Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins

Cold seep formations are a main feature in continental margins where methane-rich fluids migrate to the seawater column through the sediments. These mechanisms of methane seepage allow the precipitation of carbonates in the sub-seafloor sediments by the anaerobic oxidation of methane (AOM). This pro...

Full description

Autores:
Chiquillo Rivera, Angie Daiane
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/76402
Acceso en línea:
https://hdl.handle.net/1992/76402
Palabra clave:
Rare earth elements
Cold-seeps
Carbonates
Continental margins
Redox conditions
Geociencias
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_58d3b79a5ca5ccd90fc60816641eed71
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/76402
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins
title Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins
spellingShingle Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins
Rare earth elements
Cold-seeps
Carbonates
Continental margins
Redox conditions
Geociencias
title_short Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins
title_full Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins
title_fullStr Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins
title_full_unstemmed Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins
title_sort Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins
dc.creator.fl_str_mv Chiquillo Rivera, Angie Daiane
dc.contributor.advisor.none.fl_str_mv Eickmann, Benjamin
dc.contributor.author.none.fl_str_mv Chiquillo Rivera, Angie Daiane
dc.contributor.jury.none.fl_str_mv Rodríguez Vargas, Andrés Ignacio
dc.subject.keyword.eng.fl_str_mv Rare earth elements
Cold-seeps
Carbonates
Continental margins
Redox conditions
topic Rare earth elements
Cold-seeps
Carbonates
Continental margins
Redox conditions
Geociencias
dc.subject.themes.spa.fl_str_mv Geociencias
description Cold seep formations are a main feature in continental margins where methane-rich fluids migrate to the seawater column through the sediments. These mechanisms of methane seepage allow the precipitation of carbonates in the sub-seafloor sediments by the anaerobic oxidation of methane (AOM). This process is the result of the symbiosis between chemosynthetic sulfate reducing bacteria, and methane oxidizing archaea. To test the redox conditions that are moved by these dynamics, rare earth element (REE) patterns in aragonite seep carbonates from the Gulf of Mexico (GoM) in localities AC645 and GC232, and from the South China Sea (SCS) in localities Haima and Site F, have been studied. The δ¹³C values for the SCS (ranging from -37.97 to -50.05‰) are lower than those from the GoM ranging from -20.63 to -30.57‰), indicating more oxic conditions. REE normalized patterns show a negative cerium (Ce) anomaly for aragonites in AC645 and a positive Ce anomaly for Haima suggesting a variation in redox conditions between continental margins. All samples show a positive europium (Eu) anomaly that is related to asphalt volcanism in the GoM and to microbial activity in the SCS, establishing different methane sources (thermogenic and biogenic respectively). Finally, temporal changes in redox mechanisms were inferred, suggesting changes in the seepage intensity and migration of the redox horizon at each cold seep locality.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-26T21:21:17Z
dc.date.available.none.fl_str_mv 2025-06-26T21:21:17Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/76402
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/76402
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Aharon, P., Platon, E., & Gupta, B. K. S. (2022). An assessment of foraminiferal species distribution and stable-isotope anomalies at a methane-hydrate mound in the Gulf of Mexico. Journal Of The Palaeontological Society Of India, 67(1), 126-138. https://doi.org/10.1177/0971102320220111
Alibo, D. S., & Nozaki, Y. (1999). Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica Et Cosmochimica Acta, 63(3-4), 363-372. https://doi.org/10.1016/s0016- 7037(98)00279-8
Barckhausen, U., Engels, M., Franke, D., Ladage, S., & Pubellier, M. (2014). Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine And Petroleum Geology, 58, 599-611. https://doi.org/10.1016/j.marpetgeo.2014.02.022
Barrat, J., Bayon, G., & Lalonde, S. (2022). Calculation of cerium and lanthanum anomalies in geological and environmental samples. Chemical Geology, 615, 121202. https://doi.org/10.1016/j.chemgeo.2022.121202
Bau, M. (1991). Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3-4), 219-230. https://doi.org/10.1016/0009-2541(91)90115-8
Bau, M., Dulski, P., (1999). Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near- vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol. 155, 77–90. http://dx.doi.org/10.1016/S0009-2541(98)00142-9
Birgel, D., Feng, D., Roberts, H. H., & Peckmann, J. (2011). Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chemical Geology, 285(1-4), 82-96. https://doi.org/10.1016/j.chemgeo.2011.03.004
Bayon, G., Birot, D., Ruffine, L., Caprais, J., Ponzevera, E., Bollinger, C., Donval, J., Charlou, J., Voisset, M., & Grimaud, S. (2011). Evidence for intense REE scavenging at cold seeps from the Niger Delta margin. Earth And Planetary Science Letters, 312(3-4), 443- 452. https://doi.org/10.1016/j.epsl.2011.10.008
Bayon, G., Lemaitre, N., Barrat, J., Wang, X., Feng, D., & Duperron, S. (2020). Microbial utilization of rare earth elements at cold seeps related to aerobic methane oxidation. Chemical Geology, 555, 119832. https://doi.org/10.1016/j.chemgeo.2020.119832
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., & Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. https://doi.org/10.1038/35036572
Cordes, E. E., Carney, S. L., Hourdez, S., Carney, R. S., Brooks, J. M., & Fisher, C. R. (2007). Cold seeps of the deep Gulf of Mexico: Community structure and biogeographic comparisons to Atlantic equatorial belt seep communities. Deep Sea Research Part I Oceanographic Research Papers, 54(4), 637-653. https://doi.org/10.1016/j.dsr.2007.01.001
Feng, D., Chen, D., & Peckmann, J. (2008a). Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova, 21(1), 49-56. https://doi.org/10.1111/j.1365- 3121.2008.00855.x
Feng, D., Chen, D., Qi, L., & Roberts, H. H. (2008b). Petrographic and geochemical characterization of seep carbonate from Alaminos Canyon, Gulf of Mexico. Science Bulletin, 53(11), 1716-1724. https://doi.org/10.1007/s11434-008-0157-0
Feng, D., Chen, D., & Roberts, H. H. (2008c). Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Marine And Petroleum Geology, 26(7), 1190-1198. https://doi.org/10.1016/j.marpetgeo.2008.07.001
Feng, D., & Chen, D. (2015). Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity. Deep Sea Research Part II Topical Studies In Oceanography, 122, 74-83. https://doi.org/10.1016/j.dsr2.2015.02.003
eng, D., Lin, Z., Bian, Y., Chen, D., Peckmann, J., Bohrmann, G., & Roberts, H. H. (2012). Rare earth elements of seep carbonates: Indication for redox variations and microbiological processes at modern seep sites. Journal Of Asian Earth Sciences, 65, 27-33. https://doi.org/10.1016/j.jseaes.2012.09.002
Galloway, W. E. (2008). Chapter 15 Depositional Evolution of the Gulf of Mexico Sedimentary Basin. En Sedimentary basins of the world (pp. 505-549). https://doi.org/10.1016/s1874-5997(08)00015-4
Ge, L., Jiang, S., Swennen, R., Yang, T., Yang, J., Wu, N., Liu, J., & Chen, D. (2010). Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry. Marine Geology, 277(1- 4), 21-30. https://doi.org/10.1016/j.margeo.2010.08.008
Guan, H., Birgel, D., Peckmann, J., Liang, Q., Feng, D., Yang, S., Liang, J., Tao, J., Wu, N., & Chen, D. (2018). Lipid biomarker patterns of authigenic carbonates reveal fluid composition and seepage intensity at Haima cold seeps, South China Sea. Journal Of Asian Earth Sciences, 168, 163-172. https://doi.org/10.1016/j.jseaes.2018.04.035
Guo, H., Zhang, B., Wang, G., & Shen, Z. (2010). Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 270(1-4), 117-125. https://doi.org/10.1016/j.chemgeo.2009.11.010
Haley, B. A., Klinkhammer, G. P., & McManus, J. (2004). Rare earth elements in pore waters of marine sediments. Geochimica Et Cosmochimica Acta, 68(6), 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012
Himmler, T., Bach, W., Bohrmann, G., & Peckmann, J. (2010). Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chemical Geology, 277(1-2), 126-136. https://doi.org/10.1016/j.chemgeo.2010.07.015
Jiang, K., Zhang, J., Sakatoku, A., Kambayashi, S., Yamanaka, T., Kanehara, T., Fujikura, K., & Pellizari, V. H. (2018). Discovery and biogeochemistry of asphalt seeps in the North São Paulo Plateau, Brazilian Margin. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30928-2
Lawrence, M.G., Greig, A., Collerson, K.D. et al. Rare Earth Element and Yttrium Variability in South East Queensland Waterways. Aquat Geochem 12, 39–72 (2006). https://doi.org/10.1007/
Liang, Q., Hu, Y., Feng, D., Peckmann, J., Chen, L., Yang, S., Liang, J., Tao, J., & Chen, D. (2017). Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics. Deep Sea Research Part I Oceanographic Research Papers, 124, 31-41. https://doi.org/10.1016/j.dsr.2017.04.015
Li, F., Webb, G. E., Algeo, T. J., Kershaw, S., Lu, C., Oehlert, A. M., Gong, Q., Pourmand, A., & Tan, X. (2019). Modern carbonate ooids preserve ambient aqueous REE signatures. Chemical Geology, 509, 163-177. https://doi.org/10.1016/j.chemgeo.2019.01.015
Liu, Y., Wei, J., Li, Y., Chang, J., Miao, X., & Lu, H. (2022). Seep dynamics as revealed by authigenic carbonates from the eastern Qiongdongnan Basin, South China Sea. Marine And Petroleum Geology, 142, 105736. https://doi.org/10.1016/j.marpetgeo.2022.105736
MacDonald, I. R., Bohrmann, G., Escobar, E., Abegg, F., Blanchon, P., Blinova, V., Brü Ckmann, W., Drews, M., Eisenhauer, A., Han, X., Heeschen, K., Meier, F., Mortera, C., Naehr, T., Orcutt, B., Bernard, B., Brooks, J., & De Farago, M. (2004). Asphalt Volcanism and Chemosynthetic Life in the Campeche Knolls, Gulf of Mexico. Science, 304(5673), 999-1002. https://doi.org/10.1126/science.1097154
MacRae, N., Nesbitt, H., & Kronberg, B. (1992). Development of a positive Eu anomaly during diagenesis. Earth And Planetary Science Letters, 109(3-4), 585-591. https://doi.org/10.1016/0012-821x(92)90116-d
Naehr, T. H., Birgel, D., Bohrmann, G., MacDonald, I. R., & Kasten, S. (2009). Biogeochemical controls on authigenic carbonate formation at the Chapopote “asphalt volcano”, Bay of Campeche. Chemical Geology, 266(3-4), 390-402. https://doi.org/10.1016/j.chemgeo.2009.07.002
Peckmann, J., & Thiel, V. (2004). Carbon cycling at ancient methane–seeps. Chemical Geology, 205(3-4), 443-467. https://doi.org/10.1016/j.chemgeo.2003.12.025
Rollinson, H. R., & Pease, V. (2021). Using geochemical data: to understand geological processes (Second edition.). Cambridge University Press.
Smith, J., & Coffin, R. (2014). Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico. Energies, 7(9), 6118-6141. https://doi.org/10.3390/en7096118
Smrzka, D., Feng, D., Himmler, T., Zwicker, J., Hu, Y., Monien, P., Tribovillard, N., Chen, D., & Peckmann, J. (2020). Trace elements in methane-seep carbonates: Potentials, limitations, and perspectives. Earth-Science Reviews, 208, 103263. https://doi.org/10.1016/j.earscirev.2020.103263
aylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. http://ci.nii.ac.jp/ncid/BA00414266
ong, H., Feng, D., Cheng, H., Yang, S., Wang, H., Min, A. G., Edwards, R. L., Chen, Z., & Chen, D. (2013). Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Marine And Petroleum Geology, 43, 260-271. https://doi.org/10.1016/j.marpetgeo.2013.01.011
Tostevin, R. Cerium anomalies and paleoredox. Elements in Geochemical Tracers in Earth System Science. Cambridge: Cambridge University Press (2021)
Wang, X., Guan, H., Qiu, J., Xu, T., Peckmann, J., Chen, D., & Feng, D. (2022). Macro-ecology of cold seeps in the South China Sea. Geosystems And Geoenvironment, 1(3), 100081. https://doi.org/10.1016/j.geogeo.2022.100081
Xi, S., Zhang, X., Du, Z., Li, L., Wang, B., Luan, Z., Lian, C., & Yan, J. (2018). Laser Raman detection of authigenic carbonates from cold seeps at the Formosa Ridge and east of the Pear River Mouth Basin in the South China Sea. Journal Of Asian Earth Sciences, 168, 207-224. https://doi.org/10.1016/j.jseaes.2018.01.023
Xu, H., Du, M., Li, J., Zhang, H., Chen, W., Wei, J., Wu, Z., Zhang, H., Li, J., Chen, S., Ta, K., Bai, S., & Peng, X. (2020). Spatial distribution of seepages and associated biological communities within Haima cold seep field, South China Sea. Journal Of Sea Research, 165, 101957. https://doi.org/10.1016/j.seares.2020.101957
Zhang, W. (2023). Distribution, Variability of Seeps. In: Chen, D., Feng, D. (eds) South China Sea Seeps. Springer, Singapore. https://doi.org/10.1007/978-981-99-1494- 4_2
Zhang, Y., Li, G., & Gao, X. (2020). Sulfate-Methane Transition Depths and Its Implication for Gas Hydrate. Journal Of Ocean University Of China, 19(4), 837-842. https://doi.org/10.1007/s11802-020-4490-5
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 46 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Geociencias
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Geociencias
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/bf3aeabe-003f-4d6c-b837-287b0deaa531/download
https://repositorio.uniandes.edu.co/bitstreams/26e61940-84a6-4eaf-81f4-7b719436600e/download
https://repositorio.uniandes.edu.co/bitstreams/e26e1e0a-ec49-41eb-a7c5-0055500737b8/download
https://repositorio.uniandes.edu.co/bitstreams/b81cf3d9-fbc9-4540-9f92-19480800804d/download
https://repositorio.uniandes.edu.co/bitstreams/ad4859ac-d853-49c7-b704-2a6599f16913/download
https://repositorio.uniandes.edu.co/bitstreams/55f0d77b-b1e1-44fa-af3b-0b21a7db1b4d/download
https://repositorio.uniandes.edu.co/bitstreams/4f2be8f3-14d5-45ca-a3de-e05536c43161/download
https://repositorio.uniandes.edu.co/bitstreams/4f0605fe-dde8-45e9-96a0-40565f208232/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
16368183f368efd3c187f6b491fe7a97
ed064c76501f44e5254a0573510fd293
ae9e573a68e7f92501b6913cc846c39f
b1e3afc2e8f6aa5d66ea45c367842fff
e1c06d85ae7b8b032bef47e42e4c08f9
a49947be8abb7900362bf4f6e6dec6d5
6517813c506729dcb49d2c597f037cb0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1837005187572563968
spelling Eickmann, Benjaminvirtual::24373-1Chiquillo Rivera, Angie DaianeRodríguez Vargas, Andrés Ignacio2025-06-26T21:21:17Z2025-06-26T21:21:17Z2025https://hdl.handle.net/1992/76402instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Cold seep formations are a main feature in continental margins where methane-rich fluids migrate to the seawater column through the sediments. These mechanisms of methane seepage allow the precipitation of carbonates in the sub-seafloor sediments by the anaerobic oxidation of methane (AOM). This process is the result of the symbiosis between chemosynthetic sulfate reducing bacteria, and methane oxidizing archaea. To test the redox conditions that are moved by these dynamics, rare earth element (REE) patterns in aragonite seep carbonates from the Gulf of Mexico (GoM) in localities AC645 and GC232, and from the South China Sea (SCS) in localities Haima and Site F, have been studied. The δ¹³C values for the SCS (ranging from -37.97 to -50.05‰) are lower than those from the GoM ranging from -20.63 to -30.57‰), indicating more oxic conditions. REE normalized patterns show a negative cerium (Ce) anomaly for aragonites in AC645 and a positive Ce anomaly for Haima suggesting a variation in redox conditions between continental margins. All samples show a positive europium (Eu) anomaly that is related to asphalt volcanism in the GoM and to microbial activity in the SCS, establishing different methane sources (thermogenic and biogenic respectively). Finally, temporal changes in redox mechanisms were inferred, suggesting changes in the seepage intensity and migration of the redox horizon at each cold seep locality.Pregrado46 páginasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental marginsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPRare earth elementsCold-seepsCarbonatesContinental marginsRedox conditionsGeocienciasAharon, P., Platon, E., & Gupta, B. K. S. (2022). An assessment of foraminiferal species distribution and stable-isotope anomalies at a methane-hydrate mound in the Gulf of Mexico. Journal Of The Palaeontological Society Of India, 67(1), 126-138. https://doi.org/10.1177/0971102320220111Alibo, D. S., & Nozaki, Y. (1999). Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica Et Cosmochimica Acta, 63(3-4), 363-372. https://doi.org/10.1016/s0016- 7037(98)00279-8Barckhausen, U., Engels, M., Franke, D., Ladage, S., & Pubellier, M. (2014). Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine And Petroleum Geology, 58, 599-611. https://doi.org/10.1016/j.marpetgeo.2014.02.022Barrat, J., Bayon, G., & Lalonde, S. (2022). Calculation of cerium and lanthanum anomalies in geological and environmental samples. Chemical Geology, 615, 121202. https://doi.org/10.1016/j.chemgeo.2022.121202Bau, M. (1991). Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3-4), 219-230. https://doi.org/10.1016/0009-2541(91)90115-8Bau, M., Dulski, P., (1999). Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near- vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol. 155, 77–90. http://dx.doi.org/10.1016/S0009-2541(98)00142-9Birgel, D., Feng, D., Roberts, H. H., & Peckmann, J. (2011). Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chemical Geology, 285(1-4), 82-96. https://doi.org/10.1016/j.chemgeo.2011.03.004Bayon, G., Birot, D., Ruffine, L., Caprais, J., Ponzevera, E., Bollinger, C., Donval, J., Charlou, J., Voisset, M., & Grimaud, S. (2011). Evidence for intense REE scavenging at cold seeps from the Niger Delta margin. Earth And Planetary Science Letters, 312(3-4), 443- 452. https://doi.org/10.1016/j.epsl.2011.10.008Bayon, G., Lemaitre, N., Barrat, J., Wang, X., Feng, D., & Duperron, S. (2020). Microbial utilization of rare earth elements at cold seeps related to aerobic methane oxidation. Chemical Geology, 555, 119832. https://doi.org/10.1016/j.chemgeo.2020.119832Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., & Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. https://doi.org/10.1038/35036572Cordes, E. E., Carney, S. L., Hourdez, S., Carney, R. S., Brooks, J. M., & Fisher, C. R. (2007). Cold seeps of the deep Gulf of Mexico: Community structure and biogeographic comparisons to Atlantic equatorial belt seep communities. Deep Sea Research Part I Oceanographic Research Papers, 54(4), 637-653. https://doi.org/10.1016/j.dsr.2007.01.001Feng, D., Chen, D., & Peckmann, J. (2008a). Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova, 21(1), 49-56. https://doi.org/10.1111/j.1365- 3121.2008.00855.xFeng, D., Chen, D., Qi, L., & Roberts, H. H. (2008b). Petrographic and geochemical characterization of seep carbonate from Alaminos Canyon, Gulf of Mexico. Science Bulletin, 53(11), 1716-1724. https://doi.org/10.1007/s11434-008-0157-0Feng, D., Chen, D., & Roberts, H. H. (2008c). Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Marine And Petroleum Geology, 26(7), 1190-1198. https://doi.org/10.1016/j.marpetgeo.2008.07.001Feng, D., & Chen, D. (2015). Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity. Deep Sea Research Part II Topical Studies In Oceanography, 122, 74-83. https://doi.org/10.1016/j.dsr2.2015.02.003eng, D., Lin, Z., Bian, Y., Chen, D., Peckmann, J., Bohrmann, G., & Roberts, H. H. (2012). Rare earth elements of seep carbonates: Indication for redox variations and microbiological processes at modern seep sites. Journal Of Asian Earth Sciences, 65, 27-33. https://doi.org/10.1016/j.jseaes.2012.09.002Galloway, W. E. (2008). Chapter 15 Depositional Evolution of the Gulf of Mexico Sedimentary Basin. En Sedimentary basins of the world (pp. 505-549). https://doi.org/10.1016/s1874-5997(08)00015-4Ge, L., Jiang, S., Swennen, R., Yang, T., Yang, J., Wu, N., Liu, J., & Chen, D. (2010). Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry. Marine Geology, 277(1- 4), 21-30. https://doi.org/10.1016/j.margeo.2010.08.008Guan, H., Birgel, D., Peckmann, J., Liang, Q., Feng, D., Yang, S., Liang, J., Tao, J., Wu, N., & Chen, D. (2018). Lipid biomarker patterns of authigenic carbonates reveal fluid composition and seepage intensity at Haima cold seeps, South China Sea. Journal Of Asian Earth Sciences, 168, 163-172. https://doi.org/10.1016/j.jseaes.2018.04.035Guo, H., Zhang, B., Wang, G., & Shen, Z. (2010). Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 270(1-4), 117-125. https://doi.org/10.1016/j.chemgeo.2009.11.010Haley, B. A., Klinkhammer, G. P., & McManus, J. (2004). Rare earth elements in pore waters of marine sediments. Geochimica Et Cosmochimica Acta, 68(6), 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012Himmler, T., Bach, W., Bohrmann, G., & Peckmann, J. (2010). Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chemical Geology, 277(1-2), 126-136. https://doi.org/10.1016/j.chemgeo.2010.07.015Jiang, K., Zhang, J., Sakatoku, A., Kambayashi, S., Yamanaka, T., Kanehara, T., Fujikura, K., & Pellizari, V. H. (2018). Discovery and biogeochemistry of asphalt seeps in the North São Paulo Plateau, Brazilian Margin. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30928-2Lawrence, M.G., Greig, A., Collerson, K.D. et al. Rare Earth Element and Yttrium Variability in South East Queensland Waterways. Aquat Geochem 12, 39–72 (2006). https://doi.org/10.1007/Liang, Q., Hu, Y., Feng, D., Peckmann, J., Chen, L., Yang, S., Liang, J., Tao, J., & Chen, D. (2017). Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics. Deep Sea Research Part I Oceanographic Research Papers, 124, 31-41. https://doi.org/10.1016/j.dsr.2017.04.015Li, F., Webb, G. E., Algeo, T. J., Kershaw, S., Lu, C., Oehlert, A. M., Gong, Q., Pourmand, A., & Tan, X. (2019). Modern carbonate ooids preserve ambient aqueous REE signatures. Chemical Geology, 509, 163-177. https://doi.org/10.1016/j.chemgeo.2019.01.015Liu, Y., Wei, J., Li, Y., Chang, J., Miao, X., & Lu, H. (2022). Seep dynamics as revealed by authigenic carbonates from the eastern Qiongdongnan Basin, South China Sea. Marine And Petroleum Geology, 142, 105736. https://doi.org/10.1016/j.marpetgeo.2022.105736MacDonald, I. R., Bohrmann, G., Escobar, E., Abegg, F., Blanchon, P., Blinova, V., Brü Ckmann, W., Drews, M., Eisenhauer, A., Han, X., Heeschen, K., Meier, F., Mortera, C., Naehr, T., Orcutt, B., Bernard, B., Brooks, J., & De Farago, M. (2004). Asphalt Volcanism and Chemosynthetic Life in the Campeche Knolls, Gulf of Mexico. Science, 304(5673), 999-1002. https://doi.org/10.1126/science.1097154MacRae, N., Nesbitt, H., & Kronberg, B. (1992). Development of a positive Eu anomaly during diagenesis. Earth And Planetary Science Letters, 109(3-4), 585-591. https://doi.org/10.1016/0012-821x(92)90116-dNaehr, T. H., Birgel, D., Bohrmann, G., MacDonald, I. R., & Kasten, S. (2009). Biogeochemical controls on authigenic carbonate formation at the Chapopote “asphalt volcano”, Bay of Campeche. Chemical Geology, 266(3-4), 390-402. https://doi.org/10.1016/j.chemgeo.2009.07.002Peckmann, J., & Thiel, V. (2004). Carbon cycling at ancient methane–seeps. Chemical Geology, 205(3-4), 443-467. https://doi.org/10.1016/j.chemgeo.2003.12.025Rollinson, H. R., & Pease, V. (2021). Using geochemical data: to understand geological processes (Second edition.). Cambridge University Press.Smith, J., & Coffin, R. (2014). Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico. Energies, 7(9), 6118-6141. https://doi.org/10.3390/en7096118Smrzka, D., Feng, D., Himmler, T., Zwicker, J., Hu, Y., Monien, P., Tribovillard, N., Chen, D., & Peckmann, J. (2020). Trace elements in methane-seep carbonates: Potentials, limitations, and perspectives. Earth-Science Reviews, 208, 103263. https://doi.org/10.1016/j.earscirev.2020.103263aylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. http://ci.nii.ac.jp/ncid/BA00414266ong, H., Feng, D., Cheng, H., Yang, S., Wang, H., Min, A. G., Edwards, R. L., Chen, Z., & Chen, D. (2013). Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Marine And Petroleum Geology, 43, 260-271. https://doi.org/10.1016/j.marpetgeo.2013.01.011Tostevin, R. Cerium anomalies and paleoredox. Elements in Geochemical Tracers in Earth System Science. Cambridge: Cambridge University Press (2021)Wang, X., Guan, H., Qiu, J., Xu, T., Peckmann, J., Chen, D., & Feng, D. (2022). Macro-ecology of cold seeps in the South China Sea. Geosystems And Geoenvironment, 1(3), 100081. https://doi.org/10.1016/j.geogeo.2022.100081Xi, S., Zhang, X., Du, Z., Li, L., Wang, B., Luan, Z., Lian, C., & Yan, J. (2018). Laser Raman detection of authigenic carbonates from cold seeps at the Formosa Ridge and east of the Pear River Mouth Basin in the South China Sea. Journal Of Asian Earth Sciences, 168, 207-224. https://doi.org/10.1016/j.jseaes.2018.01.023Xu, H., Du, M., Li, J., Zhang, H., Chen, W., Wei, J., Wu, Z., Zhang, H., Li, J., Chen, S., Ta, K., Bai, S., & Peng, X. (2020). Spatial distribution of seepages and associated biological communities within Haima cold seep field, South China Sea. Journal Of Sea Research, 165, 101957. https://doi.org/10.1016/j.seares.2020.101957Zhang, W. (2023). Distribution, Variability of Seeps. In: Chen, D., Feng, D. (eds) South China Sea Seeps. Springer, Singapore. https://doi.org/10.1007/978-981-99-1494- 4_2Zhang, Y., Li, G., & Gao, X. (2020). Sulfate-Methane Transition Depths and Its Implication for Gas Hydrate. Journal Of Ocean University Of China, 19(4), 837-842. https://doi.org/10.1007/s11802-020-4490-5202115145Publication0000-0002-6535-3750virtual::24373-10000-0002-6535-3750cf07a914-b4d9-4b5a-95f7-940947126780virtual::24373-1cf07a914-b4d9-4b5a-95f7-940947126780cf07a914-b4d9-4b5a-95f7-940947126780virtual::24373-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/bf3aeabe-003f-4d6c-b837-287b0deaa531/download4460e5956bc1d1639be9ae6146a50347MD51ORIGINALRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdfRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdfapplication/pdf2277038https://repositorio.uniandes.edu.co/bitstreams/26e61940-84a6-4eaf-81f4-7b719436600e/download16368183f368efd3c187f6b491fe7a97MD52AutorizacionRepositorio.pdfAutorizacionRepositorio.pdfHIDEapplication/pdf432587https://repositorio.uniandes.edu.co/bitstreams/e26e1e0a-ec49-41eb-a7c5-0055500737b8/downloaded064c76501f44e5254a0573510fd293MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/b81cf3d9-fbc9-4540-9f92-19480800804d/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdf.txtRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdf.txtExtracted texttext/plain75150https://repositorio.uniandes.edu.co/bitstreams/ad4859ac-d853-49c7-b704-2a6599f16913/downloadb1e3afc2e8f6aa5d66ea45c367842fffMD55AutorizacionRepositorio.pdf.txtAutorizacionRepositorio.pdf.txtExtracted texttext/plain2https://repositorio.uniandes.edu.co/bitstreams/55f0d77b-b1e1-44fa-af3b-0b21a7db1b4d/downloade1c06d85ae7b8b032bef47e42e4c08f9MD57THUMBNAILRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdf.jpgRare earth elements (REE) as a tracer for redox conditions in methane-seep carbonates at continental margins.pdf.jpgIM Thumbnailimage/jpeg5754https://repositorio.uniandes.edu.co/bitstreams/4f2be8f3-14d5-45ca-a3de-e05536c43161/downloada49947be8abb7900362bf4f6e6dec6d5MD56AutorizacionRepositorio.pdf.jpgAutorizacionRepositorio.pdf.jpgIM Thumbnailimage/jpeg26002https://repositorio.uniandes.edu.co/bitstreams/4f0605fe-dde8-45e9-96a0-40565f208232/download6517813c506729dcb49d2c597f037cb0MD581992/76402oai:repositorio.uniandes.edu.co:1992/764022025-06-27 04:05:39.394http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K