Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation
Cassava bacterial blight (CBB) is a systemic bacterial infection caused by Xanthomonas phaseoli pv. manihotis (Xpm). XopAE is a highly conserved effector among the virulence arsenal of Xpm, and elucidating what molecules it targets in cassava will provide not just a better understanding of the molec...
- Autores:
-
Díaz Millán, Fabián Santiago
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75664
- Acceso en línea:
- https://hdl.handle.net/1992/75664
- Palabra clave:
- Cassava bacterial blight
Cassava
Heterologous system
Complement of phenotype
Stable plant transformation
SALK lines
Biología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_5d6a7206d4605fc5761d503840e24f81 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75664 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation |
title |
Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation |
spellingShingle |
Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation Cassava bacterial blight Cassava Heterologous system Complement of phenotype Stable plant transformation SALK lines Biología |
title_short |
Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation |
title_full |
Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation |
title_fullStr |
Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation |
title_full_unstemmed |
Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation |
title_sort |
Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation |
dc.creator.fl_str_mv |
Díaz Millán, Fabián Santiago |
dc.contributor.advisor.none.fl_str_mv |
Bernal Giraldo, Adriana Jimena |
dc.contributor.author.none.fl_str_mv |
Díaz Millán, Fabián Santiago |
dc.contributor.jury.none.fl_str_mv |
Villegas Torres, Maria Francisca |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Interacciones Moleculares Microbianas |
dc.subject.keyword.eng.fl_str_mv |
Cassava bacterial blight Cassava Heterologous system Complement of phenotype Stable plant transformation SALK lines |
topic |
Cassava bacterial blight Cassava Heterologous system Complement of phenotype Stable plant transformation SALK lines Biología |
dc.subject.themes.spa.fl_str_mv |
Biología |
description |
Cassava bacterial blight (CBB) is a systemic bacterial infection caused by Xanthomonas phaseoli pv. manihotis (Xpm). XopAE is a highly conserved effector among the virulence arsenal of Xpm, and elucidating what molecules it targets in cassava will provide not just a better understanding of the molecular mechanisms Xpm uses for infection but also may allow for future investigation and development of a Xpm-resistant cassava. A previously suggested target of this effector in cassava is a protein from a family called “patellins”. This protein is homologous to PATL3 from Arabidopsis thaliana, which suggests this homologue may also serve as a target for XopAE. In this project, the Arabidopsis thaliana – Pseudomonas fluorescens heterologous system was approached via characterization of two insertional knock-out lines of A. thaliana for the PATL3 gene, as well as development of the plant sable transformation construct Agrobacterium tumefaciens GV3101 (pMP90) (pBAV139: MePATL3) and generation of a vector pGEM-T Easy with AtPATL3; all of which facilitate future approximations for phenotype complementation in A. thaliana to elucidate functional homology between the patellins from A. thaliana and cassava. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-01-27T14:30:16Z |
dc.date.available.none.fl_str_mv |
2025-01-27T14:30:16Z |
dc.date.issued.none.fl_str_mv |
