Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins
Cold seep formations are a main feature in continental margins where methane-rich fluids migrate to the seawater column through the sediments. These mechanisms of methane seepage allow the precipitation of carbonates in the sub-seafloor sediments by the anaerobic oxidation of methane (AOM). This pro...
- Autores:
-
Chiquillo Rivera, Angie Daiane
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/76402
- Acceso en línea:
- https://hdl.handle.net/1992/76402
- Palabra clave:
- Rare earth elements
Cold-seeps
Carbonates
Continental margins
Redox conditions
Geociencias
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_58d3b79a5ca5ccd90fc60816641eed71 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/76402 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins |
title |
Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins |
spellingShingle |
Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins Rare earth elements Cold-seeps Carbonates Continental margins Redox conditions Geociencias |
title_short |
Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins |
title_full |
Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins |
title_fullStr |
Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins |
title_full_unstemmed |
Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins |
title_sort |
Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins |
dc.creator.fl_str_mv |
Chiquillo Rivera, Angie Daiane |
dc.contributor.advisor.none.fl_str_mv |
Eickmann, Benjamin |
dc.contributor.author.none.fl_str_mv |
Chiquillo Rivera, Angie Daiane |
dc.contributor.jury.none.fl_str_mv |
Rodríguez Vargas, Andrés Ignacio |
dc.subject.keyword.eng.fl_str_mv |
Rare earth elements Cold-seeps Carbonates Continental margins Redox conditions |
topic |
Rare earth elements Cold-seeps Carbonates Continental margins Redox conditions Geociencias |
dc.subject.themes.spa.fl_str_mv |
Geociencias |
description |
Cold seep formations are a main feature in continental margins where methane-rich fluids migrate to the seawater column through the sediments. These mechanisms of methane seepage allow the precipitation of carbonates in the sub-seafloor sediments by the anaerobic oxidation of methane (AOM). This process is the result of the symbiosis between chemosynthetic sulfate reducing bacteria, and methane oxidizing archaea. To test the redox conditions that are moved by these dynamics, rare earth element (REE) patterns in aragonite seep carbonates from the Gulf of Mexico (GoM) in localities AC645 and GC232, and from the South China Sea (SCS) in localities Haima and Site F, have been studied. The δ¹³C values for the SCS (ranging from -37.97 to -50.05‰) are lower than those from the GoM ranging from -20.63 to -30.57‰), indicating more oxic conditions. REE normalized patterns show a negative cerium (Ce) anomaly for aragonites in AC645 and a positive Ce anomaly for Haima suggesting a variation in redox conditions between continental margins. All samples show a positive europium (Eu) anomaly that is related to asphalt volcanism in the GoM and to microbial activity in the SCS, establishing different methane sources (thermogenic and biogenic respectively). Finally, temporal changes in redox mechanisms were inferred, suggesting changes in the seepage intensity and migration of the redox horizon at each cold seep locality. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-06-26T21:21:17Z |
dc.date.available.none.fl_str_mv |
2025-06-26T21:21:17Z |
dc.date.issued.none.fl_str_mv |
2025 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/76402 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/76402 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Aharon, P., Platon, E., & Gupta, B. K. S. (2022). An assessment of foraminiferal species distribution and stable-isotope anomalies at a methane-hydrate mound in the Gulf of Mexico. Journal Of The Palaeontological Society Of India, 67(1), 126-138. https://doi.org/10.1177/0971102320220111 Alibo, D. S., & Nozaki, Y. (1999). Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica Et Cosmochimica Acta, 63(3-4), 363-372. https://doi.org/10.1016/s0016- 7037(98)00279-8 Barckhausen, U., Engels, M., Franke, D., Ladage, S., & Pubellier, M. (2014). Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine And Petroleum Geology, 58, 599-611. https://doi.org/10.1016/j.marpetgeo.2014.02.022 Barrat, J., Bayon, G., & Lalonde, S. (2022). Calculation of cerium and lanthanum anomalies in geological and environmental samples. Chemical Geology, 615, 121202. https://doi.org/10.1016/j.chemgeo.2022.121202 Bau, M. (1991). Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3-4), 219-230. https://doi.org/10.1016/0009-2541(91)90115-8 Bau, M., Dulski, P., (1999). Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near- vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol. 155, 77–90. http://dx.doi.org/10.1016/S0009-2541(98)00142-9 Birgel, D., Feng, D., Roberts, H. H., & Peckmann, J. (2011). Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chemical Geology, 285(1-4), 82-96. https://doi.org/10.1016/j.chemgeo.2011.03.004 Bayon, G., Birot, D., Ruffine, L., Caprais, J., Ponzevera, E., Bollinger, C., Donval, J., Charlou, J., Voisset, M., & Grimaud, S. (2011). Evidence for intense REE scavenging at cold seeps from the Niger Delta margin. Earth And Planetary Science Letters, 312(3-4), 443- 452. https://doi.org/10.1016/j.epsl.2011.10.008 Bayon, G., Lemaitre, N., Barrat, J., Wang, X., Feng, D., & Duperron, S. (2020). Microbial utilization of rare earth elements at cold seeps related to aerobic methane oxidation. Chemical Geology, 555, 119832. https://doi.org/10.1016/j.chemgeo.2020.119832 Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., & Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. https://doi.org/10.1038/35036572 Cordes, E. E., Carney, S. L., Hourdez, S., Carney, R. S., Brooks, J. M., & Fisher, C. R. (2007). Cold seeps of the deep Gulf of Mexico: Community structure and biogeographic comparisons to Atlantic equatorial belt seep communities. Deep Sea Research Part I Oceanographic Research Papers, 54(4), 637-653. https://doi.org/10.1016/j.dsr.2007.01.001 Feng, D., Chen, D., & Peckmann, J. (2008a). Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova, 21(1), 49-56. https://doi.org/10.1111/j.1365- 3121.2008.00855.x Feng, D., Chen, D., Qi, L., & Roberts, H. H. (2008b). Petrographic and geochemical characterization of seep carbonate from Alaminos Canyon, Gulf of Mexico. Science Bulletin, 53(11), 1716-1724. https://doi.org/10.1007/s11434-008-0157-0 Feng, D., Chen, D., & Roberts, H. H. (2008c). Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Marine And Petroleum Geology, 26(7), 1190-1198. https://doi.org/10.1016/j.marpetgeo.2008.07.001 Feng, D., & Chen, D. (2015). Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity. Deep Sea Research Part II Topical Studies In Oceanography, 122, 74-83. https://doi.org/10.1016/j.dsr2.2015.02.003 eng, D., Lin, Z., Bian, Y., Chen, D., Peckmann, J., Bohrmann, G., & Roberts, H. H. (2012). Rare earth elements of seep carbonates: Indication for redox variations and microbiological processes at modern seep sites. Journal Of Asian Earth Sciences, 65, 27-33. https://doi.org/10.1016/j.jseaes.2012.09.002 Galloway, W. E. (2008). Chapter 15 Depositional Evolution of the Gulf of Mexico Sedimentary Basin. En Sedimentary basins of the world (pp. 505-549). https://doi.org/10.1016/s1874-5997(08)00015-4 Ge, L., Jiang, S., Swennen, R., Yang, T., Yang, J., Wu, N., Liu, J., & Chen, D. (2010). Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry. Marine Geology, 277(1- 4), 21-30. https://doi.org/10.1016/j.margeo.2010.08.008 Guan, H., Birgel, D., Peckmann, J., Liang, Q., Feng, D., Yang, S., Liang, J., Tao, J., Wu, N., & Chen, D. (2018). Lipid biomarker patterns of authigenic carbonates reveal fluid composition and seepage intensity at Haima cold seeps, South China Sea. Journal Of Asian Earth Sciences, 168, 163-172. https://doi.org/10.1016/j.jseaes.2018.04.035 Guo, H., Zhang, B., Wang, G., & Shen, Z. (2010). Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 270(1-4), 117-125. https://doi.org/10.1016/j.chemgeo.2009.11.010 Haley, B. A., Klinkhammer, G. P., & McManus, J. (2004). Rare earth elements in pore waters of marine sediments. Geochimica Et Cosmochimica Acta, 68(6), 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012 Himmler, T., Bach, W., Bohrmann, G., & Peckmann, J. (2010). Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chemical Geology, 277(1-2), 126-136. https://doi.org/10.1016/j.chemgeo.2010.07.015 Jiang, K., Zhang, J., Sakatoku, A., Kambayashi, S., Yamanaka, T., Kanehara, T., Fujikura, K., & Pellizari, V. H. (2018). Discovery and biogeochemistry of asphalt seeps in the North São Paulo Plateau, Brazilian Margin. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30928-2 Lawrence, M.G., Greig, A., Collerson, K.D. et al. Rare Earth Element and Yttrium Variability in South East Queensland Waterways. Aquat Geochem 12, 39–72 (2006). https://doi.org/10.1007/ Liang, Q., Hu, Y., Feng, D., Peckmann, J., Chen, L., Yang, S., Liang, J., Tao, J., & Chen, D. (2017). Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics. Deep Sea Research Part I Oceanographic Research Papers, 124, 31-41. https://doi.org/10.1016/j.dsr.2017.04.015 Li, F., Webb, G. E., Algeo, T. J., Kershaw, S., Lu, C., Oehlert, A. M., Gong, Q., Pourmand, A., & Tan, X. (2019). Modern carbonate ooids preserve ambient aqueous REE signatures. Chemical Geology, 509, 163-177. https://doi.org/10.1016/j.chemgeo.2019.01.015 Liu, Y., Wei, J., Li, Y., Chang, J., Miao, X., & Lu, H. (2022). Seep dynamics as revealed by authigenic carbonates from the eastern Qiongdongnan Basin, South China Sea. Marine And Petroleum Geology, 142, 105736. https://doi.org/10.1016/j.marpetgeo.2022.105736 MacDonald, I. R., Bohrmann, G., Escobar, E., Abegg, F., Blanchon, P., Blinova, V., Brü Ckmann, W., Drews, M., Eisenhauer, A., Han, X., Heeschen, K., Meier, F., Mortera, C., Naehr, T., Orcutt, B., Bernard, B., Brooks, J., & De Farago, M. (2004). Asphalt Volcanism and Chemosynthetic Life in the Campeche Knolls, Gulf of Mexico. Science, 304(5673), 999-1002. https://doi.org/10.1126/science.1097154 MacRae, N., Nesbitt, H., & Kronberg, B. (1992). Development of a positive Eu anomaly during diagenesis. Earth And Planetary Science Letters, 109(3-4), 585-591. https://doi.org/10.1016/0012-821x(92)90116-d Naehr, T. H., Birgel, D., Bohrmann, G., MacDonald, I. R., & Kasten, S. (2009). Biogeochemical controls on authigenic carbonate formation at the Chapopote “asphalt volcano”, Bay of Campeche. Chemical Geology, 266(3-4), 390-402. https://doi.org/10.1016/j.chemgeo.2009.07.002 Peckmann, J., & Thiel, V. (2004). Carbon cycling at ancient methane–seeps. Chemical Geology, 205(3-4), 443-467. https://doi.org/10.1016/j.chemgeo.2003.12.025 Rollinson, H. R., & Pease, V. (2021). Using geochemical data: to understand geological processes (Second edition.). Cambridge University Press. Smith, J., & Coffin, R. (2014). Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico. Energies, 7(9), 6118-6141. https://doi.org/10.3390/en7096118 Smrzka, D., Feng, D., Himmler, T., Zwicker, J., Hu, Y., Monien, P., Tribovillard, N., Chen, D., & Peckmann, J. (2020). Trace elements in methane-seep carbonates: Potentials, limitations, and perspectives. Earth-Science Reviews, 208, 103263. https://doi.org/10.1016/j.earscirev.2020.103263 aylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. http://ci.nii.ac.jp/ncid/BA00414266 ong, H., Feng, D., Cheng, H., Yang, S., Wang, H., Min, A. G., Edwards, R. L., Chen, Z., & Chen, D. (2013). Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Marine And Petroleum Geology, 43, 260-271. https://doi.org/10.1016/j.marpetgeo.2013.01.011 Tostevin, R. Cerium anomalies and paleoredox. Elements in Geochemical Tracers in Earth System Science. Cambridge: Cambridge University Press (2021) Wang, X., Guan, H., Qiu, J., Xu, T., Peckmann, J., Chen, D., & Feng, D. (2022). Macro-ecology of cold seeps in the South China Sea. Geosystems And Geoenvironment, 1(3), 100081. https://doi.org/10.1016/j.geogeo.2022.100081 Xi, S., Zhang, X., Du, Z., Li, L., Wang, B., Luan, Z., Lian, C., & Yan, J. (2018). Laser Raman detection of authigenic carbonates from cold seeps at the Formosa Ridge and east of the Pear River Mouth Basin in the South China Sea. Journal Of Asian Earth Sciences, 168, 207-224. https://doi.org/10.1016/j.jseaes.2018.01.023 Xu, H., Du, M., Li, J., Zhang, H., Chen, W., Wei, J., Wu, Z., Zhang, H., Li, J., Chen, S., Ta, K., Bai, S., & Peng, X. (2020). Spatial distribution of seepages and associated biological communities within Haima cold seep field, South China Sea. Journal Of Sea Research, 165, 101957. https://doi.org/10.1016/j.seares.2020.101957 Zhang, W. (2023). Distribution, Variability of Seeps. In: Chen, D., Feng, D. (eds) South China Sea Seeps. Springer, Singapore. https://doi.org/10.1007/978-981-99-1494- 4_2 Zhang, Y., Li, G., & Gao, X. (2020). Sulfate-Methane Transition Depths and Its Implication for Gas Hydrate. Journal Of Ocean University Of China, 19(4), 837-842. https://doi.org/10.1007/s11802-020-4490-5 |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
46 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Geociencias |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Geociencias |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/bf3aeabe-003f-4d6c-b837-287b0deaa531/download https://repositorio.uniandes.edu.co/bitstreams/26e61940-84a6-4eaf-81f4-7b719436600e/download https://repositorio.uniandes.edu.co/bitstreams/e26e1e0a-ec49-41eb-a7c5-0055500737b8/download https://repositorio.uniandes.edu.co/bitstreams/b81cf3d9-fbc9-4540-9f92-19480800804d/download https://repositorio.uniandes.edu.co/bitstreams/ad4859ac-d853-49c7-b704-2a6599f16913/download https://repositorio.uniandes.edu.co/bitstreams/55f0d77b-b1e1-44fa-af3b-0b21a7db1b4d/download https://repositorio.uniandes.edu.co/bitstreams/4f2be8f3-14d5-45ca-a3de-e05536c43161/download https://repositorio.uniandes.edu.co/bitstreams/4f0605fe-dde8-45e9-96a0-40565f208232/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 16368183f368efd3c187f6b491fe7a97 ed064c76501f44e5254a0573510fd293 ae9e573a68e7f92501b6913cc846c39f b1e3afc2e8f6aa5d66ea45c367842fff e1c06d85ae7b8b032bef47e42e4c08f9 a49947be8abb7900362bf4f6e6dec6d5 6517813c506729dcb49d2c597f037cb0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1837005187572563968 |
spelling |
Eickmann, Benjaminvirtual::24373-1Chiquillo Rivera, Angie DaianeRodríguez Vargas, Andrés Ignacio2025-06-26T21:21:17Z2025-06-26T21:21:17Z2025https://hdl.handle.net/1992/76402instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Cold seep formations are a main feature in continental margins where methane-rich fluids migrate to the seawater column through the sediments. These mechanisms of methane seepage allow the precipitation of carbonates in the sub-seafloor sediments by the anaerobic oxidation of methane (AOM). This process is the result of the symbiosis between chemosynthetic sulfate reducing bacteria, and methane oxidizing archaea. To test the redox conditions that are moved by these dynamics, rare earth element (REE) patterns in aragonite seep carbonates from the Gulf of Mexico (GoM) in localities AC645 and GC232, and from the South China Sea (SCS) in localities Haima and Site F, have been studied. The δ¹³C values for the SCS (ranging from -37.97 to -50.05‰) are lower than those from the GoM ranging from -20.63 to -30.57‰), indicating more oxic conditions. REE normalized patterns show a negative cerium (Ce) anomaly for aragonites in AC645 and a positive Ce anomaly for Haima suggesting a variation in redox conditions between continental margins. All samples show a positive europium (Eu) anomaly that is related to asphalt volcanism in the GoM and to microbial activity in the SCS, establishing different methane sources (thermogenic and biogenic respectively). Finally, temporal changes in redox mechanisms were inferred, suggesting changes in the seepage intensity and migration of the redox horizon at each cold seep locality.Pregrado46 páginasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental marginsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPRare earth elementsCold-seepsCarbonatesContinental marginsRedox conditionsGeocienciasAharon, P., Platon, E., & Gupta, B. K. S. (2022). An assessment of foraminiferal species distribution and stable-isotope anomalies at a methane-hydrate mound in the Gulf of Mexico. Journal Of The Palaeontological Society Of India, 67(1), 126-138. https://doi.org/10.1177/0971102320220111Alibo, D. S., & Nozaki, Y. (1999). Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica Et Cosmochimica Acta, 63(3-4), 363-372. https://doi.org/10.1016/s0016- 7037(98)00279-8Barckhausen, U., Engels, M., Franke, D., Ladage, S., & Pubellier, M. (2014). Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine And Petroleum Geology, 58, 599-611. https://doi.org/10.1016/j.marpetgeo.2014.02.022Barrat, J., Bayon, G., & Lalonde, S. (2022). Calculation of cerium and lanthanum anomalies in geological and environmental samples. Chemical Geology, 615, 121202. https://doi.org/10.1016/j.chemgeo.2022.121202Bau, M. (1991). Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3-4), 219-230. https://doi.org/10.1016/0009-2541(91)90115-8Bau, M., Dulski, P., (1999). Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near- vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol. 155, 77–90. http://dx.doi.org/10.1016/S0009-2541(98)00142-9Birgel, D., Feng, D., Roberts, H. H., & Peckmann, J. (2011). Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chemical Geology, 285(1-4), 82-96. https://doi.org/10.1016/j.chemgeo.2011.03.004Bayon, G., Birot, D., Ruffine, L., Caprais, J., Ponzevera, E., Bollinger, C., Donval, J., Charlou, J., Voisset, M., & Grimaud, S. (2011). Evidence for intense REE scavenging at cold seeps from the Niger Delta margin. Earth And Planetary Science Letters, 312(3-4), 443- 452. https://doi.org/10.1016/j.epsl.2011.10.008Bayon, G., Lemaitre, N., Barrat, J., Wang, X., Feng, D., & Duperron, S. (2020). Microbial utilization of rare earth elements at cold seeps related to aerobic methane oxidation. Chemical Geology, 555, 119832. https://doi.org/10.1016/j.chemgeo.2020.119832Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., & Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. https://doi.org/10.1038/35036572Cordes, E. E., Carney, S. L., Hourdez, S., Carney, R. S., Brooks, J. M., & Fisher, C. R. (2007). Cold seeps of the deep Gulf of Mexico: Community structure and biogeographic comparisons to Atlantic equatorial belt seep communities. Deep Sea Research Part I Oceanographic Research Papers, 54(4), 637-653. https://doi.org/10.1016/j.dsr.2007.01.001Feng, D., Chen, D., & Peckmann, J. (2008a). Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova, 21(1), 49-56. https://doi.org/10.1111/j.1365- 3121.2008.00855.xFeng, D., Chen, D., Qi, L., & Roberts, H. H. (2008b). Petrographic and geochemical characterization of seep carbonate from Alaminos Canyon, Gulf of Mexico. Science Bulletin, 53(11), 1716-1724. https://doi.org/10.1007/s11434-008-0157-0Feng, D., Chen, D., & Roberts, H. H. (2008c). Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Marine And Petroleum Geology, 26(7), 1190-1198. https://doi.org/10.1016/j.marpetgeo.2008.07.001Feng, D., & Chen, D. (2015). Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity. Deep Sea Research Part II Topical Studies In Oceanography, 122, 74-83. https://doi.org/10.1016/j.dsr2.2015.02.003eng, D., Lin, Z., Bian, Y., Chen, D., Peckmann, J., Bohrmann, G., & Roberts, H. H. (2012). Rare earth elements of seep carbonates: Indication for redox variations and microbiological processes at modern seep sites. Journal Of Asian Earth Sciences, 65, 27-33. https://doi.org/10.1016/j.jseaes.2012.09.002Galloway, W. E. (2008). Chapter 15 Depositional Evolution of the Gulf of Mexico Sedimentary Basin. En Sedimentary basins of the world (pp. 505-549). https://doi.org/10.1016/s1874-5997(08)00015-4Ge, L., Jiang, S., Swennen, R., Yang, T., Yang, J., Wu, N., Liu, J., & Chen, D. (2010). Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry. Marine Geology, 277(1- 4), 21-30. https://doi.org/10.1016/j.margeo.2010.08.008Guan, H., Birgel, D., Peckmann, J., Liang, Q., Feng, D., Yang, S., Liang, J., Tao, J., Wu, N., & Chen, D. (2018). Lipid biomarker patterns of authigenic carbonates reveal fluid composition and seepage intensity at Haima cold seeps, South China Sea. Journal Of Asian Earth Sciences, 168, 163-172. https://doi.org/10.1016/j.jseaes.2018.04.035Guo, H., Zhang, B., Wang, G., & Shen, Z. (2010). Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 270(1-4), 117-125. https://doi.org/10.1016/j.chemgeo.2009.11.010Haley, B. A., Klinkhammer, G. P., & McManus, J. (2004). Rare earth elements in pore waters of marine sediments. Geochimica Et Cosmochimica Acta, 68(6), 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012Himmler, T., Bach, W., Bohrmann, G., & Peckmann, J. (2010). Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chemical Geology, 277(1-2), 126-136. https://doi.org/10.1016/j.chemgeo.2010.07.015Jiang, K., Zhang, J., Sakatoku, A., Kambayashi, S., Yamanaka, T., Kanehara, T., Fujikura, K., & Pellizari, V. H. (2018). Discovery and biogeochemistry of asphalt seeps in the North São Paulo Plateau, Brazilian Margin. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30928-2Lawrence, M.G., Greig, A., Collerson, K.D. et al. Rare Earth Element and Yttrium Variability in South East Queensland Waterways. Aquat Geochem 12, 39–72 (2006). https://doi.org/10.1007/Liang, Q., Hu, Y., Feng, D., Peckmann, J., Chen, L., Yang, S., Liang, J., Tao, J., & Chen, D. (2017). Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics. Deep Sea Research Part I Oceanographic Research Papers, 124, 31-41. https://doi.org/10.1016/j.dsr.2017.04.015Li, F., Webb, G. E., Algeo, T. J., Kershaw, S., Lu, C., Oehlert, A. M., Gong, Q., Pourmand, A., & Tan, X. (2019). Modern carbonate ooids preserve ambient aqueous REE signatures. Chemical Geology, 509, 163-177. https://doi.org/10.1016/j.chemgeo.2019.01.015Liu, Y., Wei, J., Li, Y., Chang, J., Miao, X., & Lu, H. (2022). Seep dynamics as revealed by authigenic carbonates from the eastern Qiongdongnan Basin, South China Sea. Marine And Petroleum Geology, 142, 105736. https://doi.org/10.1016/j.marpetgeo.2022.105736MacDonald, I. R., Bohrmann, G., Escobar, E., Abegg, F., Blanchon, P., Blinova, V., Brü Ckmann, W., Drews, M., Eisenhauer, A., Han, X., Heeschen, K., Meier, F., Mortera, C., Naehr, T., Orcutt, B., Bernard, B., Brooks, J., & De Farago, M. (2004). Asphalt Volcanism and Chemosynthetic Life in the Campeche Knolls, Gulf of Mexico. Science, 304(5673), 999-1002. https://doi.org/10.1126/science.1097154MacRae, N., Nesbitt, H., & Kronberg, B. (1992). Development of a positive Eu anomaly during diagenesis. Earth And Planetary Science Letters, 109(3-4), 585-591. https://doi.org/10.1016/0012-821x(92)90116-dNaehr, T. H., Birgel, D., Bohrmann, G., MacDonald, I. R., & Kasten, S. (2009). Biogeochemical controls on authigenic carbonate formation at the Chapopote “asphalt volcano”, Bay of Campeche. Chemical Geology, 266(3-4), 390-402. https://doi.org/10.1016/j.chemgeo.2009.07.002Peckmann, J., & Thiel, V. (2004). Carbon cycling at ancient methane–seeps. Chemical Geology, 205(3-4), 443-467. https://doi.org/10.1016/j.chemgeo.2003.12.025Rollinson, H. R., & Pease, V. (2021). Using geochemical data: to understand geological processes (Second edition.). Cambridge University Press.Smith, J., & Coffin, R. (2014). Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico. Energies, 7(9), 6118-6141. https://doi.org/10.3390/en7096118Smrzka, D., Feng, D., Himmler, T., Zwicker, J., Hu, Y., Monien, P., Tribovillard, N., Chen, D., & Peckmann, J. (2020). Trace elements in methane-seep carbonates: Potentials, limitations, and perspectives. Earth-Science Reviews, 208, 103263. https://doi.org/10.1016/j.earscirev.2020.103263aylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. http://ci.nii.ac.jp/ncid/BA00414266ong, H., Feng, D., Cheng, H., Yang, S., Wang, H., Min, A. G., Edwards, R. L., Chen, Z., & Chen, D. (2013). Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Marine And Petroleum Geology, 43, 260-271. https://doi.org/10.1016/j.marpetgeo.2013.01.011Tostevin, R. Cerium anomalies and paleoredox. Elements in Geochemical Tracers in Earth System Science. Cambridge: Cambridge University Press (2021)Wang, X., Guan, H., Qiu, J., Xu, T., Peckmann, J., Chen, D., & Feng, D. (2022). Macro-ecology of cold seeps in the South China Sea. Geosystems And Geoenvironment, 1(3), 100081. https://doi.org/10.1016/j.geogeo.2022.100081Xi, S., Zhang, X., Du, Z., Li, L., Wang, B., Luan, Z., Lian, C., & Yan, J. (2018). Laser Raman detection of authigenic carbonates from cold seeps at the Formosa Ridge and east of the Pear River Mouth Basin in the South China Sea. Journal Of Asian Earth Sciences, 168, 207-224. https://doi.org/10.1016/j.jseaes.2018.01.023Xu, H., Du, M., Li, J., Zhang, H., Chen, W., Wei, J., Wu, Z., Zhang, H., Li, J., Chen, S., Ta, K., Bai, S., & Peng, X. (2020). Spatial distribution of seepages and associated biological communities within Haima cold seep field, South China Sea. Journal Of Sea Research, 165, 101957. https://doi.org/10.1016/j.seares.2020.101957Zhang, W. (2023). Distribution, Variability of Seeps. In: Chen, D., Feng, D. (eds) South China Sea Seeps. Springer, Singapore. https://doi.org/10.1007/978-981-99-1494- 4_2Zhang, Y., Li, G., & Gao, X. (2020). Sulfate-Methane Transition Depths and Its Implication for Gas Hydrate. Journal Of Ocean University Of China, 19(4), 837-842. https://doi.org/10.1007/s11802-020-4490-5202115145Publication0000-0002-6535-3750virtual::24373-10000-0002-6535-3750cf07a914-b4d9-4b5a-95f7-940947126780virtual::24373-1cf07a914-b4d9-4b5a-95f7-940947126780cf07a914-b4d9-4b5a-95f7-940947126780virtual::24373-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/bf3aeabe-003f-4d6c-b837-287b0deaa531/download4460e5956bc1d1639be9ae6146a50347MD51ORIGINALRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdfRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdfapplication/pdf2277038https://repositorio.uniandes.edu.co/bitstreams/26e61940-84a6-4eaf-81f4-7b719436600e/download16368183f368efd3c187f6b491fe7a97MD52AutorizacionRepositorio.pdfAutorizacionRepositorio.pdfHIDEapplication/pdf432587https://repositorio.uniandes.edu.co/bitstreams/e26e1e0a-ec49-41eb-a7c5-0055500737b8/downloaded064c76501f44e5254a0573510fd293MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/b81cf3d9-fbc9-4540-9f92-19480800804d/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdf.txtRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdf.txtExtracted texttext/plain75150https://repositorio.uniandes.edu.co/bitstreams/ad4859ac-d853-49c7-b704-2a6599f16913/downloadb1e3afc2e8f6aa5d66ea45c367842fffMD55AutorizacionRepositorio.pdf.txtAutorizacionRepositorio.pdf.txtExtracted texttext/plain2https://repositorio.uniandes.edu.co/bitstreams/55f0d77b-b1e1-44fa-af3b-0b21a7db1b4d/downloade1c06d85ae7b8b032bef47e42e4c08f9MD57THUMBNAILRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdf.jpgRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdf.jpgIM Thumbnailimage/jpeg5754https://repositorio.uniandes.edu.co/bitstreams/4f2be8f3-14d5-45ca-a3de-e05536c43161/downloada49947be8abb7900362bf4f6e6dec6d5MD56AutorizacionRepositorio.pdf.jpgAutorizacionRepositorio.pdf.jpgIM Thumbnailimage/jpeg26002https://repositorio.uniandes.edu.co/bitstreams/4f0605fe-dde8-45e9-96a0-40565f208232/download6517813c506729dcb49d2c597f037cb0MD581992/76402oai:repositorio.uniandes.edu.co:1992/764022025-06-27 04:05:39.394http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |