Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation

Cassava bacterial blight (CBB) is a systemic bacterial infection caused by Xanthomonas phaseoli pv. manihotis (Xpm). XopAE is a highly conserved effector among the virulence arsenal of Xpm, and elucidating what molecules it targets in cassava will provide not just a better understanding of the molec...

Full description

Autores:
Díaz Millán, Fabián Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75664
Acceso en línea:
https://hdl.handle.net/1992/75664
Palabra clave:
Cassava bacterial blight
Cassava
Heterologous system
Complement of phenotype
Stable plant transformation
SALK lines
Biología
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_5d6a7206d4605fc5761d503840e24f81
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75664
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation
title Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation
spellingShingle Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation
Cassava bacterial blight
Cassava
Heterologous system
Complement of phenotype
Stable plant transformation
SALK lines
Biología
title_short Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation
title_full Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation
title_fullStr Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation
title_full_unstemmed Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation
title_sort Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation
dc.creator.fl_str_mv Díaz Millán, Fabián Santiago
dc.contributor.advisor.none.fl_str_mv Bernal Giraldo, Adriana Jimena
dc.contributor.author.none.fl_str_mv Díaz Millán, Fabián Santiago
dc.contributor.jury.none.fl_str_mv Villegas Torres, Maria Francisca
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Interacciones Moleculares Microbianas
dc.subject.keyword.eng.fl_str_mv Cassava bacterial blight
Cassava
Heterologous system
Complement of phenotype
Stable plant transformation
SALK lines
topic Cassava bacterial blight
Cassava
Heterologous system
Complement of phenotype
Stable plant transformation
SALK lines
Biología
dc.subject.themes.spa.fl_str_mv Biología
description Cassava bacterial blight (CBB) is a systemic bacterial infection caused by Xanthomonas phaseoli pv. manihotis (Xpm). XopAE is a highly conserved effector among the virulence arsenal of Xpm, and elucidating what molecules it targets in cassava will provide not just a better understanding of the molecular mechanisms Xpm uses for infection but also may allow for future investigation and development of a Xpm-resistant cassava. A previously suggested target of this effector in cassava is a protein from a family called “patellins”. This protein is homologous to PATL3 from Arabidopsis thaliana, which suggests this homologue may also serve as a target for XopAE. In this project, the Arabidopsis thaliana – Pseudomonas fluorescens heterologous system was approached via characterization of two insertional knock-out lines of A. thaliana for the PATL3 gene, as well as development of the plant sable transformation construct Agrobacterium tumefaciens GV3101 (pMP90) (pBAV139: MePATL3) and generation of a vector pGEM-T Easy with AtPATL3; all of which facilitate future approximations for phenotype complementation in A. thaliana to elucidate functional homology between the patellins from A. thaliana and cassava.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-27T14:30:16Z
dc.date.available.none.fl_str_mv 2025-01-27T14:30:16Z
dc.date.issued.none.fl_str_mv 2025-01-24
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75664
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75664
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Arrieta-Ortiz, M. L., Rodríguez-R, L. M., Perez-Quintero, A. L., Poulin, L., Díaz, A. C., Arias Rojas, N., ... & Bernal, A. (2013). Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis strain CIO151. PLoS One, 8(11), e79704.
Bart, R., Cohn, M., Kassen, A., McCallum, E. J., Shybut, M., Petriello, A., ... & Staskawicz, B. J. (2012). High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences, 109(28), E1972-E1979.
Bélanger, J. G., Copley, T. R., Hoyos-Villegas, V., Charron, J. B., & O’Donoughue, L. (2024). A comprehensive review of in planta stable transformation strategies. Plant Methods, 20(1), 79.
Bent, A. (2006). Arabidopsis thaliana floral dip transformation method. Agrobacterium protocols, 87-104.
Chavarriaga-Aguirre, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., ... & Tohme, J. (2016). The potential of using biotechnology to improve cassava: a review. In Vitro Cellular & Developmental Biology-Plant, 52, 461-478.
Cockcroft, S. (1997). Phosphatidylinositol transfer proteins: requirements in phospholipase C signaling and in regulated exocytosis. FEBS letters, 410(1), 44-48.
Díaz-Tatis, P. A., Trujillo-Beltrán, C. A., Bernal-Giraldo, A. J., & López-Carrascal, C. E. (2015). HPAF from Xanthomonas axonopodis PV. manihotis down-regulate metabolism and defense genes in cassava. Actualidades Biológicas, 37(102), 245-254.
Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR Analysis. Nucl. Acids Res., 19, 1349.
Encyclopedia of Neuroscience. (2009). Heterologous Expression. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_2190
Fanou, A. A., Zinsou, V. A., & Wydra, K. (2018). Cassava Bacterial Blight: A Devastating Disease of Cassava. InTech. doi: 10.5772/intechopen.71527
Hase, S., Van Pelt, J. A., Van Loon, L. C., & Pieterse, C. M. (2003). Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiological and molecular plant pathology, 62(4), 219-226.
Higuchi-Takeuchi, M., Ichikawa, T., Kondou, Y., Matsui, K., Hasegawa, Y., Kawashima, M., ... & Matsui, M. (2011). Functional analysis of two isoforms of leaf-type ferredoxin-NADP+-oxidoreductase in rice using the heterologous expression system of Arabidopsis. Plant physiology, 157(1), 96-108.
Hückelhoven, R., Trujillo, M., & Kogel, K. H. (2000). Mutations in Ror1 and Ror2 genes cause modification of hydrogen peroxide accumulation in mlo‐barley under attack from the powdery mildew fungus. Molecular Plant Pathology, 1(5), 287-292.
Hurtado-McCormick, V., Trujillo, C., Ocampo, J., Restrepo, S., Bernal, A. (2012) THE IMPORTANCE OF CASSAVA PROTEINS AS PUTATIVE PATHOGENICITY TARGETS OF HpaF FROM Xanthomonas axonopodis pv. manihotis. Universidad de los Andes.
Medina, C.A., Reyes, P.A., Trujillo, C.A., Gonzalez, J.L., Bejarano, D.A., Montenegro, N.A., Jacobs, J.M., Joe, A., Restrepo, S., Alfano, J.R. and Bernal, A. (2018), The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular Plant Pathology, 19: 593-606. https://doi.org/10.1111/mpp.12545
Peterman, T. K., Ohol, Y. M., McReynolds, L. J., & Luna, E. J. (2004). Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant physiology, 136(2), 3080-3094.
Peiro, A., Izquierdo‐Garcia, A. C., Sanchez‐Navarro, J. A., Pallas, V., Mulet, J. M., & Aparicio, F. (2014). Patellins 3 and 6, two members of the Plant Patellin family, interact with the movement protein of Alfalfa mosaic virus and interfere with viral movement. Molecular plant pathology, 15(9), 881-891.
Reece-Hoyes, J. S., & Walhout, A. J. M. (2018). Gateway Recombinational Cloning. Cold Spring Harbor protocols, 2018(1), pdb.top094912. https://doi.org/10.1101/pdb.top094912
Robatzek, S. (2007). Vesicle trafficking in plant immune responses. Cellular microbiology, 9(1), 1-8.
Robles, P., & Pelaz, S. (2005). Flower and fruit development in Arabidopsis thaliana. The International journal of developmental biology, 49(5-6), 633-643.
Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual review of phytopathology, 54, 419-441.
Trujillo, C. A., Hurtado, V., Gil, J., Joe, A., Saur, I., Restrepo, S., Alfano, J. R., Rathjen, J., López, C., Bernal, A. (n. d.) HpaF from Xanthomonas axonopodis pv. manihotis is a suppressor of basal defenses in plants by targeting three proteins in cassava. Universidad de los Andes.
Verdier, V. (2002). Bacteriosis vascular (o añublo bacteriano) de la yuca causada por Xanthomonas axonopodis pv. manihotis. En CIAT eds La yuca en el Tercer Milenio Sistemas modernos de producción procesamiento utilización y comercialización, 148-159.
Vinatzer, B. A., Teitzel, G. M., Lee, M. W., Jelenska, J., Hotton, S., Fairfax, K., ... & Greenberg, J. T. (2006). The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non‐host plants. Molecular microbiology, 62(1), 26-44.
Vu, K., Bautos, J., Hong, M. P., & Gelli, A. (2009). The functional expression of toxic genes: Lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel. Analytical biochemistry, 393(2), 234-241.
Zárate‐Chaves, C. A., Gómez de la Cruz, D., Verdier, V., López, C. E., Bernal, A., & Szurek, B. (2021). Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae. Molecular plant pathology, 22(12), 1520-1537.
Zhou, H., Duan, H., Liu, Y., Sun, X., Zhao, J., & Lin, H. (2019). Patellin protein family functions in plant development and stress response. Journal of Plant Physiology, 234-235, 94–97. doi:10.1016/j.jplph.2019.01.012
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 16 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Biología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/00da2d30-166c-4852-9237-36fdba9ad425/download
https://repositorio.uniandes.edu.co/bitstreams/034d1799-60f8-473d-b40e-6bd91fd13875/download
https://repositorio.uniandes.edu.co/bitstreams/90c1e916-ff4d-4dfd-9aad-3080d687708e/download
https://repositorio.uniandes.edu.co/bitstreams/1b7bd5a6-0b04-4903-91ec-5b10db46a29f/download
https://repositorio.uniandes.edu.co/bitstreams/b533aa26-23e3-43d4-92b0-1ebb4d916c9d/download
https://repositorio.uniandes.edu.co/bitstreams/f518c980-65c9-4401-80d1-53eb16a6c21c/download
https://repositorio.uniandes.edu.co/bitstreams/f165c285-f00f-4c3b-90ac-5006e221c405/download
https://repositorio.uniandes.edu.co/bitstreams/c031b25c-5ec4-4308-9b54-61a52993f631/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
8bbf084ef8614a57f7bb4e844a099eb0
1d4a01c2a9c69ba93069ac54cfbe90a6
ae9e573a68e7f92501b6913cc846c39f
9b45a07f119a64389e817c98e1f6568c
dbee0d919a26ea908a34eb5a250807d9
c9278067976b044525907beb90bfcb82
61b690c152e48be46f49689ee7d7f9ec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927774415159296
spelling Bernal Giraldo, Adriana Jimenavirtual::22597-1Díaz Millán, Fabián SantiagoVillegas Torres, Maria FranciscaFacultad de Ciencias::Interacciones Moleculares Microbianas2025-01-27T14:30:16Z2025-01-27T14:30:16Z2025-01-24https://hdl.handle.net/1992/75664instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Cassava bacterial blight (CBB) is a systemic bacterial infection caused by Xanthomonas phaseoli pv. manihotis (Xpm). XopAE is a highly conserved effector among the virulence arsenal of Xpm, and elucidating what molecules it targets in cassava will provide not just a better understanding of the molecular mechanisms Xpm uses for infection but also may allow for future investigation and development of a Xpm-resistant cassava. A previously suggested target of this effector in cassava is a protein from a family called “patellins”. This protein is homologous to PATL3 from Arabidopsis thaliana, which suggests this homologue may also serve as a target for XopAE. In this project, the Arabidopsis thaliana – Pseudomonas fluorescens heterologous system was approached via characterization of two insertional knock-out lines of A. thaliana for the PATL3 gene, as well as development of the plant sable transformation construct Agrobacterium tumefaciens GV3101 (pMP90) (pBAV139: MePATL3) and generation of a vector pGEM-T Easy with AtPATL3; all of which facilitate future approximations for phenotype complementation in A. thaliana to elucidate functional homology between the patellins from A. thaliana and cassava.Pregrado16 páginasapplication/pdfengUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPCassava bacterial blightCassavaHeterologous systemComplement of phenotypeStable plant transformationSALK linesBiologíaArrieta-Ortiz, M. L., Rodríguez-R, L. M., Perez-Quintero, A. L., Poulin, L., Díaz, A. C., Arias Rojas, N., ... & Bernal, A. (2013). Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis strain CIO151. PLoS One, 8(11), e79704.Bart, R., Cohn, M., Kassen, A., McCallum, E. J., Shybut, M., Petriello, A., ... & Staskawicz, B. J. (2012). High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences, 109(28), E1972-E1979.Bélanger, J. G., Copley, T. R., Hoyos-Villegas, V., Charron, J. B., & O’Donoughue, L. (2024). A comprehensive review of in planta stable transformation strategies. Plant Methods, 20(1), 79.Bent, A. (2006). Arabidopsis thaliana floral dip transformation method. Agrobacterium protocols, 87-104.Chavarriaga-Aguirre, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., ... & Tohme, J. (2016). The potential of using biotechnology to improve cassava: a review. In Vitro Cellular & Developmental Biology-Plant, 52, 461-478.Cockcroft, S. (1997). Phosphatidylinositol transfer proteins: requirements in phospholipase C signaling and in regulated exocytosis. FEBS letters, 410(1), 44-48.Díaz-Tatis, P. A., Trujillo-Beltrán, C. A., Bernal-Giraldo, A. J., & López-Carrascal, C. E. (2015). HPAF from Xanthomonas axonopodis PV. manihotis down-regulate metabolism and defense genes in cassava. Actualidades Biológicas, 37(102), 245-254.Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR Analysis. Nucl. Acids Res., 19, 1349.Encyclopedia of Neuroscience. (2009). Heterologous Expression. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_2190Fanou, A. A., Zinsou, V. A., & Wydra, K. (2018). Cassava Bacterial Blight: A Devastating Disease of Cassava. InTech. doi: 10.5772/intechopen.71527Hase, S., Van Pelt, J. A., Van Loon, L. C., & Pieterse, C. M. (2003). Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiological and molecular plant pathology, 62(4), 219-226.Higuchi-Takeuchi, M., Ichikawa, T., Kondou, Y., Matsui, K., Hasegawa, Y., Kawashima, M., ... & Matsui, M. (2011). Functional analysis of two isoforms of leaf-type ferredoxin-NADP+-oxidoreductase in rice using the heterologous expression system of Arabidopsis. Plant physiology, 157(1), 96-108.Hückelhoven, R., Trujillo, M., & Kogel, K. H. (2000). Mutations in Ror1 and Ror2 genes cause modification of hydrogen peroxide accumulation in mlo‐barley under attack from the powdery mildew fungus. Molecular Plant Pathology, 1(5), 287-292.Hurtado-McCormick, V., Trujillo, C., Ocampo, J., Restrepo, S., Bernal, A. (2012) THE IMPORTANCE OF CASSAVA PROTEINS AS PUTATIVE PATHOGENICITY TARGETS OF HpaF FROM Xanthomonas axonopodis pv. manihotis. Universidad de los Andes.Medina, C.A., Reyes, P.A., Trujillo, C.A., Gonzalez, J.L., Bejarano, D.A., Montenegro, N.A., Jacobs, J.M., Joe, A., Restrepo, S., Alfano, J.R. and Bernal, A. (2018), The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular Plant Pathology, 19: 593-606. https://doi.org/10.1111/mpp.12545Peterman, T. K., Ohol, Y. M., McReynolds, L. J., & Luna, E. J. (2004). Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant physiology, 136(2), 3080-3094.Peiro, A., Izquierdo‐Garcia, A. C., Sanchez‐Navarro, J. A., Pallas, V., Mulet, J. M., & Aparicio, F. (2014). Patellins 3 and 6, two members of the Plant Patellin family, interact with the movement protein of Alfalfa mosaic virus and interfere with viral movement. Molecular plant pathology, 15(9), 881-891.Reece-Hoyes, J. S., & Walhout, A. J. M. (2018). Gateway Recombinational Cloning. Cold Spring Harbor protocols, 2018(1), pdb.top094912. https://doi.org/10.1101/pdb.top094912Robatzek, S. (2007). Vesicle trafficking in plant immune responses. Cellular microbiology, 9(1), 1-8.Robles, P., & Pelaz, S. (2005). Flower and fruit development in Arabidopsis thaliana. The International journal of developmental biology, 49(5-6), 633-643.Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual review of phytopathology, 54, 419-441.Trujillo, C. A., Hurtado, V., Gil, J., Joe, A., Saur, I., Restrepo, S., Alfano, J. R., Rathjen, J., López, C., Bernal, A. (n. d.) HpaF from Xanthomonas axonopodis pv. manihotis is a suppressor of basal defenses in plants by targeting three proteins in cassava. Universidad de los Andes.Verdier, V. (2002). Bacteriosis vascular (o añublo bacteriano) de la yuca causada por Xanthomonas axonopodis pv. manihotis. En CIAT eds La yuca en el Tercer Milenio Sistemas modernos de producción procesamiento utilización y comercialización, 148-159.Vinatzer, B. A., Teitzel, G. M., Lee, M. W., Jelenska, J., Hotton, S., Fairfax, K., ... & Greenberg, J. T. (2006). The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non‐host plants. Molecular microbiology, 62(1), 26-44.Vu, K., Bautos, J., Hong, M. P., & Gelli, A. (2009). The functional expression of toxic genes: Lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel. Analytical biochemistry, 393(2), 234-241.Zárate‐Chaves, C. A., Gómez de la Cruz, D., Verdier, V., López, C. E., Bernal, A., & Szurek, B. (2021). Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae. Molecular plant pathology, 22(12), 1520-1537.Zhou, H., Duan, H., Liu, Y., Sun, X., Zhao, J., & Lin, H. (2019). Patellin protein family functions in plant development and stress response. Journal of Plant Physiology, 234-235, 94–97. doi:10.1016/j.jplph.2019.01.012202011977Publicationhttps://scholar.google.es/citations?user=vQ9yFZoAAAAJvirtual::22597-10000-0002-3557-697Xvirtual::22597-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000622354virtual::22597-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22597-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22597-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/00da2d30-166c-4852-9237-36fdba9ad425/download4460e5956bc1d1639be9ae6146a50347MD51ORIGINALAutorización Tesis.pdfAutorización Tesis.pdfHIDEapplication/pdf301161https://repositorio.uniandes.edu.co/bitstreams/034d1799-60f8-473d-b40e-6bd91fd13875/download8bbf084ef8614a57f7bb4e844a099eb0MD52Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdfApproximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdfapplication/pdf707695https://repositorio.uniandes.edu.co/bitstreams/90c1e916-ff4d-4dfd-9aad-3080d687708e/download1d4a01c2a9c69ba93069ac54cfbe90a6MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/1b7bd5a6-0b04-4903-91ec-5b10db46a29f/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTAutorización Tesis.pdf.txtAutorización Tesis.pdf.txtExtracted texttext/plain2082https://repositorio.uniandes.edu.co/bitstreams/b533aa26-23e3-43d4-92b0-1ebb4d916c9d/download9b45a07f119a64389e817c98e1f6568cMD55Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdf.txtApproximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdf.txtExtracted texttext/plain32961https://repositorio.uniandes.edu.co/bitstreams/f518c980-65c9-4401-80d1-53eb16a6c21c/downloaddbee0d919a26ea908a34eb5a250807d9MD57THUMBNAILAutorización Tesis.pdf.jpgAutorización Tesis.pdf.jpgGenerated Thumbnailimage/jpeg10856https://repositorio.uniandes.edu.co/bitstreams/f165c285-f00f-4c3b-90ac-5006e221c405/downloadc9278067976b044525907beb90bfcb82MD56Approximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdf.jpgApproximations to the determination of functional homology between AtPATL3 and MePATL3 via phenotype complementation.pdf.jpgGenerated Thumbnailimage/jpeg5301https://repositorio.uniandes.edu.co/bitstreams/c031b25c-5ec4-4308-9b54-61a52993f631/download61b690c152e48be46f49689ee7d7f9ecMD581992/75664oai:repositorio.uniandes.edu.co:1992/756642025-03-05 09:38:30.521http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K