2025-01-24 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75664 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75664 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Arrieta-Ortiz, M. L., Rodríguez-R, L. M., Perez-Quintero, A. L., Poulin, L., Díaz, A. C., Arias Rojas, N., ... & Bernal, A. (2013). Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis strain CIO151. PLoS One, 8(11), e79704. Bart, R., Cohn, M., Kassen, A., McCallum, E. J., Shybut, M., Petriello, A., ... & Staskawicz, B. J. (2012). High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences, 109(28), E1972-E1979. Bélanger, J. G., Copley, T. R., Hoyos-Villegas, V., Charron, J. B., & O’Donoughue, L. (2024). A comprehensive review of in planta stable transformation strategies. Plant Methods, 20(1), 79. Bent, A. (2006). Arabidopsis thaliana floral dip transformation method. Agrobacterium protocols, 87-104. Chavarriaga-Aguirre, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., ... & Tohme, J. (2016). The potential of using biotechnology to improve cassava: a review. In Vitro Cellular & Developmental Biology-Plant, 52, 461-478. Cockcroft, S. (1997). Phosphatidylinositol transfer proteins: requirements in phospholipase C signaling and in regulated exocytosis. FEBS letters, 410(1), 44-48. Díaz-Tatis, P. A., Trujillo-Beltrán, C. A., Bernal-Giraldo, A. J., & López-Carrascal, C. E. (2015). HPAF from Xanthomonas axonopodis PV. manihotis down-regulate metabolism and defense genes in cassava. Actualidades Biológicas, 37(102), 245-254. Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR Analysis. Nucl. Acids Res., 19, 1349. Encyclopedia of Neuroscience. (2009). Heterologous Expression. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_2190 Fanou, A. A., Zinsou, V. A., & Wydra, K. (2018). Cassava Bacterial Blight: A Devastating Disease of Cassava. InTech. doi: 10.5772/intechopen.71527 Hase, S., Van Pelt, J. A., Van Loon, L. C., & Pieterse, C. M. (2003). Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiological and molecular plant pathology, 62(4), 219-226. Higuchi-Takeuchi, M., Ichikawa, T., Kondou, Y., Matsui, K., Hasegawa, Y., Kawashima, M., ... & Matsui, M. (2011). Functional analysis of two isoforms of leaf-type ferredoxin-NADP+-oxidoreductase in rice using the heterologous expression system of Arabidopsis. Plant physiology, 157(1), 96-108. Hückelhoven, R., Trujillo, M., & Kogel, K. H. (2000). Mutations in Ror1 and Ror2 genes cause modification of hydrogen peroxide accumulation in mlo‐barley under attack from the powdery mildew fungus. Molecular Plant Pathology, 1(5), 287-292. Hurtado-McCormick, V., Trujillo, C., Ocampo, J., Restrepo, S., Bernal, A. (2012) THE IMPORTANCE OF CASSAVA PROTEINS AS PUTATIVE PATHOGENICITY TARGETS OF HpaF FROM Xanthomonas axonopodis pv. manihotis. Universidad de los Andes. Medina, C.A., Reyes, P.A., Trujillo, C.A., Gonzalez, J.L., Bejarano, D.A., Montenegro, N.A., Jacobs, J.M., Joe, A., Restrepo, S., Alfano, J.R. and Bernal, A. (2018), The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular Plant Pathology, 19: 593-606. https://doi.org/10.1111/mpp.12545 Peterman, T. K., Ohol, Y. M., McReynolds, L. J., & Luna, E. J. (2004). Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant physiology, 136(2), 3080-3094. Peiro, A., Izquierdo‐Garcia, A. C., Sanchez‐Navarro, J. A., Pallas, V., Mulet, J. M., & Aparicio, F. (2014). Patellins 3 and 6, two members of the Plant Patellin family, interact with the movement protein of Alfalfa mosaic virus and interfere with viral movement. Molecular plant pathology, 15(9), 881-891. Reece-Hoyes, J. S., & Walhout, A. J. M. (2018). Gateway Recombinational Cloning. Cold Spring Harbor protocols, 2018(1), pdb.top094912. https://doi.org/10.1101/pdb.top094912 Robatzek, S. (2007). Vesicle trafficking in plant immune responses. Cellular microbiology, 9(1), 1-8. Robles, P., & Pelaz, S. (2005). Flower and fruit development in Arabidopsis thaliana. The International journal of developmental biology, 49(5-6), 633-643. Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual review of phytopathology, 54, 419-441. Trujillo, C. A., Hurtado, V., Gil, J., Joe, A., Saur, I., Restrepo, S., Alfano, J. R., Rathjen, J., López, C., Bernal, A. (n. d.) HpaF from Xanthomonas axonopodis pv. manihotis is a suppressor of basal defenses in plants by targeting three proteins in cassava. Universidad de los Andes. Verdier, V. (2002). Bacteriosis vascular (o añublo bacteriano) de la yuca causada por Xanthomonas axonopodis pv. manihotis. En CIAT eds La yuca en el Tercer Milenio Sistemas modernos de producción procesamiento utilización y comercialización, 148-159. Vinatzer, B. A., Teitzel, G. M., Lee, M. W., Jelenska, J., Hotton, S., Fairfax, K., ... & Greenberg, J. T. (2006). The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non‐host plants. Molecular microbiology, 62(1), 26-44. Vu, K., Bautos, J., Hong, M. P., & Gelli, A. (2009). The functional expression of toxic genes: Lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel. Analytical biochemistry, 393(2), 234-241. Zárate‐Chaves, C. A., Gómez de la Cruz, D., Verdier, V., López, C. E., Bernal, A., & Szurek, B. (2021). Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae. Molecular plant pathology, 22(12), 1520-1537. Zhou, H., Duan, H., Liu, Y., Sun, X., Zhao, J., & Lin, H. (2019). Patellin protein family functions in plant development and stress response. Journal of Plant Physiology, 234-235, 94–97. doi:10.1016/j.jplph.2019.01.012 |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
16 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Biología |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Ciencias Biológicas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/00da2d30-166c-4852-9237-36fdba9ad425/download https://repositorio.uniandes.edu.co/bitstreams/034d1799-60f8-473d-b40e-6bd91fd13875/download https://repositorio.uniandes.edu.co/bitstreams/90c1e916-ff4d-4dfd-9aad-3080d687708e/download https://repositorio.uniandes.edu.co/bitstreams/1b7bd5a6-0b04-4903-91ec-5b10db46a29f/download https://repositorio.uniandes.edu.co/bitstreams/b533aa26-23e3-43d4-92b0-1ebb4d916c9d/download https://repositorio.uniandes.edu.co/bitstreams/f518c980-65c9-4401-80d1-53eb16a6c21c/download https://repositorio.uniandes.edu.co/bitstreams/f165c285-f00f-4c3b-90ac-5006e221c405/download https://repositorio.uniandes.edu.co/bitstreams/c031b25c-5ec4-4308-9b54-61a52993f631/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 8bbf084ef8614a57f7bb4e844a099eb0 1d4a01c2a9c69ba93069ac54cfbe90a6 ae9e573a68e7f92501b6913cc846c39f 9b45a07f119a64389e817c98e1f6568c dbee0d919a26ea908a34eb5a250807d9 c9278067976b044525907beb90bfcb82 61b690c152e48be46f49689ee7d7f9ec |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927774415159296 |
spelling |
Bernal Giraldo, Adriana Jimenavirtual::22597-1Díaz Millán, Fabián SantiagoVillegas Torres, Maria FranciscaFacultad de Ciencias::Interacciones Moleculares Microbianas2025-01-27T14:30:16Z2025-01-27T14:30:16Z2025-01-24https://hdl.handle.net/1992/75664instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Cassava bacterial blight (CBB) is a systemic bacterial infection caused by Xanthomonas phaseoli pv. manihotis (Xpm). XopAE is a highly conserved effector among the virulence arsenal of Xpm, and elucidating what molecules it targets in cassava will provide not just a better understanding of the molecular mechanisms Xpm uses for infection but also may allow for future investigation and development of a Xpm-resistant cassava. A previously suggested target of this effector in cassava is a protein from a family called “patellins”. This protein is homologous to PATL3 from Arabidopsis thaliana, which suggests this homologue may also serve as a target for XopAE. In this project, the Arabidopsis thaliana – Pseudomonas fluorescens heterologous system was approached via characterization of two insertional knock-out lines of A. thaliana for the PATL3 gene, as well as development of the plant sable transformation construct Agrobacterium tumefaciens GV3101 (pMP90) (pBAV139: MePATL3) and generation of a vector pGEM-T Easy with AtPATL3; all of which facilitate future approximations for phenotype complementation in A. thaliana to elucidate functional homology between the patellins from A. thaliana and cassava.Pregrado16 páginasapplication/pdfengUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPCassava bacterial blightCassavaHeterologous systemComplement of phenotypeStable plant transformationSALK linesBiologíaArrieta-Ortiz, M. L., Rodríguez-R, L. M., Perez-Quintero, A. L., Poulin, L., Díaz, A. C., Arias Rojas, N., ... & Bernal, A. (2013). Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis strain CIO151. PLoS One, 8(11), e79704.Bart, R., Cohn, M., Kassen, A., McCallum, E. J., Shybut, M., Petriello, A., ... & Staskawicz, B. J. (2012). High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences, 109(28), E1972-E1979.Bélanger, J. G., Copley, T. R., Hoyos-Villegas, V., Charron, J. B., & O’Donoughue, L. (2024). A comprehensive review of in planta stable transformation strategies. Plant Methods, 20(1), 79.Bent, A. (2006). Arabidopsis thaliana floral dip transformation method. Agrobacterium protocols, 87-104.Chavarriaga-Aguirre, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., ... & Tohme, J. (2016). The potential of using biotechnology to improve cassava: a review. In Vitro Cellular & Developmental Biology-Plant, 52, 461-478.Cockcroft, S. (1997). Phosphatidylinositol transfer proteins: requirements in phospholipase C signaling and in regulated exocytosis. FEBS letters, 410(1), 44-48.Díaz-Tatis, P. A., Trujillo-Beltrán, C. A., Bernal-Giraldo, A. J., & López-Carrascal, C. E. (2015). HPAF from Xanthomonas axonopodis PV. manihotis down-regulate metabolism and defense genes in cassava. Actualidades Biológicas, 37(102), 245-254.Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR Analysis. Nucl. Acids Res., 19, 1349.Encyclopedia of Neuroscience. (2009). Heterologous Expression. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_2190Fanou, A. A., Zinsou, V. A., & Wydra, K. (2018). Cassava Bacterial Blight: A Devastating Disease of Cassava. InTech. doi: 10.5772/intechopen.71527Hase, S., Van Pelt, J. A., Van Loon, L. C., & Pieterse, C. M. (2003). Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiological and molecular plant pathology, 62(4), 219-226.Higuchi-Takeuchi, M., Ichikawa, T., Kondou, Y., Matsui, K., Hasegawa, Y., Kawashima, M., ... & Matsui, M. (2011). Functional analysis of two isoforms of leaf-type ferredoxin-NADP+-oxidoreductase in rice using the heterologous expression system of Arabidopsis. Plant physiology, 157(1), 96-108.Hückelhoven, R., Trujillo, M., & Kogel, K. H. (2000). Mutations in Ror1 and Ror2 genes cause modification of hydrogen peroxide accumulation in mlo‐barley under attack from the powdery mildew fungus. Molecular Plant Pathology, 1(5), 287-292.Hurtado-McCormick, V., Trujillo, C., Ocampo, J., Restrepo, S., Bernal, A. (2012) THE IMPORTANCE OF CASSAVA PROTEINS AS PUTATIVE PATHOGENICITY TARGETS OF HpaF FROM Xanthomonas axonopodis pv. manihotis. Universidad de los Andes.Medina, C.A., Reyes, P.A., Trujillo, C.A., Gonzalez, J.L., Bejarano, D.A., Montenegro, N.A., Jacobs, J.M., Joe, A., Restrepo, S., Alfano, J.R. and Bernal, A. (2018), The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular Plant Pathology, 19: 593-606. https://doi.org/10.1111/mpp.12545Peterman, T. K., Ohol, Y. M., McReynolds, L. J., & Luna, E. J. (2004). Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant physiology, 136(2), 3080-3094.Peiro, A., Izquierdo‐Garcia, A. C., Sanchez‐Navarro, J. A., Pallas, V., Mulet, J. M., & Aparicio, F. (2014). Patellins 3 and 6, two members of the Plant Patellin family, interact with the movement protein of Alfalfa mosaic virus and interfere with viral movement. Molecular plant pathology, 15(9), 881-891.Reece-Hoyes, J. S., & Walhout, A. J. M. (2018). Gateway Recombinational Cloning. Cold Spring Harbor protocols, 2018(1), pdb.top094912. https://doi.org/10.1101/pdb.top094912Robatzek, S. (2007). Vesicle trafficking in plant immune responses. Cellular microbiology, 9(1), 1-8.Robles, P., & Pelaz, S. (2005). Flower and fruit development in Arabidopsis thaliana. The International journal of developmental biology, 49(5-6), 633-643.Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual review of phytopathology, 54, 419-441.Trujillo, C. A., Hurtado, V., Gil, J., Joe, A., Saur, I., Restrepo, S., Alfano, J. R., Rathjen, J., López, C., Bernal, A. (n. d.) HpaF from Xanthomonas axonopodis pv. manihotis is a suppressor of basal defenses in plants by targeting three proteins in cassava. Universidad de los Andes.Verdier, V. (2002). Bacteriosis vascular (o añublo bacteriano) de la yuca causada por Xanthomonas axonopodis pv. manihotis. En CIAT eds La yuca en el Tercer Milenio Sistemas modernos de producción procesamiento utilización y comercialización, 148-159.Vinatzer, B. A., Teitzel, G. M., Lee, M. W., Jelenska, J., Hotton, S., Fairfax, K., ... & Greenberg, J. T. (2006). The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non‐host plants. Molecular microbiology, 62(1), 26-44.Vu, K., Bautos, J., Hong, M. P., & Gelli, A. (2009). The functional expression of toxic genes: Lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel. Analytical biochemistry, 393(2), 234-241.Zárate‐Chaves, C. A., Gómez de la Cruz, D., Verdier, V., López, C. E., Bernal, A., & Szurek, B. (2021). Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae. Molecular plant pathology, 22(12), 1520-1537.Zhou, H., Duan, H., Liu, Y., Sun, X., Zhao, J., & Lin, H. (2019). Patellin protein family functions in plant development and stress response. Journal of Plant Physiology, 234-235, 94–97. doi:10.1016/j.jplph.2019.01.012202011977Publicationhttps://scholar.google.es/citations?user=vQ9yFZoAAAAJvirtual::22597-10000-0002-3557-697Xvirtual::22597-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000622354virtual::22597-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22597-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22597-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/00da2d30-166c-4852-9237-36fdba9ad425/download4460e5956bc1d1639be9ae6146a50347MD51ORIGINALAutorización Tesis.pdfAutorización Tesis.pdfHIDEapplication/pdf301161https://repositorio.uniandes.edu.co/bitstreams/034d1799-60f8-473d-b40e-6bd91fd13875/download8bbf084ef8614a57f7bb4e844a099eb0MD52Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdfApproximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdfapplication/pdf707695https://repositorio.uniandes.edu.co/bitstreams/90c1e916-ff4d-4dfd-9aad-3080d687708e/download1d4a01c2a9c69ba93069ac54cfbe90a6MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/1b7bd5a6-0b04-4903-91ec-5b10db46a29f/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTAutorización Tesis.pdf.txtAutorización Tesis.pdf.txtExtracted texttext/plain2082https://repositorio.uniandes.edu.co/bitstreams/b533aa26-23e3-43d4-92b0-1ebb4d916c9d/download9b45a07f119a64389e817c98e1f6568cMD55Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdf.txtApproximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdf.txtExtracted texttext/plain32961https://repositorio.uniandes.edu.co/bitstreams/f518c980-65c9-4401-80d1-53eb16a6c21c/downloaddbee0d919a26ea908a34eb5a250807d9MD57THUMBNAILAutorización Tesis.pdf.jpgAutorización Tesis.pdf.jpgGenerated Thumbnailimage/jpeg10856https://repositorio.uniandes.edu.co/bitstreams/f165c285-f00f-4c3b-90ac-5006e221c405/downloadc9278067976b044525907beb90bfcb82MD56Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdf.jpgApproximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdf.jpgGenerated Thumbnailimage/jpeg5301https://repositorio.uniandes.edu.co/bitstreams/c031b25c-5ec4-4308-9b54-61a52993f631/download61b690c152e48be46f49689ee7d7f9ecMD581992/75664oai:repositorio.uniandes.edu.co:1992/756642025-03-05 09:38:30.521http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |