Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learning

Códigos JEL.: C45, C52, C53, E37, E32

Autores:
Rincón Briceño, Juan José
Tipo de recurso:
Work document
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/76235
Acceso en línea:
https://hdl.handle.net/1992/76235
Palabra clave:
Colombian economic activity
Nowcast
Forecast
Random forests
LSTM
Economía
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_684cd15bcb49c6715d32949363814dbc
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/76235
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learning
title Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learning
spellingShingle Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learning
Colombian economic activity
Nowcast
Forecast
Random forests
LSTM
Economía
title_short Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learning
title_full Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learning
title_fullStr Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learning
title_full_unstemmed Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learning
title_sort Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learning
dc.creator.fl_str_mv Rincón Briceño, Juan José
dc.contributor.author.none.fl_str_mv Rincón Briceño, Juan José
dc.subject.keyword.none.fl_str_mv Colombian economic activity
Nowcast
Forecast
Random forests
LSTM
topic Colombian economic activity
Nowcast
Forecast
Random forests
LSTM
Economía
dc.subject.themes.none.fl_str_mv Economía
description Códigos JEL.: C45, C52, C53, E37, E32
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-05T18:58:13Z
dc.date.available.none.fl_str_mv 2025-06-05T18:58:13Z
dc.date.issued.none.fl_str_mv 2025-06
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1657-7191
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/76235
identifier_str_mv 1657-7191
url https://hdl.handle.net/1992/76235
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Documentos CEDE; 2025-16
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 63 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/8a1239c2-3281-4250-a258-c1ed65b9e82e/download
https://repositorio.uniandes.edu.co/bitstreams/5f930aea-1b43-4522-b09e-362b0cffa9b2/download
https://repositorio.uniandes.edu.co/bitstreams/fb10c74b-cd0e-4d61-8d17-48337a41d9d0/download
https://repositorio.uniandes.edu.co/bitstreams/13dec739-72a7-481b-adaf-4c63ad8622f2/download
bitstream.checksum.fl_str_mv b0f4ea04639955ba761b9b7581d094eb
ae9e573a68e7f92501b6913cc846c39f
8fd04399b50c3808ca7fe348202112eb
4a917fa47117b2c8f3195650821729cc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1837005379508109312
spelling Rincón Briceño, Juan José2025-06-05T18:58:13Z2025-06-05T18:58:13Z2025-061657-7191https://hdl.handle.net/1992/76235Códigos JEL.: C45, C52, C53, E37, E32Economic decisions are made with high uncertainty about the current and recent past economic activity, due to the limited and imperfect available information. Therefore the following question arises: how can the accuracy of Colombian economic activity nowcasting be enhanced compared to traditional forecasting methods? This paper demonstrates: (a) using a risk-averse customized loss function that accounts for the agent disutility and penalizes directional discrepancies provides a useful alternative for assessing model performance by ensuring more accurate nowcasts, maximizing both precision and economic relevance. And (b) during periods of abrupt shocks and high volatility, such as the COVID-19 (2020–2021) and the post COVID-19 subsequent years (2022-2023), machine learning models outperform traditional nowcasting models.Las decisiones económicas se toman en condiciones de alta incertidumbre sobre la actividad económica actual y reciente, debido a la limitada e imperfecta información ecónomica disponible. Por lo tanto, surge la siguiente pregunta: ¿cómo se puede mejorar la fiabilidad del nowcasting de la actividad económica colombiana en comparación con los métodos tradicionales de pronóstico? Este artículo demuestra que: (a) utilizar una función de pérdida personalizada con aversión al riesgo, que considera la desutilidad del agente y penaliza discrepancias en la dirección de las predicciones, constituye una alternativa útil para evaluar el desempeño del modelo al garantizar pronósticos más fiables, maximizando tanto la precisión como la relevancia económica. Y (b) durante periodos de choques abruptos y alta volatilidad, como el COVID-19 (2020—2021) y los años posteriores (2022—2023), los modelos de aprendizaje automático superan a los modelos tradicionales de nowcasting.63 páginasapplication/pdfengDocumentos CEDE; 2025-16https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Colombian economic activity nowcasting: addressing nonlinearities and high dimensionality through machine-learningDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/WPColombian economic activityNowcastForecastRandom forestsLSTMEconomíaPublicationORIGINALdcede2025-16.pdfdcede2025-16.pdfapplication/pdf16786784https://repositorio.uniandes.edu.co/bitstreams/8a1239c2-3281-4250-a258-c1ed65b9e82e/downloadb0f4ea04639955ba761b9b7581d094ebMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/5f930aea-1b43-4522-b09e-362b0cffa9b2/downloadae9e573a68e7f92501b6913cc846c39fMD52TEXTdcede2025-16.pdf.txtdcede2025-16.pdf.txtExtracted texttext/plain100849https://repositorio.uniandes.edu.co/bitstreams/fb10c74b-cd0e-4d61-8d17-48337a41d9d0/download8fd04399b50c3808ca7fe348202112ebMD53THUMBNAILdcede2025-16.pdf.jpgdcede2025-16.pdf.jpgIM Thumbnailimage/jpeg22791https://repositorio.uniandes.edu.co/bitstreams/13dec739-72a7-481b-adaf-4c63ad8622f2/download4a917fa47117b2c8f3195650821729ccMD541992/76235oai:repositorio.uniandes.edu.co:1992/762352025-06-06 04:06:30.833https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K