Thermal light correlations e ects on light harvesting performance

Thermal light is the kind of radiation that naturally feeds the light-harvesting processes on Earth, either natural or artificial. It can be completely described by using three properties: intensity, spectrum, and correlations. Although we understand how photoreceptor structures respond to different...

Full description

Autores:
De Mendoza Velásquez, Adriana María
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2016
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/76137
Acceso en línea:
https://hdl.handle.net/1992/76137
Palabra clave:
Thermal light correlations
Bacterial photosynthesis
Light harvesting
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_4f527581a4ab4046c9cbf2fb1eda8ffd
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/76137
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Thermal light correlations e ects on light harvesting performance
title Thermal light correlations e ects on light harvesting performance
spellingShingle Thermal light correlations e ects on light harvesting performance
Thermal light correlations
Bacterial photosynthesis
Light harvesting
Física
title_short Thermal light correlations e ects on light harvesting performance
title_full Thermal light correlations e ects on light harvesting performance
title_fullStr Thermal light correlations e ects on light harvesting performance
title_full_unstemmed Thermal light correlations e ects on light harvesting performance
title_sort Thermal light correlations e ects on light harvesting performance
dc.creator.fl_str_mv De Mendoza Velásquez, Adriana María
dc.contributor.advisor.none.fl_str_mv Rodríguez Dueñas, Ferney Javier
dc.contributor.author.none.fl_str_mv De Mendoza Velásquez, Adriana María
dc.contributor.jury.none.fl_str_mv Valencia Vargas, Alejandra María
Solarte Rodríguez, Efraín
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Grupo de Fisica Teorica de la Materia Condensada
dc.subject.keyword.eng.fl_str_mv Thermal light correlations
Bacterial photosynthesis
Light harvesting
topic Thermal light correlations
Bacterial photosynthesis
Light harvesting
Física
dc.subject.themes.spa.fl_str_mv Física
description Thermal light is the kind of radiation that naturally feeds the light-harvesting processes on Earth, either natural or artificial. It can be completely described by using three properties: intensity, spectrum, and correlations. Although we understand how photoreceptor structures respond to different light intensities and spectra, too few is known about how thermal light correlations affect the performance of different light-harvesting structures. For this reason, the main goal of our work is to identify the advantages that thermal light correlations offer for efficiency improvement in low intensity exposure and photo-protection in high intensity exposure. In this vein, we search for the effects of thermal light spatial and temporal correlations on both photosynthesis and artificial systems. Particularly in bacterial photosynthesis, we look for an adaptive relationship between the photosynthetic mechanisms present in Purple bacteria and the properties of the thermal light that feeds it. In the case of arti cial light collection, we aim to nd appropriate detection schemes that lead to an e ciency improvement when the spatial and temporal correlations of the light are detected by the system. To this end, we employ the generating functional formalism as the statistical basis for simulating detection events of the incoming light with any degree of spatio-temporal coherence (ranging from the Poissonian to Bose-Einstein distributions). This formalism provides the statistical framework to understand the role of intensity and correlations on the photoreception's behaviour for harvesting structures adjusted to speci c frequency ranges of the spectrum. All the mathematical framework was accomplished with actual photosynthetic parameters to simulate light reception and all the stages for adenosine triphosphate (ATP) production in photosynthesis; but also applied in the search for thermal light advantages in arti cial light harvesting systems. For bacterial photosynthesis, we found that the spatio-temporal correlations of thermal light are perceived and are responsible for photo-excitations dissipation in the high intensity regime, giving a possible new channel for excess energy dissipation. In the case of arti cial light harvesting, we conclude that correlations improve efficiency and stability of the obtained currents and we also found that dense-symmetric spatial con gurations of detectors raise the detection probabilities.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016-12-14
dc.date.accessioned.none.fl_str_mv 2025-04-08T18:58:42Z
dc.date.available.none.fl_str_mv 2025-04-08T18:58:42Z
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/76137
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/76137
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [1] G. Bedard, Phys.Rev. 161, 1304 (1967).
[2] A. Zardecki, Can.J.Phys. 49, 1724 (1971).
[3] J. Bures, C. Delisle and A. Zardecki, Can.J.Phys. 50, 1307 (1972).
[4] C.D. Cantrell et al., Phys.Rev. A7, 2063 (1973).
[5] Y. Zhou, J. Simon, J. Liu, and Y. Shih. Phys. Rev. A 81, 043831 (2010).
[6] J. Liu, and Y. Shih. Phys. Rev. A 79, 023819 (2009).
[7] H. Chen, T. Peng, S. Karmakar, Z. Xie and Y. Shih. Phys. Rev. A 84, 033835 (2011).
[8] G. Scarcelli, A. Valencia and Y. Shih. Phys Rev. A 70 051802(R) (2004).
[9] E. B. Rockower. Am. J. Phys. 57(7) 616 (1989).
[10] K.I. Goh and A.L. Barabasi, EPL jour. 81, 48002 (2008).
[11] S. Ragy and G. Adesso. Scienti c Reports. 2 No. 651 (2012).
[12] D.V. Strekalov, A.V. Sergienko, D.N. Klyshko and Y.H. Shih. Phys. Rev. Lett. 74,pp.36003603 (1995).
