evaluación de materiales de blindaje y filtrado para radiología médica mediante simulaciones de rayos X. Informe técnico, Departamento de Física, Universidad de los Andes (2024).48. Huo,C., Yan, Z., Song, X. & Zeng, H. 2D materials via liquid exfoliation: a review on fabrication and applications. eng. Science bulletin (Beijing) 60, 1994–2008. issn: 2095-9273 (2015).49. Sigma-Aldrich. Safety Data Sheet for N-Methyl-2-pyrrolidone (NMP). Merk (2024).50. Sigma-Aldrich. Safety Data Sheet for Cyrene. Merk (2024).51. Olaya Cortés, D. E. Lateral size dependence of piezoresistivity and photoconductivity in TMD networks eng. 2024.52. Berman, M., Piters, T., Aceves, M., Berriel, V., Luna, L., et al. Fluorescence and thermoluminescence in silicon oxide films rich in silicon; Fluorescencia y termoluminiscencia en peliculas de oxido de silicio rico en silicio (2009).53. DelosAndes, M. U. Equipos del Centro de Microscopía | MicroCore | Uniandes54. ’Barreto Neira, C. A. ’Estudio computacional de un detector GEM para la producción de imágenes de rayos X’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2021). ’http://hdl.handle.net/1992/53638’.55. ’Morelli Moreno, S. M. ’Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe’ tech. rep. (’Fundación Universitaria de Ciencias de la Salud’, 2022). ’http://hdl.handle.net/1992/60701’.202112409Publicationhttps://scholar.google.es/citations?user=KXWwfMMAAAAJhttps://scholar.google.es/citations?user=jitNa1QAAAAJvirtual::22969-1https://scholar.google.es/citations?user=KXWwfMMAAAAJvirtual::22974-10000-0002-6980-88200000-0002-6980-8820virtual::22974-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318566https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000008370virtual::22969-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318566virtual::22974-1279f6f35-f4cc-429c-8e15-3e6dc77d8289virtual::22969-15ec439ad-c826-485e-8b94-d4fe2bfc1017virtual::22974-15ec439ad-c826-485e-8b94-d4fe2bfc1017279f6f35-f4cc-429c-8e15-3e6dc77d8289virtual::22969-15ec439ad-c826-485e-8b94-d4fe2bfc1017virtual::22974-1ORIGINALFormato autorización tesis Juan Pablo Pabón.pdfFormato autorización tesis Juan Pablo Pabón.pdfHIDEapplication/pdf213437https://repositorio.uniandes.edu.co/bitstreams/880676a5-7d74-4e1e-995b-b345adc51766/download2e352a1d5a508ec317b1313d539b4a26MD51Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdfMeasurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdfapplication/pdf7756621https://repositorio.uniandes.edu.co/bitstreams/756d0445-f480-45f6-b069-486349421284/download00646b161a4aeb315081715fff775839MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/0f44e9bb-f0c6-431e-a8c0-dc54564b3a42/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/286d0d9f-5c7b-4092-86f6-b0f3126363cf/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTFormato autorización tesis Juan Pablo Pabón.pdf.txtFormato autorización tesis Juan Pablo Pabón.pdf.txtExtracted texttext/plain2061https://repositorio.uniandes.edu.co/bitstreams/6292e0b7-bb9e-4f03-950f-243ce3b12d28/downloadc6b9b3fb0250cd81951c3033900e2f55MD55Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdf.txtMeasurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdf.txtExtracted texttext/plain101093https://repositorio.uniandes.edu.co/bitstreams/62df2051-bc74-4c79-8401-c66f63e168b1/download81e659c58ee84daad3bb3a794d43f4f9MD57THUMBNAILFormato autorización tesis Juan Pablo Pabón.pdf.jpgFormato autorización tesis Juan Pablo Pabón.pdf.jpgGenerated Thumbnailimage/jpeg11161https://repositorio.uniandes.edu.co/bitstreams/b79964e2-7f3b-49c7-946d-5e6fad803c62/download6a2eb291236562cd8a40a2099a81fcabMD56Measurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdf.jpgMeasurement of the X-ray attenuation coefficient of liquid-phase exfoliated WS2.pdf.jpgGenerated Thumbnailimage/jpeg8438https://repositorio.uniandes.edu.co/bitstreams/7f4316a1-9f98-45bb-8eb1-ba24d366b7fd/downloadd4ed71b5f5133253dffca31977fd5debMD581992/75907oai:repositorio.uniandes.edu.co:1992/759072025-03-05 09:39:37.657http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K