[13] Y. Bromberg, O. Katz, and Y. Silberberg. Phys. Rev. A 79, pp. 053840 (2009).
[14] G. Spedalieri, S. L. Braunstein and S. Pirandola. arXiv:1602.05958v1 [quant-ph] (2016).
[15] C.A Schroeder, F. Caycedo-Soler, S.F. Huelga, M.B. Plenio. The Journal of Physical Chemistry A 119 (34), pp. 9043-9050 (2015).
[16] F. Caycedo-Soler, F.J. Rodr guez, L. Quiroga y N.F. Johnson. Phys. Rev. Lett. 104, pp. 158302 (2010).
[17] F. Fassioli, A. Nazir and A. Olaya-Castro. J. Phys. Chem. Lett., 1 (14), pp. 21392143 (2010).
[18] D. Coles, Y. Yang, Y. Wang, R. Grant, R. Taylor, S. Saikin, A. Aspuru-Guzik, D. Lidzey, J. Tang, and J. Smith. Nature Communications 5, pp. 5561. (2014).
[19] N. Sim et al., Phys. Rev. Lett. 109, 113601 (2012).
[42] X. Hu, T. Ritz, A. Damjanovic and K. Schulten. J. Phys. Chem. B, 101, 3854 (1997).
[43] M.K. Sener, J.D. OLsen, C.N. Hunter and K. Schulten, PNAS 104 No 40, 15723 (2007).
[44] S. Kereiche, L. Bourinet, W. Keegstra, A. A. Arteni, J.M. Verbavatz, E. J. Boekema, B. Robert and A. Gall. FEBS Lett. 582 p.3650 (2008).
[45] S. Scheuring, R. P. Goncalves, V. Prima and J. N. Sturgis. J. Mol. Biol. 358 p. 83 (2006).
[46] S. Scheuring, D. L evy and J.L. Rigaud. Biochimica et Biophysica Acta 1712, p. 109 (2005).
[47] J. T. Beatty, J. Overmann, M. T. Lince, A. K. Manske, A. S. Lang, R. E. Blankenship, C. L. Van Dover, T. A. Martinson and F. G. Plumley. PNAS 102 No. 26, p. 9306 (2005).
[48] A.M. De Mendoza, Tesis de Maestra en Fsica: \Efectos de Coherencia e Intrincamiento Cuntico en Sistemas Biomoleculares", Universidasd del Valle (2010).
[49] J. Psenc k, T. P. Ikonen, P. Laurinmaki, M. C. Merckel, S. J. Butcher, R. E. Serimaa and R. Tuma. Biophys. J. 87, p.1165(2004).
[50] J. Psenck, A. M. Collins, L. Liljeroos, M. Torkkeli, P. Laurinmaki, H. M. Ansink, T. P. Ikonen, R. E. Serimaa, R.E. Blankenship,R. Tuma and S. J. Butcher. Journal of Bacteriology. 6701, (2009).
[51] G.D. Scholes. Nature Phys. 6, p. 402 (2006).
[52] A. R. Holzwarth y K. Scha ner. Phot. Res. 41, p. 225 (1994).
[53] R. R. Wise, J. K. Hoober. The Structure and Function of Plastids. Springer (2007). ISBN 9781402065705.
[54] R.P. Grant and K. Peters. http://www.the-scientist.com/articles.view/articleNo/29389/title/Chloroplast-Pinch/
[55] Image from Molecular Expressions Microscopy Primer. http://micro.magnet.fsu.edu/cells/chloroplasts/chloroplasts.html.
[56] Image Wikipedias galery. File:Thylakoid disc.png
[57] L. Margulis. J. of theoretical biology 14 3 No.1, p.225. (1967).
[58] L. Margulis. "Origin of Eukaryotic Cells". Yale University Press, New Haven. Connecticut, (1970). ISBN 0-300-01353-1.
[59] L. Margulis. "Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons". W.H. Freeman, New York (1992). ISBN 0-7167-7028-8.
[60] Y. Yoshida, H. Kuroiwa, O. Misumi, M. Yoshida, M. Ohnuma, T. Fujiwara, F. Yagisawa, S. Hirooka, Y. Imoto, K. Matsushita, S. Kawano, T. Kuroiwa. SCIENCE 329 20, p.949. (2010).
[61] G.I. McFadden. Plant Physiology 125 No.1, p.50. (2001).
[62] M. Pessarakli. Handbook of photosynthesis, 2nd Ed. CRC Press (2005), ISBN 9780824758394.
[63] D. Smith. http://www.the-scientist.com/articles.view/articleNo/33711/title/Steal-My-Sunshine/.
[64] F. Caycedo-Soler, F.J. Rodrguez, L. Quiroga y N.F. Johnson. New J. Phys. 12, 095008 (2010).
[65] F. Fassioli, R. Dinshaw, P.C. Arpin, G.D. Scholes GD. J. R. Soc. Interface 11 pp. 1-22 (2014).
[66] E. Weber, M. Thorwart, and U. Wrfel. Quantum coherence and entanglement in photosynthetic light-harvesting complexes in Quantum E ciency in Complex Systems I, Semiconductors and Semimetals. Elsewier, Academic Press 2010. ISBN 9780323164030.
[67] Hu, X., Ritz, T., Damjanovi c, A., Autenrieth, F. and Schulten, K. Q. Rev. of Biophys. 35 1 (2002)
[68] M.S. Graige, M. L. Paddock, J. M. Bruce, G. Feher and M. Y. Okamura. J.Am.Chem. Soc. 118, pp. 9005 (1996).
[69] J. Madeo and M. R. Gunner. Biochemistry 44, pp. 10994 (2005)
[70] S. Osvath and P. Maroti. Bioph.J. 73, pp. 972 (1997)
[71] B. A. Diner, C. C. Schenck and C. De Vitry. Bioch. Et Bioph. Acta. 766, pp. 20 (1984).
[72] F. Milano, A. Agostiano, F. Mavelli M. Trotta. Eur. J. Biochem. 270, pp. 4595 (2003).
[73] H. Hertz. Annalen der Physik. 267, No 8 pp.983-1000 (1887).
[74] A. Einstein. Annalen der Physik. 17, No 6 pp.132-148 (1905)
[75] R. Millikan. Physical Review 4, No 1 pp. 7375 (1914).
[76] W.A. Badawy. Journal of Advanced Research. 6, No 2 pp.123 (2015).
[77] M.A. Othman, S.N. Taib, M.N. Husain and Z.A.F.M. Napiah. ARPN Journal of Engineering and Applied Sciences. 9, No 1 pp.35 (2014).
[78] Li Q, He X, Wang Y, Liu H, Xu D, Guo F. J Biomed Opt. 18, No 10 pp.100901-1 (2013).
[79] R.E. Blankenship, D.M. Tiede , J. Barber, G.W. Brudvig, G. Fleming, M. Ghirardi, M.R. Gunner, W. Junge, D.M. Kramer, A. Melis, T.A. Moore, C.C. Moser, D.G. Nocera, A.J. Nozik, D.R. Ort, W.W. Parson, R.C. Prince, R.T. Sayre. Science 332 pp.805-809 (2011).
[80] A. Kurtz and K. Emery, Best reseach-cell e ciencies Tech. National Renewable Energy Laboratory (NREL), Golden, CO (2016).
[81] D. K. Kotter, S. D. Novack, W. D. Slafer and P. J. Pinhero. J. of Solar Energy Engineering. 132, pp. 011014-2 (2010).
[82] G.A. Vandenbosch and Z. Ma, Nano Energy 1, pp.494-502 (2012).
[83] A. Sharma1, V. Singh, T.L. Bougher and B.A. Cola. Nature Nanotechnology. 10, pp.1027 (2015).
[84] P. Hersch and K. Zweibel. U.S. Solar Energy Research Institute, Golden-Colorado,(1982).SERI/SP-290-1448.
[85] G. Cook, L. Billman, and R. Adcock. U.S. Department of Energy - National Renewable Energy Laboratory (NREL), Washington DC,(1995).DOE/CH10093-117-Rev.1.
[86] B. Berland. Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell. National Renewable Energy Laboratory Report (2012)
[87] R. L. Bailey. Journal of Engineering for Power April 73, (1972). R. L. Bailey. Ann Arbor Science (1980). R. L. Bailey, P. S. Callahan, and M. Zahn. Electromagnetic
Wave Energy Conversion Research. Report no. NASA-CR-145876 (N76-13591), (1975).
[88] A. M. Marks USA Patents no. 4,445,050 (1984), no. 4,574,161 (1986), no. 4,720,642 (1988) and no. 4,972,094 (1990).
[89] A. Sharma, V. Singh, T. L. Bougher, B. A. Cola. Nature Nanotechnology. 10, pp. 10271032 (2015).
[90] Z. Zhu, S. Joshi, B. Pelz, G. Moddel. Proc. SPIE 8824, Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion IV, 88240O (September 25,
2013); doi:10.1117/12.2024700.
[91] J.D Jackson. Classical Electrodynamics. John Wiley and Sons Inc. (1999). pp.220, ISBN 047130932X.
[92] A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, Y. S. Kivshar. Physics- Uspekhi 56 (6), pp.539-564 (2013).
[93] L. Mandel and E.Wolf. Optical Coherence And Quantum Optics. Cambridge University Press (1995), ISBN 0521414112.
[94] M. Fox. Quantum Optics: An Introduction. Oxford University Press (2006), ISBN 0198566727
[95] M.O.Scully and M.S.Zubairy, Quantum Optics (Cambridge U. Press, 1997).
[96] R. Loudon. The Quantum Theory of Light. Oxford University Press (2000). ISBN-10: 0198501773; ISBN-13: 9780198501770.
[97] Qiang, Fu. In Holton, James R. Encyclopedia of atmospheric sciences. Amsterdam: Academic Press., (2003). pp. 18591863, ISBN 978-0-12-227095-6.
[98] G. Butcher. Mysteries of the Sun. NASA (2014), https : ==www:nasa:gov=pdf=637244mainMysteriesOfTheSunBook:pdf:
[99] ASTM G173-03 Tables. http://rredc.nrel.gov/solar/spectra/am1.5/.
[100] R. Hanbury Brown, R. Q. Twiss. Nature 178, No 4541 pp. 1046-1048 (1956).
[101] R. Hanbury Brown, R. Q. Twiss. Nature 177, No 4497 pp. 27-29 (1956).
[102] H. Mashaal, A Goldstein, D. Feuermann, and J. M. Gordon. Opt. Lett. 37, No. 17 (2012).
[103] P.H. van Cittert. Physica 1. pp 201210. (1934) and F. Zernike. Physica 5, pp. 785795 (1938).
[104] N. G. Van Kampen. Stochastic processes in physics and chemestry. Elsevier NHPL (2001), ISBN 04444893490.
[105] S. Hess, M. Chachisvilis, K. Timpmann, M.R. Jones, G.J. Fowler, C.N. Hunter and V. Sundstr om. Proc. Natl. Acad. Sci. USA. 92 12333 (1995).
[106] T. Ritz, S. Park, and K.J. Schulten. Phys. Chem. B. 105, 8259 (2001).
[107] R. van Grondelle, J. P. Dekker, T. Gillbro and V. Sundstr om. Biochim. Biophys. Acta. 1187 1 (1994)
[108] A. Damjanovi c, T. Ritz and K. Schulten. Int. J. Quantum Chem. 77 139 (2000).
[109] K. Timpmann, F.G. Zhang, A. Freiberg and V. Sundstr om. Biochim. Biophys. Acta. 1183 185 (1993).
[110] P. Manrique, A. De Mendoza, F. Caycedo-Soler, F. Rodr guez, L. Quiroga and N.F Johnson. arXive:1511.07309v3 (2016).
[111] W. Van, A. Meijerink, and R. Schropp. Solar Spectrum Conversion for Photovoltaics Using Nanoparticles - chapter 1. (InTech) (2012), ISBN 9789535103042.
[112] E. Briones, J. Alda, and F.J. Gonz alez, Opt. Express 21 p.A412A418 (2013).
[113] J. Zmuizinas. Applied Physics. 42, No 25 pp. 4989 (2003).
[114] R.J. Cogdell, T.D. Howard, R. Bittl, E. Schlodder, I. Geisenheimer and W. Lubitz. Phil. Trans. R. Soc.355 pp. 13451349 (2000).
[115] N. J. Fraser, H. Hashimoto and R. J. Cogdell, Photosynthesis Research. 70 pp. 249-256 (2001).
[116] H. Kim, H. Li, J.A. Maresca, D.A. Bryant, S. Savikhin. Biophys. J. 93 pp. 192 (2007).
[117] G.D. Scholes, R.D. Harcourt and G.R. Fleming. J. Phys. Chem. 101 pp. 7302 (1997)
[118] D. Kosumi, T. Horibe, M. Sugisaki, R.J. Cogdell and H. Hashimoto. J. Phys. Chem. 120 pp. 951 (2016).
[119] F. Caycedo-Soler, C.A. Schroeder, C. Autenrieth, R. Ghosh, S. F. Huelga and M.B. Plenio. arXiv:1504.05470v.
[120] H. Dong, S. Li, Z. Yi, G.S. Agarwal, M.O. Scully. arXiv:1608.04364 Aug.(2016).
[121] P. Manrique, A. De Mendoza, F. Caycedo-Soler, F. Rodríguez, L. Quiroga and N.F Johnson. Astrobiol. Ourtreach. 3 124 (2015).
[122] P. D. Manrique, F. Caycedo-Soler, A. De Mendoza, F. Rodríguez, L. Quiroga, and N. F. Johnson. Results in Physics 6, pp. 957-960 (2016)
[123] J.R. Jeffers, N, Imoto and R. Loudon. Phys.Rev.A 47 No 4, 3346 (1993).
[124] D.J. Griffiths. Introduction to Electrodynamics. Prentice Hall (1999). pp.390, ISBN 013805326X.
[125] http://www.fondriest.com/environmental-measurements/parameters/waterquality/conductivity-salinity-tds/.
[126] "ASME Steam Tables. Thermodynamic and Transport Properties of Steam". The 1967 IFC formulation for industrial use. 6th Edition, ASME, 1993.
[127] http://en.wikipedia.org/wiki/Permeability
[128] C. W. J. Beenakker. Phys Rev. Lett. 81(9) 1829 (1998).
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 133 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Ciencias - Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e7ff709c-5173-43c7-b98d-e28505692693/download
https://repositorio.uniandes.edu.co/bitstreams/8e8a911b-6372-46a7-b2d6-01833881573e/download
https://repositorio.uniandes.edu.co/bitstreams/457396fa-53e4-4bbe-ad42-2f9e94dbf64e/download
https://repositorio.uniandes.edu.co/bitstreams/b31d1e69-a1bd-49b7-8307-795c67d8b123/download
https://repositorio.uniandes.edu.co/bitstreams/6c0c6a77-7db8-4ce4-8333-ab2c3c8b7117/download
https://repositorio.uniandes.edu.co/bitstreams/c457f99d-8a91-4f87-961c-d2ef52c61573/download
https://repositorio.uniandes.edu.co/bitstreams/0fa7a69f-eee5-48ae-a5b3-b0b0018258a8/download
https://repositorio.uniandes.edu.co/bitstreams/eca9198a-f9e7-473e-9ba5-1cd75a69e1ca/download
bitstream.checksum.fl_str_mv b37fd11899c832f6818ed2407ba3d7d2
4c850af8c65d47d7181b6e8f88b0cf3c
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
7d6acbe796840578564e42b4fba9146b
52133db26556f4492c788b62d7da5205
557d69c80514980b9d8f36d09cef0501
d77d2b16f5d60af574c803ae9ee245d5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927594186964992
spelling Rodríguez Dueñas, Ferney Javiervirtual::24022-1De Mendoza Velásquez, Adriana MaríaValencia Vargas, Alejandra Maríavirtual::24021-1Solarte Rodríguez, EfraínFacultad de Ciencias::Grupo de Fisica Teorica de la Materia Condensada2025-04-08T18:58:42Z2025-04-08T18:58:42Z2016-12-14https://hdl.handle.net/1992/76137instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Thermal light is the kind of radiation that naturally feeds the light-harvesting processes on Earth, either natural or artificial. It can be completely described by using three properties: intensity, spectrum, and correlations. Although we understand how photoreceptor structures respond to different light intensities and spectra, too few is known about how thermal light correlations affect the performance of different light-harvesting structures. For this reason, the main goal of our work is to identify the advantages that thermal light correlations offer for efficiency improvement in low intensity exposure and photo-protection in high intensity exposure. In this vein, we search for the effects of thermal light spatial and temporal correlations on both photosynthesis and artificial systems. Particularly in bacterial photosynthesis, we look for an adaptive relationship between the photosynthetic mechanisms present in Purple bacteria and the properties of the thermal light that feeds it. In the case of arti cial light collection, we aim to nd appropriate detection schemes that lead to an e ciency improvement when the spatial and temporal correlations of the light are detected by the system. To this end, we employ the generating functional formalism as the statistical basis for simulating detection events of the incoming light with any degree of spatio-temporal coherence (ranging from the Poissonian to Bose-Einstein distributions). This formalism provides the statistical framework to understand the role of intensity and correlations on the photoreception's behaviour for harvesting structures adjusted to speci c frequency ranges of the spectrum. All the mathematical framework was accomplished with actual photosynthetic parameters to simulate light reception and all the stages for adenosine triphosphate (ATP) production in photosynthesis; but also applied in the search for thermal light advantages in arti cial light harvesting systems. For bacterial photosynthesis, we found that the spatio-temporal correlations of thermal light are perceived and are responsible for photo-excitations dissipation in the high intensity regime, giving a possible new channel for excess energy dissipation. In the case of arti cial light harvesting, we conclude that correlations improve efficiency and stability of the obtained currents and we also found that dense-symmetric spatial con gurations of detectors raise the detection probabilities.Doctorado133 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Thermal light correlations e ects on light harvesting performanceTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDThermal light correlationsBacterial photosynthesisLight harvestingFísica[1] G. Bedard, Phys.Rev. 161, 1304 (1967).[2] A. Zardecki, Can.J.Phys. 49, 1724 (1971).[3] J. Bures, C. Delisle and A. Zardecki, Can.J.Phys. 50, 1307 (1972).[4] C.D. Cantrell et al., Phys.Rev. A7, 2063 (1973).[5] Y. Zhou, J. Simon, J. Liu, and Y. Shih. Phys. Rev. A 81, 043831 (2010).[6] J. Liu, and Y. Shih. Phys. Rev. A 79, 023819 (2009).[7] H. Chen, T. Peng, S. Karmakar, Z. Xie and Y. Shih. Phys. Rev. A 84, 033835 (2011).[8] G. Scarcelli, A. Valencia and Y. Shih. Phys Rev. A 70 051802(R) (2004).[9] E. B. Rockower. Am. J. Phys. 57(7) 616 (1989).[10] K.I. Goh and A.L. Barabasi, EPL jour. 81, 48002 (2008).[11] S. Ragy and G. Adesso. Scienti c Reports. 2 No. 651 (2012).[12] D.V. Strekalov, A.V. Sergienko, D.N. Klyshko and Y.H. Shih. Phys. Rev. Lett. 74,pp.36003603 (1995).[13] Y. Bromberg, O. Katz, and Y. Silberberg. Phys. Rev. A 79, pp. 053840 (2009).[14] G. Spedalieri, S. L. Braunstein and S. Pirandola. arXiv:1602.05958v1 [quant-ph] (2016).[15] C.A Schroeder, F. Caycedo-Soler, S.F. Huelga, M.B. Plenio. The Journal of Physical Chemistry A 119 (34), pp. 9043-9050 (2015).[16] F. Caycedo-Soler, F.J. Rodr guez, L. Quiroga y N.F. Johnson. Phys. Rev. Lett. 104, pp. 158302 (2010).[17] F. Fassioli, A. Nazir and A. Olaya-Castro. J. Phys. Chem. Lett., 1 (14), pp. 21392143 (2010).[18] D. Coles, Y. Yang, Y. Wang, R. Grant, R. Taylor, S. Saikin, A. Aspuru-Guzik, D. Lidzey, J. Tang, and J. Smith. Nature Communications 5, pp. 5561. (2014).[19] N. Sim et al., Phys. Rev. Lett. 109, 113601 (2012).[42] X. Hu, T. Ritz, A. Damjanovic and K. Schulten. J. Phys. Chem. B, 101, 3854 (1997).[43] M.K. Sener, J.D. OLsen, C.N. Hunter and K. Schulten, PNAS 104 No 40, 15723 (2007).[44] S. Kereiche, L. Bourinet, W. Keegstra, A. A. Arteni, J.M. Verbavatz, E. J. Boekema, B. Robert and A. Gall. FEBS Lett. 582 p.3650 (2008).[45] S. Scheuring, R. P. Goncalves, V. Prima and J. N. Sturgis. J. Mol. Biol. 358 p. 83 (2006).[46] S. Scheuring, D. L evy and J.L. Rigaud. Biochimica et Biophysica Acta 1712, p. 109 (2005).[47] J. T. Beatty, J. Overmann, M. T. Lince, A. K. Manske, A. S. Lang, R. E. Blankenship, C. L. Van Dover, T. A. Martinson and F. G. Plumley. PNAS 102 No. 26, p. 9306 (2005).[48] A.M. De Mendoza, Tesis de Maestra en Fsica: \Efectos de Coherencia e Intrincamiento Cuntico en Sistemas Biomoleculares", Universidasd del Valle (2010).[49] J. Psenc k, T. P. Ikonen, P. Laurinmaki, M. C. Merckel, S. J. Butcher, R. E. Serimaa and R. Tuma. Biophys. J. 87, p.1165(2004).[50] J. Psenck, A. M. Collins, L. Liljeroos, M. Torkkeli, P. Laurinmaki, H. M. Ansink, T. P. Ikonen, R. E. Serimaa, R.E. Blankenship,R. Tuma and S. J. Butcher. Journal of Bacteriology. 6701, (2009).[51] G.D. Scholes. Nature Phys. 6, p. 402 (2006).[52] A. R. Holzwarth y K. Scha ner. Phot. Res. 41, p. 225 (1994).[53] R. R. Wise, J. K. Hoober. The Structure and Function of Plastids. Springer (2007). ISBN 9781402065705.[54] R.P. Grant and K. Peters. http://www.the-scientist.com/articles.view/articleNo/29389/title/Chloroplast-Pinch/[55] Image from Molecular Expressions Microscopy Primer. http://micro.magnet.fsu.edu/cells/chloroplasts/chloroplasts.html.[56] Image Wikipedias galery. File:Thylakoid disc.png[57] L. Margulis. J. of theoretical biology 14 3 No.1, p.225. (1967).[58] L. Margulis. "Origin of Eukaryotic Cells". Yale University Press, New Haven. Connecticut, (1970). ISBN 0-300-01353-1.[59] L. Margulis. "Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons". W.H. Freeman, New York (1992). ISBN 0-7167-7028-8.[60] Y. Yoshida, H. Kuroiwa, O. Misumi, M. Yoshida, M. Ohnuma, T. Fujiwara, F. Yagisawa, S. Hirooka, Y. Imoto, K. Matsushita, S. Kawano, T. Kuroiwa. SCIENCE 329 20, p.949. (2010).[61] G.I. McFadden. Plant Physiology 125 No.1, p.50. (2001).[62] M. Pessarakli. Handbook of photosynthesis, 2nd Ed. CRC Press (2005), ISBN 9780824758394.[63] D. Smith. http://www.the-scientist.com/articles.view/articleNo/33711/title/Steal-My-Sunshine/.[64] F. Caycedo-Soler, F.J. Rodrguez, L. Quiroga y N.F. Johnson. New J. Phys. 12, 095008 (2010).[65] F. Fassioli, R. Dinshaw, P.C. Arpin, G.D. Scholes GD. J. R. Soc. Interface 11 pp. 1-22 (2014).[66] E. Weber, M. Thorwart, and U. Wrfel. Quantum coherence and entanglement in photosynthetic light-harvesting complexes in Quantum E ciency in Complex Systems I, Semiconductors and Semimetals. Elsewier, Academic Press 2010. ISBN 9780323164030.[67] Hu, X., Ritz, T., Damjanovi c, A., Autenrieth, F. and Schulten, K. Q. Rev. of Biophys. 35 1 (2002)[68] M.S. Graige, M. L. Paddock, J. M. Bruce, G. Feher and M. Y. Okamura. J.Am.Chem. Soc. 118, pp. 9005 (1996).[69] J. Madeo and M. R. Gunner. Biochemistry 44, pp. 10994 (2005)[70] S. Osvath and P. Maroti. Bioph.J. 73, pp. 972 (1997)[71] B. A. Diner, C. C. Schenck and C. De Vitry. Bioch. Et Bioph. Acta. 766, pp. 20 (1984).[72] F. Milano, A. Agostiano, F. Mavelli M. Trotta. Eur. J. Biochem. 270, pp. 4595 (2003).[73] H. Hertz. Annalen der Physik. 267, No 8 pp.983-1000 (1887).[74] A. Einstein. Annalen der Physik. 17, No 6 pp.132-148 (1905)[75] R. Millikan. Physical Review 4, No 1 pp. 7375 (1914).[76] W.A. Badawy. Journal of Advanced Research. 6, No 2 pp.123 (2015).[77] M.A. Othman, S.N. Taib, M.N. Husain and Z.A.F.M. Napiah. ARPN Journal of Engineering and Applied Sciences. 9, No 1 pp.35 (2014).[78] Li Q, He X, Wang Y, Liu H, Xu D, Guo F. J Biomed Opt. 18, No 10 pp.100901-1 (2013).[79] R.E. Blankenship, D.M. Tiede , J. Barber, G.W. Brudvig, G. Fleming, M. Ghirardi, M.R. Gunner, W. Junge, D.M. Kramer, A. Melis, T.A. Moore, C.C. Moser, D.G. Nocera, A.J. Nozik, D.R. Ort, W.W. Parson, R.C. Prince, R.T. Sayre. Science 332 pp.805-809 (2011).[80] A. Kurtz and K. Emery, Best reseach-cell e ciencies Tech. National Renewable Energy Laboratory (NREL), Golden, CO (2016).[81] D. K. Kotter, S. D. Novack, W. D. Slafer and P. J. Pinhero. J. of Solar Energy Engineering. 132, pp. 011014-2 (2010).[82] G.A. Vandenbosch and Z. Ma, Nano Energy 1, pp.494-502 (2012).[83] A. Sharma1, V. Singh, T.L. Bougher and B.A. Cola. Nature Nanotechnology. 10, pp.1027 (2015).[84] P. Hersch and K. Zweibel. U.S. Solar Energy Research Institute, Golden-Colorado,(1982).SERI/SP-290-1448.[85] G. Cook, L. Billman, and R. Adcock. U.S. Department of Energy - National Renewable Energy Laboratory (NREL), Washington DC,(1995).DOE/CH10093-117-Rev.1.[86] B. Berland. Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell. National Renewable Energy Laboratory Report (2012)[87] R. L. Bailey. Journal of Engineering for Power April 73, (1972). R. L. Bailey. Ann Arbor Science (1980). R. L. Bailey, P. S. Callahan, and M. Zahn. ElectromagneticWave Energy Conversion Research. Report no. NASA-CR-145876 (N76-13591), (1975).[88] A. M. Marks USA Patents no. 4,445,050 (1984), no. 4,574,161 (1986), no. 4,720,642 (1988) and no. 4,972,094 (1990).[89] A. Sharma, V. Singh, T. L. Bougher, B. A. Cola. Nature Nanotechnology. 10, pp. 10271032 (2015).[90] Z. Zhu, S. Joshi, B. Pelz, G. Moddel. Proc. SPIE 8824, Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion IV, 88240O (September 25,2013); doi:10.1117/12.2024700.[91] J.D Jackson. Classical Electrodynamics. John Wiley and Sons Inc. (1999). pp.220, ISBN 047130932X.[92] A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, Y. S. Kivshar. Physics- Uspekhi 56 (6), pp.539-564 (2013).[93] L. Mandel and E.Wolf. Optical Coherence And Quantum Optics. Cambridge University Press (1995), ISBN 0521414112.[94] M. Fox. Quantum Optics: An Introduction. Oxford University Press (2006), ISBN 0198566727[95] M.O.Scully and M.S.Zubairy, Quantum Optics (Cambridge U. Press, 1997).[96] R. Loudon. The Quantum Theory of Light. Oxford University Press (2000). ISBN-10: 0198501773; ISBN-13: 9780198501770.[97] Qiang, Fu. In Holton, James R. Encyclopedia of atmospheric sciences. Amsterdam: Academic Press., (2003). pp. 18591863, ISBN 978-0-12-227095-6.[98] G. Butcher. Mysteries of the Sun. NASA (2014), https : ==www:nasa:gov=pdf=637244mainMysteriesOfTheSunBook:pdf:[99] ASTM G173-03 Tables. http://rredc.nrel.gov/solar/spectra/am1.5/.[100] R. Hanbury Brown, R. Q. Twiss. Nature 178, No 4541 pp. 1046-1048 (1956).[101] R. Hanbury Brown, R. Q. Twiss. Nature 177, No 4497 pp. 27-29 (1956).[102] H. Mashaal, A Goldstein, D. Feuermann, and J. M. Gordon. Opt. Lett. 37, No. 17 (2012).[103] P.H. van Cittert. Physica 1. pp 201210. (1934) and F. Zernike. Physica 5, pp. 785795 (1938).[104] N. G. Van Kampen. Stochastic processes in physics and chemestry. Elsevier NHPL (2001), ISBN 04444893490.[105] S. Hess, M. Chachisvilis, K. Timpmann, M.R. Jones, G.J. Fowler, C.N. Hunter and V. Sundstr om. Proc. Natl. Acad. Sci. USA. 92 12333 (1995).[106] T. Ritz, S. Park, and K.J. Schulten. Phys. Chem. B. 105, 8259 (2001).[107] R. van Grondelle, J. P. Dekker, T. Gillbro and V. Sundstr om. Biochim. Biophys. Acta. 1187 1 (1994)[108] A. Damjanovi c, T. Ritz and K. Schulten. Int. J. Quantum Chem. 77 139 (2000).[109] K. Timpmann, F.G. Zhang, A. Freiberg and V. Sundstr om. Biochim. Biophys. Acta. 1183 185 (1993).[110] P. Manrique, A. De Mendoza, F. Caycedo-Soler, F. Rodr guez, L. Quiroga and N.F Johnson. arXive:1511.07309v3 (2016).[111] W. Van, A. Meijerink, and R. Schropp. Solar Spectrum Conversion for Photovoltaics Using Nanoparticles - chapter 1. (InTech) (2012), ISBN 9789535103042.[112] E. Briones, J. Alda, and F.J. Gonz alez, Opt. Express 21 p.A412A418 (2013).[113] J. Zmuizinas. Applied Physics. 42, No 25 pp. 4989 (2003).[114] R.J. Cogdell, T.D. Howard, R. Bittl, E. Schlodder, I. Geisenheimer and W. Lubitz. Phil. Trans. R. Soc.355 pp. 13451349 (2000).[115] N. J. Fraser, H. Hashimoto and R. J. Cogdell, Photosynthesis Research. 70 pp. 249-256 (2001).[116] H. Kim, H. Li, J.A. Maresca, D.A. Bryant, S. Savikhin. Biophys. J. 93 pp. 192 (2007).[117] G.D. Scholes, R.D. Harcourt and G.R. Fleming. J. Phys. Chem. 101 pp. 7302 (1997)[118] D. Kosumi, T. Horibe, M. Sugisaki, R.J. Cogdell and H. Hashimoto. J. Phys. Chem. 120 pp. 951 (2016).[119] F. Caycedo-Soler, C.A. Schroeder, C. Autenrieth, R. Ghosh, S. F. Huelga and M.B. Plenio. arXiv:1504.05470v.[120] H. Dong, S. Li, Z. Yi, G.S. Agarwal, M.O. Scully. arXiv:1608.04364 Aug.(2016).[121] P. Manrique, A. De Mendoza, F. Caycedo-Soler, F. Rodríguez, L. Quiroga and N.F Johnson. Astrobiol. Ourtreach. 3 124 (2015).[122] P. D. Manrique, F. Caycedo-Soler, A. De Mendoza, F. Rodríguez, L. Quiroga, and N. F. Johnson. Results in Physics 6, pp. 957-960 (2016)[123] J.R. Jeffers, N, Imoto and R. Loudon. Phys.Rev.A 47 No 4, 3346 (1993).[124] D.J. Griffiths. Introduction to Electrodynamics. Prentice Hall (1999). pp.390, ISBN 013805326X.[125] http://www.fondriest.com/environmental-measurements/parameters/waterquality/conductivity-salinity-tds/.[126] "ASME Steam Tables. Thermodynamic and Transport Properties of Steam". The 1967 IFC formulation for industrial use. 6th Edition, ASME, 1993.[127] http://en.wikipedia.org/wiki/Permeability[128] C. W. J. Beenakker. Phys Rev. Lett. 81(9) 1829 (1998).200418394Publication0000-0001-5383-4218virtual::24022-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000077216virtual::24022-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001463012virtual::24021-1e30cee58-f835-4d1b-97c9-3146b481c8b1virtual::24022-1e30cee58-f835-4d1b-97c9-3146b481c8b1virtual::24022-1372eca19-b462-4a40-9a80-472c1d4e3b0evirtual::24021-1372eca19-b462-4a40-9a80-472c1d4e3b0evirtual::24021-1ORIGINALThermal light correlations e ects on light harvesting performance.pdfThermal light correlations e ects on light harvesting performance.pdfapplication/pdf29046936https://repositorio.uniandes.edu.co/bitstreams/e7ff709c-5173-43c7-b98d-e28505692693/downloadb37fd11899c832f6818ed2407ba3d7d2MD51Formato tesis3.pdfFormato tesis3.pdfHIDEapplication/pdf328707https://repositorio.uniandes.edu.co/bitstreams/8e8a911b-6372-46a7-b2d6-01833881573e/download4c850af8c65d47d7181b6e8f88b0cf3cMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/457396fa-53e4-4bbe-ad42-2f9e94dbf64e/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/b31d1e69-a1bd-49b7-8307-795c67d8b123/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTThermal light correlations e ects on light harvesting performance.pdf.txtThermal light correlations e ects on light harvesting performance.pdf.txtExtracted texttext/plain100793https://repositorio.uniandes.edu.co/bitstreams/6c0c6a77-7db8-4ce4-8333-ab2c3c8b7117/download7d6acbe796840578564e42b4fba9146bMD55Formato tesis3.pdf.txtFormato tesis3.pdf.txtExtracted texttext/plain2005https://repositorio.uniandes.edu.co/bitstreams/c457f99d-8a91-4f87-961c-d2ef52c61573/download52133db26556f4492c788b62d7da5205MD57THUMBNAILThermal light correlations e ects on light harvesting performance.pdf.jpgThermal light correlations e ects on light harvesting performance.pdf.jpgGenerated Thumbnailimage/jpeg7311https://repositorio.uniandes.edu.co/bitstreams/0fa7a69f-eee5-48ae-a5b3-b0b0018258a8/download557d69c80514980b9d8f36d09cef0501MD56Formato tesis3.pdf.jpgFormato tesis3.pdf.jpgGenerated Thumbnailimage/jpeg11179https://repositorio.uniandes.edu.co/bitstreams/eca9198a-f9e7-473e-9ba5-1cd75a69e1ca/downloadd77d2b16f5d60af574c803ae9ee245d5MD581992/76137oai:repositorio.uniandes.edu.co:1992/761372025-04-09 04:01:03.779http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K