The physical properties of the cytoplasm change during aging in s. cerevisiae
Age-related diseases are among the leading causes of mortality, with conditions like cardiovascular diseases, cancer, and diabetes escalating exponentially with age. Delaying aging may have a bigger payoff than tackling individual diseases.To achieve this goal, a deeper understanding of aging at the...
- Autores:
-
Durán Chaparro, David Camilo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75865
- Acceso en línea:
- https://hdl.handle.net/1992/75865
- Palabra clave:
- Aging
Macromolecular crowding
Microfluidics
Yeast
Diffusion
Saccharomyces cerevisiae
Slipstreaming
Replicative Aging
Chronological Aging
Genetically Encoded Multimeric Nanoparticles (GEMs)
Physical Properties of the Cell
Physics of Aging
Física
Biología
Ingeniería
- Rights
- openAccess
- License
- Attribution-NonCommercial 4.0 International
id |
UNIANDES2_449b618867d4012960e13affbbcd666f |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75865 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
The physical properties of the cytoplasm change during aging in s. cerevisiae |
title |
The physical properties of the cytoplasm change during aging in s. cerevisiae |
spellingShingle |
The physical properties of the cytoplasm change during aging in s. cerevisiae Aging Macromolecular crowding Microfluidics Yeast Diffusion Saccharomyces cerevisiae Slipstreaming Replicative Aging Chronological Aging Genetically Encoded Multimeric Nanoparticles (GEMs) Physical Properties of the Cell Physics of Aging Física Biología Ingeniería |
title_short |
The physical properties of the cytoplasm change during aging in s. cerevisiae |
title_full |
The physical properties of the cytoplasm change during aging in s. cerevisiae |
title_fullStr |
The physical properties of the cytoplasm change during aging in s. cerevisiae |
title_full_unstemmed |
The physical properties of the cytoplasm change during aging in s. cerevisiae |
title_sort |
The physical properties of the cytoplasm change during aging in s. cerevisiae |
dc.creator.fl_str_mv |
Durán Chaparro, David Camilo |
dc.contributor.advisor.none.fl_str_mv |
Pedraza Leal, Juan Manuel |
dc.contributor.author.none.fl_str_mv |
Durán Chaparro, David Camilo |
dc.contributor.jury.none.fl_str_mv |
Leidy, Chad Veenhoff, Liesbeth M. Holt, Liam J. |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias |
dc.subject.keyword.eng.fl_str_mv |
Aging Macromolecular crowding Microfluidics Yeast Diffusion Saccharomyces cerevisiae Slipstreaming Replicative Aging Chronological Aging Genetically Encoded Multimeric Nanoparticles (GEMs) Physical Properties of the Cell Physics of Aging |
topic |
Aging Macromolecular crowding Microfluidics Yeast Diffusion Saccharomyces cerevisiae Slipstreaming Replicative Aging Chronological Aging Genetically Encoded Multimeric Nanoparticles (GEMs) Physical Properties of the Cell Physics of Aging Física Biología Ingeniería |
dc.subject.themes.none.fl_str_mv |
Física Biología Ingeniería |
description |
Age-related diseases are among the leading causes of mortality, with conditions like cardiovascular diseases, cancer, and diabetes escalating exponentially with age. Delaying aging may have a bigger payoff than tackling individual diseases.To achieve this goal, a deeper understanding of aging at the cellular level is crucial. While several hallmarks of aging have been identified, there is still an absence of a Unified Theory of Aging. Many of these hallmarks appear to be interconnected through physical phenomena like phase separation. Physical Properties hold promise as a unifying framework, potentially offering avenues for rejuvenating cells through physical interventions. Macromolecular crowding emerges as a key aspect in this context, intimately linked with phase separation. While its effects have been observed at nanometer and organelle scales, understanding crowding at the mesoscale (10-100 nm) remains elusive. Our study delves into this mesoscale crowding using Genetically Encoded Multimeric Nanoparticles (GEMs), revealing how changes in cytoplasmic physical properties correlate with different cellular states during the aging process. Our research sheds light on the intricate relationship between macromolecular crowding, phase separation, and cellular aging, offering insights that could pave the way for novel therapeutic interventions. Additionally, we highlight potential biases in traditional single-cell aging studies due to cell trapping pressures. To address this, we developed a microfluidic device that makes use of the Slipstreaming Effect to trap single cells in a low-pressure environment, providing a more accurate representation of cellular aging. This study aims to contribute valuable insights into the aging process, ultimately striving to enhance the quality of life for individuals. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-01-30T19:53:52Z |
dc.date.available.none.fl_str_mv |
2025-01-30T19:53:52Z |
dc.date.issued.none.fl_str_mv |
2025-01-29 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75865 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75865 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
[1] B. Gompertz. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society, 115:513– 585, 1825. ISSN 0261-0523. doi: 10.1098/rstl.1825.0026. URL https: //doi.org/10.1098/rstl.1825.0026. [2] W.B. Zhang, D.B. Sinha, W.E. Pittman, E. Hvatum, N. Stroustrup, and Z. Pincus. Extended twilight among isogenic c. elegans causes a disproportionate scaling between lifespan and health. Cell Syst, 3(4):333–345.e4, 2016. doi: 10.1016/j.cels.2016.09.003. URL https://doi.org/10.1016/ j.cels.2016.09.003. [3] A. V. Belikov. Age-related diseases as vicious cycles. Ageing Research Reviews, 49:11–26, 2019. doi: 10.1016/j.arr.2018.11. 002. URL https://www.sciencedirect.com/science/article/pii/ S1568163718300345?via%3Dihub. [4] C. Lopez-Otin, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. The hallmarks of aging. Cell, 153(6):1194–1217, 2013. doi: 10.1016/j.cell. 2013.05.039. URL https://doi.org/10.1016/j.cell.2013.05.039. [5] C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. Hallmarks of aging: An expanding universe. Cell, 186(2):243–278, 2023. doi: 10.1016/j.cell.2022.11.001. URL https://doi.org/10.1016/ j.cell.2022.11.001. [6] Z. Xie, K.A. Jay, D.L. Smith, Y. Zhang, Z. Liu, J. Zheng, and E.H. Blackburn. Early telomerase inactivation accelerates aging independently of telomere length. Cell, 160:928–939, 2015. doi: 10.1016/j.cell.2015.01. 005. URL https://doi.org/10.1016/j.cell.2015.02.002. [7] S. Alberti and A. A. Hyman. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease, and ageing. Nat Rev Mol Cell Biol, 22(3):196–213, 2021. doi: 10.1038/s41580-020-00326-6. URL https://www.nature.com/articles/s41580-020-00326-6. [8] S. Sil, S. Keegan, F. Ettefa, L. T. Denes, J. D. Boeke, and L. J. Holt. Condensation of line-1 is critical for retrotransposition. eLife, 12:e82991, 2023. doi: 10.7554/eLife.82991. URL https://elifesciences.org/articles/ 82991. [9] Brian M. Wasko and Matt Kaeberlein. Yeast replicative aging: a paradigm for defining conserved longevity interventions. FEMS Yeast Research, 14 (1):148–159, February 2014. doi: 10.1111/1567-1364.12104. URL https: //doi.org/10.1111/1567-1364.12104. Published: 01 February 2014. [10] D.A. Sinclair, K. Mills, and L. Guarente. Aging in Saccharomyces cerevisiae. Annual Review of Microbiology, 52:533–560, 1998. doi: 10. 1146/annurev.micro.52.1.533. URL https://www.annualreviews.org/ content/journals/10.1146/annurev.micro.52.1.533. [11] V.D. Longo et al. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab., 16:18–31, 2012. URL https://doi.org/10. 1016/j.cmet.2012.06.002. [12] P. Fabrizio and V. Longo. The chronological life span of Saccharomyces cerevisiae. Aging Cell, 2:73–81, 2003. URL https://doi.org/10.1046/ j.1474-9728.2003.00033.x. [13] V. Longo, E. Gralla, and J. Valentine. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. mitochondrial production of toxic oxygen species in vivo. J. Biol. Chem., 271:12275–12280, 1996. URL https://doi.org/10.1074/jbc.271.21. 12275. [14] R.K. Mortimer and J.R. Johnston. Life span of individual yeast cells. Nature, 183:1751–1752, 1959. URL https://www.nature.com/articles/ 1831751a0. [15] Kenneth L. Chen, Matthew M. Crane, and Matt Kaeberlein. Microfluidic technologies for yeast replicative lifespan studies. Mechanisms of Ageing and Development, 161:262–269, 2017. ISSN 0047-6374. doi: https:// doi.org/10.1016/j.mad.2016.03.009. URL https://www.sciencedirect. com/science/article/pii/S0047637416300306. SI:Yeast life and death. [16] Felix Richter, Saskia Bindschedler, Maryline Calonne-Salmon, Stéphane Declerck, Pilar Junier, and Claire E Stanley. Fungi-on-a-Chip: microfluidic platforms for single-cell studies on fungi. FEMS Microbiology Reviews, 46(6):fuac039, 08 2022. ISSN 0168-6445. doi: 10.1093/femsre/fuac039. URL https://doi.org/10.1093/femsre/fuac039. [17] Michael Polymenis and Brian K. Kennedy. Chronological and replicative lifespan in yeast: do they meet in the middle? Cell Cycle, 11(19):3531– 3532, October 1 2012. ISSN 1551-4005. doi: 10.4161/cc.22041. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478299/. Epub 2012 Sep 5. [18] Y. Zhang, C. Luo, K. Zou, Z. Xie, O. Brandman, and Q. Ouyang. Single cell analysis of yeast replicative aging using a new generation of microfluidic device. PLoS ONE, 7:e48275, 2012. doi: 10.1371/journal.pone. 0048275. URL https://doi.org/10.1371/journal.pone.0048275. [19] S. N. Mouton, D. J. Thaller, M. M. Crane, I. L. Rempel, O. T. Terpstra, A. Steen, and L. M. Veenhoff. A physicochemical perspective of aging from single-cell analysis of ph, macromolecular, and organellar crowding in yeast. eLife, 9:e54707, 2020. URL https://elifesciences.org/ articles/54707. [20] S. N. Mouton, A. J. Boersma, and L. M. Veenhoff. A physicochemical perspective on cellular ageing. Trends Biochem Sci, 48(11):949–962, 2023. doi: 10.1016/j.tibs.2023.08.007. URL https://www.sciencedirect.com/ science/article/pii/S0968000423002104?via%3Dihub. [21] A. Hughes and D. Gottschling. An early age increase in vacuolar ph limits mitochondrial function and lifespan in yeast. Nature, 492:261– 265, 2012. doi: 10.1038/nature11654. URL https://doi.org/10.1038/ nature11654. [22] R. John Ellis. A characteristic of the interiors of all cells is the high total concentration of macromolecules they contain. Trends in Biochemical Sciences, 26:597, 2001. ISSN 0968-0004. doi: 10.1016/S0968-0004(01) 01938-7. URL http://tibs.trends.com. University of Warwick, CV4 7AL. Email: jellis@bio.warwick.ac.uk. [23] K. Luby-Phelps. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. International Review of Cytology, 192:189–221, 2000. doi: 10.1016/s0074-7696(08)60527-6. URL https://doi.org/10.1016/s0074-7696(08)60527-6. [24] David S. Goodsell. Biosites: Cytoplasm. https://pdb101.rcsb.org/ sci-art/goodsell-gallery/biosites-cytoplasm, 2024. Accessed: 2024-05-01. [25] Germán Rivas and Allen P. Minton. Macromolecular crowding in vitro, in vivo, and in between. Trends in Biochemical Sciences, 41(11):970–981, November 2016. doi: 10.1016/j.tibs.2016.08.013. URL https://doi.org/ 10.1016/j.tibs.2016.08.013. Published: September 23, 2016. [26] M.M. Crane and M. Kaeberlein. The paths of mortality: how understanding the biology of aging can help explain systems behavior of single cells. Curr. Opin. Syst. Biol., 8:25–31, 2018. URL https://doi.org/10.1016% 2Fj.coisb.2017.11.010. [27] S.B. Zimmerman and S.O. Trach. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol., 222:599–620, 1991. URL https://doi.org/10.1016/ 0022-2836(91)90499-v. [28] J. Spitzer and B. Poolman. How crowded is the prokaryotic cytoplasm? FEBS Lett., 587:2094–2098, 2013. [29] J.B. Woodruff et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell, 169:1066–1077, 2017. [30] Arnold J Boersma, Inge S Zuhorn, and Bert Poolman. A sensor for quantification of macromolecular crowding in living cells. Nature Methods, 12: 227–229, 2015. doi: 10.1038/nmeth.3257. URL https://www.nature. com/articles/nmeth.3257. [31] Sandrine Morlot, Jia Song, Isabelle Léger-Silvestre, Audrey Matifas, Olivier Gadal, and Gilles Charvin. Excessive rdna transcription drives the disruption in nuclear homeostasis during entry into senescence in budding yeast. Cell Reports, 28:408–422, 2019. doi: 10.1016/j.celrep.2019.06.032. URL https://doi.org/10.1016/j.celrep.2019.06.032. [32] M. C. Munder, D. Midtvedt, T. Franzmann, E. Nüske, O. Otto, M. Herbig, and S. ... Alberti. A ph-driven transition of the cytoplasm from a fluidto a solid-like state promotes entry into dormancy. eLife, 5:e09347, 2016. [33] B. R. Parry, I. V. Surovtsev, M. T. Cabeen, C. S. O’Hern, E. R. Dufresne, and C. Jacobs-Wagner. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell, 156(1-2):183–194, 2013. doi: 10.1016/j.cell.2013.11.028. [34] M. Bonucci, T. Shu, and L. J. Holt. How it feels in a cell. Trends Cell Biol, 33(11):924–938, 2023. doi: 10.1016/j.tcb.2023.05.002. URL https: //doi.org/10.1016/j.tcb.2023.05.002. [35] E.D. Zanotto and J. Mauro. The glassy state of matter: Its definition and ultimate fate. Journal of Non-crystalline Solids, 459:30–57, 2017. doi: 10.1016/J.JNONCRYSOL.2017.05.019. URL https://doi.org/10. 1016/j.jnoncrysol.2017.05.019. [36] L. Berthier. Dynamic heterogeneity in amorphous materials. Materials Science, Physics, Ageing Research Reviews, 4:42, 2011. doi: 10.1103/ Physics.4.42. URL https://doi.org/10.1103/Physics.4.42. [37] M. Delarue, G. P. Brittingham, L. J. Holt, K. J. Kennedy, S. Pinglay, S. Pfeffer, and I. V. ... Surovtsev. mtorc1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell, 174(2):338–349.e20, 2018. doi: 10.1016/j.cell.2018.05. 042. URL https://www.sciencedirect.com/science/article/pii/ S0092867418306548?via%3Dihub. [38] Michael C Konopka, Irina A Shkel, Scott Cayley, M Thomas Record, and James C Weisshaar. Crowding and confinement effects on protein diffusion in vivo. Journal of Bacteriology, 188, 2006. doi: 10.1128/jb.01982-05. URL https://doi.org/10.1128/jb.01982-05. [39] M. A. McCormick, J. R. Delaney, M. Tsuchiya, S. Tsuchiyama, A. Shemorry, S. Sim, and B. K. ... Kennedy. A comprehensive analysis of replicative lifespan in 4,698 single-gene deletion strains uncovers conserved mechanisms of aging. Cell Metabolism, 22(5):895–906, 2015. doi: 10.1016/j.cmet.2015.09.008. URL https://www.sciencedirect. com/science/article/pii/S1550413115004659?via%3Dihub. [40] Craig Pickering, Dylan Hicks, and John Kiely. Why are masters sprinters slower than their younger counterparts? physiological, biomechanical, and motor control related implications for training program design. Journal of Aging and Physical Activity, 29:708–719, 2021. doi: https:// doi.org/10.1123/japa.2020-0302. URL https://doi.org/10.1123/japa. 2020-0302. First Published Online: 15 Jan 2021. [41] R. S. Balaban. How hot are single cells? The Journal of General Physiology, 152(8):e202012629, 2020. doi: 10.1085/jgp.202012629. URL https://doi.org/10.1085/jgp.202012629,. [42] P. Leuenberger et al. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science, 355:eaai7825, 2017. [43] C. Kenyon. The genetics of ageing. Nature, 464:504–512, 2010. doi: 10.1038/nature08980. [44] H. Qian, M.P. Sheetz, and E.L. Elson. Single particle tracking. analysis of diffusion and flow in two-dimensional systems. Biophysical Journal, 60(4):910–921, 1991. ISSN 0006-3495. doi: https://doi.org/10. 1016/S0006-3495(91)82125-7. URL https://www.sciencedirect.com/ science/article/pii/S0006349591821257. [45] Michael J. Saxton and Kenneth Jacobson. Single-particle tracking: applications to membrane dynamics. Annual Review of Biophysics and Biomolecular Structure, 26:373–399, 1997. doi: 10.1146/annurev.biophys. 26.1.373. URL https://doi.org/10.1146/annurev.biophys.26.1.373. [46] Lina Carlini, Gregory P. Brittingham, Liam J. Holt, and Tarun M. Kapoor. Microtubules enhance mesoscale effective diffusivity in the crowded metaphase cytoplasm. Developmental Cell, 54(5):574–582.E4, 2020. doi: 10.1016/j.devcel.2020.07.020. URL https://doi.org/10. 1016/j.devcel.2020.07.020. Published on August 19, 2020. [47] A. Einstein. Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physik, 17:549–560, 1905. doi: 10.1002/andp.19053220806. URL https://doi.org/10.1002/andp.19053220806. [48] S.C. Weber, M.A. Thompson, W.E. Moerner, A.J. Spakowitz, and J.A. Theriot. Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. Biophysical Journal, 102(11):2443–2450, 2012. doi: 10.1016/j.bpj. 2012.03.062. URL https://doi.org/10.1016/j.bpj.2012.03.062. [49] James A Dix and A S Verkman. Crowding effects on diffusion in solutions and cells. Annual Review of Biophysics, 37:247–263, 2008. doi: 10.1146/ annurev.biophys.37.032807.125824. [50] Stanislav Burov, S. M. Ali Tabei, Toan Huynh, et al. Distribution of directional change as a signature of complex dynamics. Proceedings of the National Academy of Sciences, 110(49):19689–19694, 2013. doi: 10.1073/ pnas.1319473110. URL https://doi.org/10.1073/pnas.1319473110. Contributed by Stuart A. Rice, October 18, 2013 (sent for review July 30, 2013). [51] H.E. Hurst. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116:770, 1951. doi: 10.1061/ TACEAT.0006518. URL https://doi.org/10.1061/TACEAT.0006518. [52] Robert Brown. The Miscellaneous Botanical Works of Robert Brown: Volume 1. R. Hardwicke, London, 1866. URL https://doi.org/10. 1017/CBO9781107775473. [53] Cindy M. Hernandez, David C. Duran-Chaparro, Trevor van Eeuwen, Michael P. Rout, and Liam J. Holt. Development and characterization of 50 nanometer diameter genetically encoded multimeric nanoparticles. BioRxiv, July 2024. doi: 10.1101/2024.07.05.602291. URL https://doi. org/10.1101/2024.07.05.602291. bioRxiv preprint, available under a CC-BY 4.0 International license. [54] Grace A. McLaughlin, Erin M. Langdon, John M. Crutchley, Liam J. Holt, M. Gregory Forest, Jay M. Newby, and Amy S. Gladfelter. Spatial heterogeneity of the cytosol revealed by machine learning-based 3d particle tracking. Molecular Biology of the Cell, 31(14), 2020. doi: 10.1091/mbc. E20-03-0210. URL https://doi.org/10.1091/mbc.E20-03-0210. [55] Begoña Monterroso, William Margolin, Arnold J. Boersma, Germán Rivas, Bert Poolman, and Silvia Zorrilla. Macromolecular crowding, phase separation, and homeostasis in the orchestration of bacterial cellular functions. Chemical Reviews, 124(4):1899–1949, 2024. doi: 10.1021/ acs.chemrev.3c00622. URL https://doi.org/10.1021/acs.chemrev. 3c00622. [56] Ohad Medalia, I Weber, AS Frangakis, D Nicastro, G Gerisch, and W Baumeister. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science, 298(5596):1209–1213, 2002. doi: 10.1126/science.1076184. URL http://dx.doi.org/10.1126/science. 1076184. [57] Ken A Dill, Kingshuk Ghosh, and Jeremy D Schmit. Physical limits of cells and proteomes. Proceedings of the National Academy of Sciences, 108(44):17876–17882, 2011. doi: 10.1073/pnas.1114477108. [58] Luciano Brocchieri and Samuel Karlin. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Research, 33(10):3390–3400, 2005. doi: 10.1093/nar/gki615. URL https://academic.oup.com/nar/ article/33/10/3390/1009070. [59] Jianzhi Zhang. Protein-length distributions for the three domains of life. Trends in Genetics, 16(3):107–109, 2000. doi: 10.1016/s0168-9525(99) 01922-8. URL http://dx.doi.org/10.1016/s0168-9525(99)01922-8. [60] Kim Henrick and Janet M Thornton. Pqs: a protein quaternary structure file server. Trends in Biochemical Sciences, 23(9):358–361, 1998. doi: 10.1016/s0968-0004(98)01253-5. URL http://dx.doi.org/ 10.1016/s0968-0004(98)01253-5. [61] Martin Wühr, Timo Güttler, Leonid Peshkin, Graeme C McAlister, Matthew Sonnett, Kazuhiro Ishihara, Aaron C Groen, Max Presler, Brent K Erickson, Timothy J Mitchison, et al. The nuclear proteome of a vertebrate. Current Biology, 25(20):2663–2671, 2015. doi: 10.1016/j.cub. 2015.08.047. URL http://dx.doi.org/10.1016/j.cub.2015.08.047. [62] Florian C Keber, Thomas Nguyen, Clifford P Brangwynne, and Martin Wühr. Evidence for widespread cytoplasmic structuring into mesoscopic condensates. bioRxiv, page 2021.12.17.473234, 2021. URL https://www. biorxiv.org/content/10.1101/2021.12.17.473234v1. [63] Thomas G Mason and David A Weitz. Optical measurements of frequencydependent linear viscoelastic moduli of complex fluids. Physical Review Letters, 74(7):1250–1253, 1995. doi: 10.1103/PhysRevLett.74.1250. URL http://dx.doi.org/10.1103/PhysRevLett.74.1250. [64] Tong Shu, Tamás Szórádi, Gururaj R. Kidiyoor, Ying Xie, Nora L. Herzog, Andrew Bazley, Martina Bonucci, Sarah Keegan, Shivanjali Saxena, Farida Ettefa, Gregory Brittingham, Joël Lemiere, David Fenyö, Fred Chang, Morgan Delarue, and Liam J. Holt. nucgems probe the biophysical properties of the nucleoplasm. bioRxiv, 2021. doi: 10.1101/2021.11. 18.469159. URL https://doi.org/10.1101/2021.11.18.469159. [65] Jérémy Lemière, Pablo Real-Calderon, Laura J Holt, Thomas G Fai, and Fred Chang. Control of nuclear size by osmotic forces in schizosaccharomyces pombe. Elife, 11, 2022. doi: 10.7554/eLife.76075. URL http://dx.doi.org/10.7554/eLife.76075. [66] Tobias W Giessen, Benjamin J Orlando, Andrew A Verdegaal, Melissa G Chambers, Jules Gardener, David C Bell, Gabriel Birrane, Maofu Liao, and Pamela A Silver. Large protein organelles form a new iron sequestration system with high storage capacity. eLife, 8:e46070, 2019. doi: https://doi.org/. [67] Edward T Baldwin, Thijs van Eeuwen, David Hoyos, Anna Zalevsky, Evguenia P Tchesnokov, Reinaldo Sánchez, Benjamin D Miller, Laura H Di Stefano, F Xavier Ruiz, Matthew Hancock, et al. Structures, functions, and adaptations of the human line-1 orf2 protein. Nature, pages 1–3, Dec 2023. doi: 10.1038/s41586-023-06947-z. URL https://www.nature.com/ articles/s41586-023-06947-z. [68] Christopher W Akey, Dharmendra Singh, Christopher Ouch, Isabel Echeverria, Ilia Nudelman, Jeffrey M Varberg, Zhi Yu, Fang Fang, Yan Shi, Jiaxuan Wang, et al. Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell, Dec 2021. doi: 10.1016/j.cell. 2021.12.015. URL http://dx.doi.org/10.1016/j.cell.2021.12.015. [69] Nicolas Chenouard, Ihor Smal, Fabrice de Chaumont, Martin Maška, Ivo F. Sbalzarini, Yuwen Gong, Julien Cardinale, Chloe Carthel, Stefano Coraluppi, Michael Winter, Assaf R. Cohen, William J. Godinez, Karl Rohr, Yannis Kalaidzidis, Liya Liang, James Duncan, Hao Shen, Yushi Xu, Kristoffer E. G. Magnusson, Joakim Jaldén, Helen M. Blau, Perrine Paul-Gilloteaux, Pierre Roudot, Charles Kervrann, Frédéric Waharte, Jean-Yves Tinevez, Spencer L. Shorte, Johannes Willemse, Kees Celler, Gilles P. van Wezel, Hangwei Dan, Yung-Sheng Tsai, Carlos Ortiz de Solórzano, Jean-Christophe Olivo-Marin, and Erik Meijering. Objective comparison of particle tracking methods. Nature Methods, 11(3): 281–289, March 2014. URL http://dx.doi.org/10.1038/nmeth.2808. [70] S. Keegan, L. J. Holt, and D. Fenyö. Gemspa: a napari plugin for analysis of single particle tracking data. bioRxiv, 2023. doi: 10.1101/2023.06.26. 546612. [71] J. Surre, C. Saint-Ruf, V. Collin, et al. Strong increase in the autofluorescence of cells signals struggle for survival. Scientific Reports, 8(1):12088, 2018. doi: 10.1038/s41598-018-30623-2. URL https://www.nature.com/ articles/s41598-018-30623-2. [72] C. Stringer, T. Wang, M. Michaelos, and et al. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods, 18(1):100–106, 2021. doi: 10.1038/s41592-020-01018-x. URL https://www.nature.com/ articles/s41592-020-01018-x. [73] G. E. Neurohr, R. L. Terry, J. Lengefeld, M. Bonney, G. P. Brittingham, F. Moretto, and S. G. ... Manalis. Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell, 176(5):1083– 1097.e18, 2019. doi: 10.1016/j.cell.2019.01.033. URL https://10.0.3. 248/j.cell.2019.01.018. [74] S. Fehrmann, G. Charvin, Y. Goulev, H. Aguilaniu, and C. Paoletti. Aging yeast cells undergo a sharp entry into senescence unrelated to the loss of mitochondrial membrane potential. Cell Rep, 5(6):1589–1599, 2013. doi: 10.1016/j.celrep.2013.11.013. URL https://doi.org/10.1016/j. celrep.2013.11.013. [75] S. S. Lee, I. Avalos Vizcarra, D. H. Huberts, M. Heinemann, and L. P. Lee. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc. Natl. Acad. Sci. USA, 109:4916– 4920, 2012. URL https://doi.org/10.1073/pnas.1113505109. [76] D. C. Duran, I. M. Acosta, R. Acevedo, D. A. Forero, C. A. Hernández, J. M. Pedraza, and E. Suesca. Slipstreaming mother machine: A microfluidic device for single-cell dynamic imaging of yeast. Micromachines (Basel), 12(1):4, 2020. doi: 10.3390/mi12010004. URL https: //www.mdpi.com/2072-666X/12/1/4. [77] G. S. Davidson, C. P. Allen, R. M. Joe, O. Meirelles, S. Roy, M. R. Wilson, and M. ... Werner-Washburne. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures. Mol Biol Cell, 22(7):988–998, 2011. doi: 10.1091/mbc.E10-06-0499. URL https://doi.org/10.1091/mbc.e10-06-0499. [78] D. Laporte, L. Gouleme, L. Jimenez, and I. Sagot. Yeast quiescence exit swiftness is influenced by cell volume and chronological age. Microb Cell, 5(2):104–111, 2017. doi: 10.15698/mic2018.02.615. URL https://doi. org/10.15698%2Fmic2018.02.615. [79] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25):2340–2361, 1977. doi: 10.1021/j100540a008. URL https://doi.org/10.1021/j100540a008. [80] P. O. J. Scherer. Computational Physics. Springer, Heidelberg, Germany, 2 edition, 2013. [81] O. Marescal and I. M. Cheeseman. Cellular mechanisms and regulation of quiescence. Developmental Cell, 55(3):259–271, 2020. doi: 10.1016/ j.devcel.2020.09.029. URL https://doi.org/10.1016/j.devcel.2020. 09.029. [82] M.Y. Terzi, M. Izmirli, and B. Gogebakan. The cell fate: senescence or quiescence. Mol Biol Rep, 43:1213–1220, 2016. doi: 10. 1007/s11033-016-4065-0. URL https://link.springer.com/article/ 10.1007/s11033-016-4065-0. [83] L Hayflick and PS Moorhead. The serial cultivation of human diploid cell strains. Experimental Cell Research, 25(3):585–621, 1961. ISSN 0014-4827. doi: 10.1016/0014-4827(61)90192-6. URL https://www.sciencedirect. com/science/article/pii/0014482761901926. [84] M. Kaeberlein, 3rd Powers, R. W., K. Steffen, E. Westman, D. Hu, E. O. Kerr, N. Dang, K. T. Kirkland, S. Fields, and B. K. Kennedy. Regulation of yeast replicative life span by tor and sch9 in response to nutrients. Science, 310:1193–1196, 2005. URL https://www.science.org/doi/10. 1126/science.1115535. [85] K. Steinkraus and M.K. Kaeberlein. Replicative aging in yeast: The means to the end. Annu. Rev. Cell Dev. Biol., 24:29–54, 2008. URL https://www.annualreviews.org/content/journals/10. 1146/annurev.cellbio.23.090506.123509. [86] S.C. Mei and C. Brenner. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous. PLoS Biol, 13, 2015. URL https://doi.org/10.1371/journal.pbio.1002048. [87] D. H. Huberts, J. Gonzalez, M. Heinemann, G. Hubmann, S. S. Lee, A. Litsios, and E. C. Wit. Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 111:11727–11731, 2014. URL https://doi.org/10. 1073/pnas.1410024111. [88] F. Meitinger, A. Khmelinskii, S. Morlot, B. Kurtulmus, S. Palani, A. Andres-Pons, and G. ... Pereira. A memory system of negative polarity cues prevents replicative aging. Cell, 159:1056–1069, 2014. URL https://pubmed.ncbi.nlm.nih.gov/25416945/. [89] I. Müller, M. Zimmermann, D. Becker, and M. Flömer. Calendar life span versus budding life span of Saccharomyces cerevisiae. Mech. Ageing Dev., 12:47–52, 1980. URL https://doi.org/10.1016/0047-6374(80) 90028-7. [90] Z. Xie, Y. Zhang, K. Zou, O. Brandman, Q. Ouyang, and H. Li. Molecular phenotyping of aging in single yeast cells using a novel microfluidic device. Aging Cell, 11:599–606, 2012. doi: 10.1111/j.1474-9726.2012.00821.x. URL https://onlinelibrary.wiley.com/doi/10.1111/j.1474-9726. 2012.00821.x. [91] J. Ryley and O. Pereira-Smith. Microfluidics device for single cell gene expression analysis in Saccharomyces cerevisiae. Yeast, 23:1065–1073, 2006. URL https://doi.org/10.1002/yea.1412. [92] P. Liu, M. Acar, and T. Z. Young. Yeast replicator: A high-throughput multiplexed microfluidics platform for automated measurements of singlecell aging. Cell Reports, 13(3):634–644, 2015. doi: 10.1016/j.celrep.2015. 09.012. URL https://doi.org/10.1016/j.celrep.2015.09.012. [93] M. Jin, P. Bittihn, N. Hao, Y. Li, R. O’Laughlin, L. Pillus, L. S. Tsimring, and ... Divergent aging of isogenic yeast cells revealed through singlecell phenotypic dynamics. Cell Systems, 8(3):242–253.e3, 2019. doi: 10. 1016/j.cels.2019.02.002. URL https://doi.org/10.1016/j.cels.2019. 02.002. [94] M. C. Jo, W. Dang, L. Gu, W. Liu, and L. Qin. High-throughput analysis of yeast replicative aging using a microfluidic system. Proc. Natl. Acad. Sci. USA, 112:9364–9369, 2015. URL https://doi.org/10.1073/pnas. 1510328112. [95] Paul Lee, Neal C. Helman, Wendell A. Lim, and Pei-Jung Hung. A microfluidic system for dynamic yeast cell imaging. BioTechniques, 44:91– 95, 2008. doi: 10.2144/000112812. URL https://doi.org/10.2144/ 000112673. [96] M M Crane, I B Clark, E Bakker, S Smith, and P S Swain. A microfluidic system for studying ageing and dynamic single-cell responses in budding yeast. PLoS One, 9:e100042, June 2014. doi: 10.1371/journal.pone. 0100042. URL https://doi.org/10.1371/journal.pone.0100042. [97] Yang Li, Meng Jin, Richard O’Laughlin, et al. Multigenerational silencing dynamics control cell aging. Proceedings of the National Academy of Sciences of the United States of America, 114(42):11253–11258, 2017. doi: 10.1073/pnas.1703379114. URL https://doi.org/10.1073/pnas. 1703379114. [98] Morgan Delarue, Grzegorz Poterewicz, Olcay Hoxha, Jennifer Choi, Woojin Yoo, Jesse Kauser, Liam Holt, and Oskar Hallatschek. Scwish network is essential for survival under mechanical pressure. Proc. Natl. Acad. Sci. USA, 114:13465–13470, 2017. doi: 10.1073/pnas.1713994114. URL https://doi.org/10.1073/pnas.1711204114. [99] Burak Okumus, David Landgraf, Geetartha C. Lai, Shalin Bakshi, Juan Carlos Arias-Castro, Semih Yildiz, Daan Huh, Rafael Fernandez- Lopez, Collin N. Peterson, Erkan Toprak, et al. Mechanical slowing-down of cytoplasmic diffusion allows in vivo counting of proteins in individual cells. Nat. Commun., 7:11641, 2016. doi: 10.1038/ncomms11641. [100] Burak Okumus, J. Charles, C.J. Baker, Juan Carlos Arias-Castro, Geetartha C. Lai, E. Leoncini, Shalin Bakshi, S. Luro, David Landgraf, and Johan Paulsson. Microfluidics-assisted cell screening (macs): An automated platform for single-cell microscopy of suspension cultures. Nat Protoc, 13:170–194, 2018. doi: 10.1038/s41596-017-0026-5. [101] E. S. Alexander, Z. Zhang, R. T. Colin, Kennith E. M., and Anton P. J. M. The mechanical properties of saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 97:9871–9874, 2000. doi: 10.1073/pnas.97.18.9871. URL https://doi.org/10.1073/pnas.97.18.9871. [102] Liam J. Holt, O Hallatschek, and Morgan Delarue. Mechano-chemostats to study the effects of compressive stress on yeast, volume 147 of Methods in Cell Biology, pages 215–231. Elsevier, 2018. ISBN 978-0-12-814282-0. doi: 10.1016/bs.mcb.2018.06.010. URL https://doi.org/10.1016/bs. mcb.2018.06.010. [103] S. Leupold, G. Hubmann, A. Litsios, A. C. Meinema, A. Papagiannakis, V. Takhaveev, and M. Heinemann. Saccharomyces cerevisiae goes through distinct metabolic phases during its replicative lifespan. Elife, 8, 2019. [104] Ivo F Sbalzarini and Petros Koumoutsakos. Feature point tracking and trajectory analysis for video imaging in cell biology. Journal of Structural Biology, 151(2):182–195, 2005. doi: 10.1016/j.jsb.2005.06.002. [105] R. Kubo, N. Hashitsume, and M. Toda. Statistical Physics II: Nonequilibrium Statistical Mechanics, volume 31 of Springer Series in Solid-State Sciences. Springer, 1991. [106] Elliott W. Montroll and George H. Weiss. Random walks on lattices. ii. Journal of Mathematical Physics, 6(2):167, 1965. doi: 10.1063/1.1704269. [107] Benoit B. Mandelbrot and John W. Van Ness. Fractional brownian motions, fractional noises and applications. SIAM Journal on Applied Mathematics, 10(4), October 1968. [108] David G. Kleinbaum and Mitchel Klein. Survival Analysis: A Self- Learning Text. Statistics for Biology and Health. Springer, New York, NY, USA, 3 edition, 2012. URL https://link.springer.com/chapter/ 10.1007/978-1-4419-6646-9_1. [109] Alexei V. Chechkin, Ralf Metzler, Joseph Klafter, and Vsevolod Yu. Gonchar. Introduction to the theory of lévy flights. In Anomalous Transport, pages 129–162. Wiley-VCH, 2008. ISBN 9783527622979. doi: 10.1002/ 9783527622979. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
228 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ciencias - Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/144338a8-3393-47a8-af28-44ada8767394/download https://repositorio.uniandes.edu.co/bitstreams/521fcd14-cadb-4b48-9a61-8b738e1fe80f/download https://repositorio.uniandes.edu.co/bitstreams/9f29df1f-978d-4545-9173-b8e21217cf0d/download https://repositorio.uniandes.edu.co/bitstreams/47d863a0-e038-403a-a281-5089e21d6fd7/download https://repositorio.uniandes.edu.co/bitstreams/bbef3633-d2f1-4c0a-96a6-33c63bbcd533/download https://repositorio.uniandes.edu.co/bitstreams/1ca7b06a-6b8e-4916-b8d3-752787080790/download https://repositorio.uniandes.edu.co/bitstreams/c8f3c2d9-40c5-4505-8960-faf8d4a1bc1f/download https://repositorio.uniandes.edu.co/bitstreams/8d0f1658-7b32-4258-8973-66f9ce2d4f4f/download |
bitstream.checksum.fl_str_mv |
8277c0282fa27cdb62ee0f459e9a32bd 00ae3297ded9d4b192c39b3d03d34bc3 24013099e9e6abb1575dc6ce0855efd5 ae9e573a68e7f92501b6913cc846c39f bf4dd3aba3d7caf336238dcbe602b0ee c26bfb2327eb743f9ecfa836f72add07 cda6a018ac25f793e605737129d24876 aeae14cdfdaca985a72896b547412091 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1828159142983892992 |
spelling |
Pedraza Leal, Juan Manuelvirtual::22891-1Durán Chaparro, David CamiloLeidy, ChadVeenhoff, Liesbeth M.Holt, Liam J.Facultad de Ciencias2025-01-30T19:53:52Z2025-01-30T19:53:52Z2025-01-29https://hdl.handle.net/1992/75865instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Age-related diseases are among the leading causes of mortality, with conditions like cardiovascular diseases, cancer, and diabetes escalating exponentially with age. Delaying aging may have a bigger payoff than tackling individual diseases.To achieve this goal, a deeper understanding of aging at the cellular level is crucial. While several hallmarks of aging have been identified, there is still an absence of a Unified Theory of Aging. Many of these hallmarks appear to be interconnected through physical phenomena like phase separation. Physical Properties hold promise as a unifying framework, potentially offering avenues for rejuvenating cells through physical interventions. Macromolecular crowding emerges as a key aspect in this context, intimately linked with phase separation. While its effects have been observed at nanometer and organelle scales, understanding crowding at the mesoscale (10-100 nm) remains elusive. Our study delves into this mesoscale crowding using Genetically Encoded Multimeric Nanoparticles (GEMs), revealing how changes in cytoplasmic physical properties correlate with different cellular states during the aging process. Our research sheds light on the intricate relationship between macromolecular crowding, phase separation, and cellular aging, offering insights that could pave the way for novel therapeutic interventions. Additionally, we highlight potential biases in traditional single-cell aging studies due to cell trapping pressures. To address this, we developed a microfluidic device that makes use of the Slipstreaming Effect to trap single cells in a low-pressure environment, providing a more accurate representation of cellular aging. This study aims to contribute valuable insights into the aging process, ultimately striving to enhance the quality of life for individuals.Universidad de los AndesNYU Langone HealthDoctorado228 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2The physical properties of the cytoplasm change during aging in s. cerevisiaeTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDAgingMacromolecular crowdingMicrofluidicsYeastDiffusionSaccharomyces cerevisiaeSlipstreamingReplicative AgingChronological AgingGenetically Encoded Multimeric Nanoparticles (GEMs)Physical Properties of the CellPhysics of AgingFísicaBiologíaIngeniería[1] B. Gompertz. On the nature of the function expressive of the law ofhuman mortality, and on a new mode of determining the value of lifecontingencies. Philosophical Transactions of the Royal Society, 115:513–585, 1825. ISSN 0261-0523. doi: 10.1098/rstl.1825.0026. URL https://doi.org/10.1098/rstl.1825.0026.[2] W.B. Zhang, D.B. Sinha, W.E. Pittman, E. Hvatum, N. Stroustrup, andZ. Pincus. Extended twilight among isogenic c. elegans causes a disproportionatescaling between lifespan and health. Cell Syst, 3(4):333–345.e4,2016. doi: 10.1016/j.cels.2016.09.003. URL https://doi.org/10.1016/j.cels.2016.09.003.[3] A. V. Belikov. Age-related diseases as vicious cycles. AgeingResearch Reviews, 49:11–26, 2019. doi: 10.1016/j.arr.2018.11.002. URL https://www.sciencedirect.com/science/article/pii/S1568163718300345?via%3Dihub.[4] C. Lopez-Otin, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer.The hallmarks of aging. Cell, 153(6):1194–1217, 2013. doi: 10.1016/j.cell.2013.05.039. URL https://doi.org/10.1016/j.cell.2013.05.039.[5] C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer.Hallmarks of aging: An expanding universe. Cell, 186(2):243–278,2023. doi: 10.1016/j.cell.2022.11.001. URL https://doi.org/10.1016/j.cell.2022.11.001.[6] Z. Xie, K.A. Jay, D.L. Smith, Y. Zhang, Z. Liu, J. Zheng, and E.H.Blackburn. Early telomerase inactivation accelerates aging independentlyof telomere length. Cell, 160:928–939, 2015. doi: 10.1016/j.cell.2015.01.005. URL https://doi.org/10.1016/j.cell.2015.02.002.[7] S. Alberti and A. A. Hyman. Biomolecular condensates at the nexusof cellular stress, protein aggregation disease, and ageing. Nat Rev MolCell Biol, 22(3):196–213, 2021. doi: 10.1038/s41580-020-00326-6. URLhttps://www.nature.com/articles/s41580-020-00326-6.[8] S. Sil, S. Keegan, F. Ettefa, L. T. Denes, J. D. Boeke, and L. J. Holt. Condensationof line-1 is critical for retrotransposition. eLife, 12:e82991, 2023.doi: 10.7554/eLife.82991. URL https://elifesciences.org/articles/82991.[9] Brian M. Wasko and Matt Kaeberlein. Yeast replicative aging: a paradigmfor defining conserved longevity interventions. FEMS Yeast Research, 14(1):148–159, February 2014. doi: 10.1111/1567-1364.12104. URL https://doi.org/10.1111/1567-1364.12104. Published: 01 February 2014.[10] D.A. Sinclair, K. Mills, and L. Guarente. Aging in Saccharomyces cerevisiae.Annual Review of Microbiology, 52:533–560, 1998. doi: 10.1146/annurev.micro.52.1.533. URL https://www.annualreviews.org/content/journals/10.1146/annurev.micro.52.1.533.[11] V.D. Longo et al. Replicative and chronological aging in Saccharomycescerevisiae. Cell Metab., 16:18–31, 2012. URL https://doi.org/10.1016/j.cmet.2012.06.002.[12] P. Fabrizio and V. Longo. The chronological life span of Saccharomycescerevisiae. Aging Cell, 2:73–81, 2003. URL https://doi.org/10.1046/j.1474-9728.2003.00033.x.[13] V. Longo, E. Gralla, and J. Valentine. Superoxide dismutase activity isessential for stationary phase survival in Saccharomyces cerevisiae. mitochondrialproduction of toxic oxygen species in vivo. J. Biol. Chem.,271:12275–12280, 1996. URL https://doi.org/10.1074/jbc.271.21.12275.[14] R.K. Mortimer and J.R. Johnston. Life span of individual yeast cells. Nature,183:1751–1752, 1959. URL https://www.nature.com/articles/1831751a0.[15] Kenneth L. Chen, Matthew M. Crane, and Matt Kaeberlein. Microfluidictechnologies for yeast replicative lifespan studies. Mechanisms of Ageingand Development, 161:262–269, 2017. ISSN 0047-6374. doi: https://doi.org/10.1016/j.mad.2016.03.009. URL https://www.sciencedirect.com/science/article/pii/S0047637416300306. SI:Yeast life anddeath.[16] Felix Richter, Saskia Bindschedler, Maryline Calonne-Salmon, StéphaneDeclerck, Pilar Junier, and Claire E Stanley. Fungi-on-a-Chip: microfluidicplatforms for single-cell studies on fungi. FEMS Microbiology Reviews,46(6):fuac039, 08 2022. ISSN 0168-6445. doi: 10.1093/femsre/fuac039.URL https://doi.org/10.1093/femsre/fuac039.[17] Michael Polymenis and Brian K. Kennedy. Chronological and replicativelifespan in yeast: do they meet in the middle? Cell Cycle, 11(19):3531–3532, October 1 2012. ISSN 1551-4005. doi: 10.4161/cc.22041. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478299/. Epub2012 Sep 5.[18] Y. Zhang, C. Luo, K. Zou, Z. Xie, O. Brandman, and Q. Ouyang. Singlecell analysis of yeast replicative aging using a new generation of microfluidicdevice. PLoS ONE, 7:e48275, 2012. doi: 10.1371/journal.pone.0048275. URL https://doi.org/10.1371/journal.pone.0048275.[19] S. N. Mouton, D. J. Thaller, M. M. Crane, I. L. Rempel, O. T. Terpstra,A. Steen, and L. M. Veenhoff. A physicochemical perspective of agingfrom single-cell analysis of ph, macromolecular, and organellar crowdingin yeast. eLife, 9:e54707, 2020. URL https://elifesciences.org/articles/54707.[20] S. N. Mouton, A. J. Boersma, and L. M. Veenhoff. A physicochemicalperspective on cellular ageing. Trends Biochem Sci, 48(11):949–962, 2023.doi: 10.1016/j.tibs.2023.08.007. URL https://www.sciencedirect.com/science/article/pii/S0968000423002104?via%3Dihub.[21] A. Hughes and D. Gottschling. An early age increase in vacuolar phlimits mitochondrial function and lifespan in yeast. Nature, 492:261–265, 2012. doi: 10.1038/nature11654. URL https://doi.org/10.1038/nature11654.[22] R. John Ellis. A characteristic of the interiors of all cells is the high totalconcentration of macromolecules they contain. Trends in BiochemicalSciences, 26:597, 2001. ISSN 0968-0004. doi: 10.1016/S0968-0004(01)01938-7. URL http://tibs.trends.com. University of Warwick, CV47AL. Email: jellis@bio.warwick.ac.uk.[23] K. Luby-Phelps. Cytoarchitecture and physical properties of cytoplasm:volume, viscosity, diffusion, intracellular surface area. International Reviewof Cytology, 192:189–221, 2000. doi: 10.1016/s0074-7696(08)60527-6.URL https://doi.org/10.1016/s0074-7696(08)60527-6.[24] David S. Goodsell. Biosites: Cytoplasm. https://pdb101.rcsb.org/sci-art/goodsell-gallery/biosites-cytoplasm, 2024. Accessed:2024-05-01.[25] Germán Rivas and Allen P. Minton. Macromolecular crowding in vitro,in vivo, and in between. Trends in Biochemical Sciences, 41(11):970–981,November 2016. doi: 10.1016/j.tibs.2016.08.013. URL https://doi.org/10.1016/j.tibs.2016.08.013. Published: September 23, 2016.[26] M.M. Crane and M. Kaeberlein. The paths of mortality: how understandingthe biology of aging can help explain systems behavior of single cells.Curr. Opin. Syst. Biol., 8:25–31, 2018. URL https://doi.org/10.1016%2Fj.coisb.2017.11.010.[27] S.B. Zimmerman and S.O. Trach. Estimation of macromolecule concentrationsand excluded volume effects for the cytoplasm of Escherichiacoli. J. Mol. Biol., 222:599–620, 1991. URL https://doi.org/10.1016/0022-2836(91)90499-v.[28] J. Spitzer and B. Poolman. How crowded is the prokaryotic cytoplasm?FEBS Lett., 587:2094–2098, 2013.[29] J.B. Woodruff et al. The centrosome is a selective condensate that nucleatesmicrotubules by concentrating tubulin. Cell, 169:1066–1077, 2017.[30] Arnold J Boersma, Inge S Zuhorn, and Bert Poolman. A sensor for quantificationof macromolecular crowding in living cells. Nature Methods, 12:227–229, 2015. doi: 10.1038/nmeth.3257. URL https://www.nature.com/articles/nmeth.3257.[31] Sandrine Morlot, Jia Song, Isabelle Léger-Silvestre, Audrey Matifas,Olivier Gadal, and Gilles Charvin. Excessive rdna transcription drives thedisruption in nuclear homeostasis during entry into senescence in buddingyeast. Cell Reports, 28:408–422, 2019. doi: 10.1016/j.celrep.2019.06.032.URL https://doi.org/10.1016/j.celrep.2019.06.032.[32] M. C. Munder, D. Midtvedt, T. Franzmann, E. Nüske, O. Otto, M. Herbig,and S. ... Alberti. A ph-driven transition of the cytoplasm from a fluidtoa solid-like state promotes entry into dormancy. eLife, 5:e09347, 2016.[33] B. R. Parry, I. V. Surovtsev, M. T. Cabeen, C. S. O’Hern, E. R. Dufresne,and C. Jacobs-Wagner. The bacterial cytoplasm has glass-like propertiesand is fluidized by metabolic activity. Cell, 156(1-2):183–194, 2013. doi:10.1016/j.cell.2013.11.028.[34] M. Bonucci, T. Shu, and L. J. Holt. How it feels in a cell. Trends CellBiol, 33(11):924–938, 2023. doi: 10.1016/j.tcb.2023.05.002. URL https://doi.org/10.1016/j.tcb.2023.05.002.[35] E.D. Zanotto and J. Mauro. The glassy state of matter: Its definitionand ultimate fate. Journal of Non-crystalline Solids, 459:30–57, 2017.doi: 10.1016/J.JNONCRYSOL.2017.05.019. URL https://doi.org/10.1016/j.jnoncrysol.2017.05.019.[36] L. Berthier. Dynamic heterogeneity in amorphous materials. MaterialsScience, Physics, Ageing Research Reviews, 4:42, 2011. doi: 10.1103/Physics.4.42. URL https://doi.org/10.1103/Physics.4.42.[37] M. Delarue, G. P. Brittingham, L. J. Holt, K. J. Kennedy, S. Pinglay,S. Pfeffer, and I. V. ... Surovtsev. mtorc1 controls phase separationand the biophysical properties of the cytoplasm by tuning crowding.Cell, 174(2):338–349.e20, 2018. doi: 10.1016/j.cell.2018.05.042. URL https://www.sciencedirect.com/science/article/pii/S0092867418306548?via%3Dihub.[38] Michael C Konopka, Irina A Shkel, Scott Cayley, M Thomas Record, andJames C Weisshaar. Crowding and confinement effects on protein diffusionin vivo. Journal of Bacteriology, 188, 2006. doi: 10.1128/jb.01982-05. URLhttps://doi.org/10.1128/jb.01982-05.[39] M. A. McCormick, J. R. Delaney, M. Tsuchiya, S. Tsuchiyama, A. Shemorry,S. Sim, and B. K. ... Kennedy. A comprehensive analysis ofreplicative lifespan in 4,698 single-gene deletion strains uncovers conservedmechanisms of aging. Cell Metabolism, 22(5):895–906, 2015.doi: 10.1016/j.cmet.2015.09.008. URL https://www.sciencedirect.com/science/article/pii/S1550413115004659?via%3Dihub.[40] Craig Pickering, Dylan Hicks, and John Kiely. Why are masters sprintersslower than their younger counterparts? physiological, biomechanical,and motor control related implications for training program design.Journal of Aging and Physical Activity, 29:708–719, 2021. doi: https://doi.org/10.1123/japa.2020-0302. URL https://doi.org/10.1123/japa.2020-0302. First Published Online: 15 Jan 2021.[41] R. S. Balaban. How hot are single cells? The Journal of GeneralPhysiology, 152(8):e202012629, 2020. doi: 10.1085/jgp.202012629. URLhttps://doi.org/10.1085/jgp.202012629,.[42] P. Leuenberger et al. Cell-wide analysis of protein thermal unfolding revealsdeterminants of thermostability. Science, 355:eaai7825, 2017.[43] C. Kenyon. The genetics of ageing. Nature, 464:504–512, 2010. doi:10.1038/nature08980.[44] H. Qian, M.P. Sheetz, and E.L. Elson. Single particle tracking. analysisof diffusion and flow in two-dimensional systems. Biophysical Journal,60(4):910–921, 1991. ISSN 0006-3495. doi: https://doi.org/10.1016/S0006-3495(91)82125-7. URL https://www.sciencedirect.com/science/article/pii/S0006349591821257.[45] Michael J. Saxton and Kenneth Jacobson. Single-particle tracking: applicationsto membrane dynamics. Annual Review of Biophysics andBiomolecular Structure, 26:373–399, 1997. doi: 10.1146/annurev.biophys.26.1.373. URL https://doi.org/10.1146/annurev.biophys.26.1.373.[46] Lina Carlini, Gregory P. Brittingham, Liam J. Holt, and Tarun M.Kapoor. Microtubules enhance mesoscale effective diffusivity in thecrowded metaphase cytoplasm. Developmental Cell, 54(5):574–582.E4,2020. doi: 10.1016/j.devcel.2020.07.020. URL https://doi.org/10.1016/j.devcel.2020.07.020. Published on August 19, 2020.[47] A. Einstein. Über die von der molekularkinetischen theorie der wärmegeforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen.Annalen der Physik, 17:549–560, 1905. doi: 10.1002/andp.19053220806.URL https://doi.org/10.1002/andp.19053220806.[48] S.C. Weber, M.A. Thompson, W.E. Moerner, A.J. Spakowitz, and J.A.Theriot. Analytical tools to distinguish the effects of localization error,confinement, and medium elasticity on the velocity autocorrelation function.Biophysical Journal, 102(11):2443–2450, 2012. doi: 10.1016/j.bpj.2012.03.062. URL https://doi.org/10.1016/j.bpj.2012.03.062.[49] James A Dix and A S Verkman. Crowding effects on diffusion in solutionsand cells. Annual Review of Biophysics, 37:247–263, 2008. doi: 10.1146/annurev.biophys.37.032807.125824.[50] Stanislav Burov, S. M. Ali Tabei, Toan Huynh, et al. Distribution of directionalchange as a signature of complex dynamics. Proceedings of theNational Academy of Sciences, 110(49):19689–19694, 2013. doi: 10.1073/pnas.1319473110. URL https://doi.org/10.1073/pnas.1319473110.Contributed by Stuart A. Rice, October 18, 2013 (sent for review July30, 2013).[51] H.E. Hurst. Long-term storage capacity of reservoirs. Transactions ofthe American Society of Civil Engineers, 116:770, 1951. doi: 10.1061/TACEAT.0006518. URL https://doi.org/10.1061/TACEAT.0006518.[52] Robert Brown. The Miscellaneous Botanical Works of Robert Brown:Volume 1. R. Hardwicke, London, 1866. URL https://doi.org/10.1017/CBO9781107775473.[53] Cindy M. Hernandez, David C. Duran-Chaparro, Trevor van Eeuwen,Michael P. Rout, and Liam J. Holt. Development and characterizationof 50 nanometer diameter genetically encoded multimeric nanoparticles.BioRxiv, July 2024. doi: 10.1101/2024.07.05.602291. URL https://doi.org/10.1101/2024.07.05.602291. bioRxiv preprint, available under aCC-BY 4.0 International license.[54] Grace A. McLaughlin, Erin M. Langdon, John M. Crutchley, Liam J.Holt, M. Gregory Forest, Jay M. Newby, and Amy S. Gladfelter. Spatialheterogeneity of the cytosol revealed by machine learning-based 3d particletracking. Molecular Biology of the Cell, 31(14), 2020. doi: 10.1091/mbc.E20-03-0210. URL https://doi.org/10.1091/mbc.E20-03-0210.[55] Begoña Monterroso, William Margolin, Arnold J. Boersma, Germán Rivas,Bert Poolman, and Silvia Zorrilla. Macromolecular crowding, phaseseparation, and homeostasis in the orchestration of bacterial cellularfunctions. Chemical Reviews, 124(4):1899–1949, 2024. doi: 10.1021/acs.chemrev.3c00622. URL https://doi.org/10.1021/acs.chemrev.3c00622.[56] Ohad Medalia, I Weber, AS Frangakis, D Nicastro, G Gerisch, andW Baumeister. Macromolecular architecture in eukaryotic cells visualizedby cryoelectron tomography. Science, 298(5596):1209–1213, 2002. doi:10.1126/science.1076184. URL http://dx.doi.org/10.1126/science.1076184.[57] Ken A Dill, Kingshuk Ghosh, and Jeremy D Schmit. Physical limits ofcells and proteomes. Proceedings of the National Academy of Sciences,108(44):17876–17882, 2011. doi: 10.1073/pnas.1114477108.[58] Luciano Brocchieri and Samuel Karlin. Protein length in eukaryoticand prokaryotic proteomes. Nucleic Acids Research, 33(10):3390–3400,2005. doi: 10.1093/nar/gki615. URL https://academic.oup.com/nar/article/33/10/3390/1009070.[59] Jianzhi Zhang. Protein-length distributions for the three domains of life.Trends in Genetics, 16(3):107–109, 2000. doi: 10.1016/s0168-9525(99)01922-8. URL http://dx.doi.org/10.1016/s0168-9525(99)01922-8.[60] Kim Henrick and Janet M Thornton. Pqs: a protein quaternarystructure file server. Trends in Biochemical Sciences, 23(9):358–361,1998. doi: 10.1016/s0968-0004(98)01253-5. URL http://dx.doi.org/10.1016/s0968-0004(98)01253-5.[61] Martin Wühr, Timo Güttler, Leonid Peshkin, Graeme C McAlister,Matthew Sonnett, Kazuhiro Ishihara, Aaron C Groen, Max Presler,Brent K Erickson, Timothy J Mitchison, et al. The nuclear proteome of avertebrate. Current Biology, 25(20):2663–2671, 2015. doi: 10.1016/j.cub.2015.08.047. URL http://dx.doi.org/10.1016/j.cub.2015.08.047.[62] Florian C Keber, Thomas Nguyen, Clifford P Brangwynne, and MartinWühr. Evidence for widespread cytoplasmic structuring into mesoscopiccondensates. bioRxiv, page 2021.12.17.473234, 2021. URL https://www.biorxiv.org/content/10.1101/2021.12.17.473234v1.[63] Thomas G Mason and David A Weitz. Optical measurements of frequencydependentlinear viscoelastic moduli of complex fluids. Physical ReviewLetters, 74(7):1250–1253, 1995. doi: 10.1103/PhysRevLett.74.1250. URLhttp://dx.doi.org/10.1103/PhysRevLett.74.1250.[64] Tong Shu, Tamás Szórádi, Gururaj R. Kidiyoor, Ying Xie, Nora L. Herzog,Andrew Bazley, Martina Bonucci, Sarah Keegan, Shivanjali Saxena,Farida Ettefa, Gregory Brittingham, Joël Lemiere, David Fenyö, FredChang, Morgan Delarue, and Liam J. Holt. nucgems probe the biophysicalproperties of the nucleoplasm. bioRxiv, 2021. doi: 10.1101/2021.11.18.469159. URL https://doi.org/10.1101/2021.11.18.469159.[65] Jérémy Lemière, Pablo Real-Calderon, Laura J Holt, Thomas G Fai,and Fred Chang. Control of nuclear size by osmotic forces in schizosaccharomycespombe. Elife, 11, 2022. doi: 10.7554/eLife.76075. URLhttp://dx.doi.org/10.7554/eLife.76075.[66] Tobias W Giessen, Benjamin J Orlando, Andrew A Verdegaal, Melissa GChambers, Jules Gardener, David C Bell, Gabriel Birrane, Maofu Liao,and Pamela A Silver. Large protein organelles form a new iron sequestrationsystem with high storage capacity. eLife, 8:e46070, 2019. doi:https://doi.org/.[67] Edward T Baldwin, Thijs van Eeuwen, David Hoyos, Anna Zalevsky,Evguenia P Tchesnokov, Reinaldo Sánchez, Benjamin D Miller, Laura HDi Stefano, F Xavier Ruiz, Matthew Hancock, et al. Structures, functions,and adaptations of the human line-1 orf2 protein. Nature, pages 1–3, Dec2023. doi: 10.1038/s41586-023-06947-z. URL https://www.nature.com/articles/s41586-023-06947-z.[68] Christopher W Akey, Dharmendra Singh, Christopher Ouch, IsabelEcheverria, Ilia Nudelman, Jeffrey M Varberg, Zhi Yu, Fang Fang, YanShi, Jiaxuan Wang, et al. Comprehensive structure and functional adaptationsof the yeast nuclear pore complex. Cell, Dec 2021. doi: 10.1016/j.cell.2021.12.015. URL http://dx.doi.org/10.1016/j.cell.2021.12.015.[69] Nicolas Chenouard, Ihor Smal, Fabrice de Chaumont, Martin Maška,Ivo F. Sbalzarini, Yuwen Gong, Julien Cardinale, Chloe Carthel, StefanoCoraluppi, Michael Winter, Assaf R. Cohen, William J. Godinez,Karl Rohr, Yannis Kalaidzidis, Liya Liang, James Duncan, Hao Shen,Yushi Xu, Kristoffer E. G. Magnusson, Joakim Jaldén, Helen M. Blau,Perrine Paul-Gilloteaux, Pierre Roudot, Charles Kervrann, Frédéric Waharte,Jean-Yves Tinevez, Spencer L. Shorte, Johannes Willemse, KeesCeller, Gilles P. van Wezel, Hangwei Dan, Yung-Sheng Tsai, Carlos Ortizde Solórzano, Jean-Christophe Olivo-Marin, and Erik Meijering. Objectivecomparison of particle tracking methods. Nature Methods, 11(3):281–289, March 2014. URL http://dx.doi.org/10.1038/nmeth.2808.[70] S. Keegan, L. J. Holt, and D. Fenyö. Gemspa: a napari plugin for analysisof single particle tracking data. bioRxiv, 2023. doi: 10.1101/2023.06.26.546612.[71] J. Surre, C. Saint-Ruf, V. Collin, et al. Strong increase in the autofluorescenceof cells signals struggle for survival. Scientific Reports, 8(1):12088,2018. doi: 10.1038/s41598-018-30623-2. URL https://www.nature.com/articles/s41598-018-30623-2.[72] C. Stringer, T. Wang, M. Michaelos, and et al. Cellpose: a generalistalgorithm for cellular segmentation. Nat Methods, 18(1):100–106,2021. doi: 10.1038/s41592-020-01018-x. URL https://www.nature.com/articles/s41592-020-01018-x.[73] G. E. Neurohr, R. L. Terry, J. Lengefeld, M. Bonney, G. P. Brittingham,F. Moretto, and S. G. ... Manalis. Excessive cell growth causescytoplasm dilution and contributes to senescence. Cell, 176(5):1083–1097.e18, 2019. doi: 10.1016/j.cell.2019.01.033. URL https://10.0.3.248/j.cell.2019.01.018.[74] S. Fehrmann, G. Charvin, Y. Goulev, H. Aguilaniu, and C. Paoletti. Agingyeast cells undergo a sharp entry into senescence unrelated to the lossof mitochondrial membrane potential. Cell Rep, 5(6):1589–1599, 2013.doi: 10.1016/j.celrep.2013.11.013. URL https://doi.org/10.1016/j.celrep.2013.11.013.[75] S. S. Lee, I. Avalos Vizcarra, D. H. Huberts, M. Heinemann, and L. P. Lee.Whole lifespan microscopic observation of budding yeast aging through amicrofluidic dissection platform. Proc. Natl. Acad. Sci. USA, 109:4916–4920, 2012. URL https://doi.org/10.1073/pnas.1113505109.[76] D. C. Duran, I. M. Acosta, R. Acevedo, D. A. Forero, C. A. Hernández,J. M. Pedraza, and E. Suesca. Slipstreaming mother machine: Amicrofluidic device for single-cell dynamic imaging of yeast. Micromachines(Basel), 12(1):4, 2020. doi: 10.3390/mi12010004. URL https://www.mdpi.com/2072-666X/12/1/4.[77] G. S. Davidson, C. P. Allen, R. M. Joe, O. Meirelles, S. Roy, M. R.Wilson, and M. ... Werner-Washburne. The proteomics of quiescent andnonquiescent cell differentiation in yeast stationary-phase cultures. MolBiol Cell, 22(7):988–998, 2011. doi: 10.1091/mbc.E10-06-0499. URLhttps://doi.org/10.1091/mbc.e10-06-0499.[78] D. Laporte, L. Gouleme, L. Jimenez, and I. Sagot. Yeast quiescence exitswiftness is influenced by cell volume and chronological age. Microb Cell,5(2):104–111, 2017. doi: 10.15698/mic2018.02.615. URL https://doi.org/10.15698%2Fmic2018.02.615.[79] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.The Journal of Physical Chemistry, 81(25):2340–2361, 1977. doi:10.1021/j100540a008. URL https://doi.org/10.1021/j100540a008.[80] P. O. J. Scherer. Computational Physics. Springer, Heidelberg, Germany,2 edition, 2013.[81] O. Marescal and I. M. Cheeseman. Cellular mechanisms and regulationof quiescence. Developmental Cell, 55(3):259–271, 2020. doi: 10.1016/j.devcel.2020.09.029. URL https://doi.org/10.1016/j.devcel.2020.09.029.[82] M.Y. Terzi, M. Izmirli, and B. Gogebakan. The cell fate: senescenceor quiescence. Mol Biol Rep, 43:1213–1220, 2016. doi: 10.1007/s11033-016-4065-0. URL https://link.springer.com/article/10.1007/s11033-016-4065-0.[83] L Hayflick and PS Moorhead. The serial cultivation of human diploid cellstrains. Experimental Cell Research, 25(3):585–621, 1961. ISSN 0014-4827.doi: 10.1016/0014-4827(61)90192-6. URL https://www.sciencedirect.com/science/article/pii/0014482761901926.[84] M. Kaeberlein, 3rd Powers, R. W., K. Steffen, E. Westman, D. Hu, E. O.Kerr, N. Dang, K. T. Kirkland, S. Fields, and B. K. Kennedy. Regulationof yeast replicative life span by tor and sch9 in response to nutrients.Science, 310:1193–1196, 2005. URL https://www.science.org/doi/10.1126/science.1115535.[85] K. Steinkraus and M.K. Kaeberlein. Replicative aging in yeast:The means to the end. Annu. Rev. Cell Dev. Biol., 24:29–54,2008. URL https://www.annualreviews.org/content/journals/10.1146/annurev.cellbio.23.090506.123509.[86] S.C. Mei and C. Brenner. Calorie restriction-mediated replicative lifespanextension in yeast is non-cell autonomous. PLoS Biol, 13, 2015. URLhttps://doi.org/10.1371/journal.pbio.1002048.[87] D. H. Huberts, J. Gonzalez, M. Heinemann, G. Hubmann, S. S. Lee,A. Litsios, and E. C. Wit. Calorie restriction does not elicit a robust extensionof replicative lifespan in Saccharomyces cerevisiae. Proc. Natl.Acad. Sci. USA, 111:11727–11731, 2014. URL https://doi.org/10.1073/pnas.1410024111.[88] F. Meitinger, A. Khmelinskii, S. Morlot, B. Kurtulmus, S. Palani,A. Andres-Pons, and G. ... Pereira. A memory system of negative polaritycues prevents replicative aging. Cell, 159:1056–1069, 2014. URLhttps://pubmed.ncbi.nlm.nih.gov/25416945/.[89] I. Müller, M. Zimmermann, D. Becker, and M. Flömer. Calendar lifespan versus budding life span of Saccharomyces cerevisiae. Mech. AgeingDev., 12:47–52, 1980. URL https://doi.org/10.1016/0047-6374(80)90028-7.[90] Z. Xie, Y. Zhang, K. Zou, O. Brandman, Q. Ouyang, and H. Li. Molecularphenotyping of aging in single yeast cells using a novel microfluidic device.Aging Cell, 11:599–606, 2012. doi: 10.1111/j.1474-9726.2012.00821.x.URL https://onlinelibrary.wiley.com/doi/10.1111/j.1474-9726.2012.00821.x.[91] J. Ryley and O. Pereira-Smith. Microfluidics device for single cell gene expressionanalysis in Saccharomyces cerevisiae. Yeast, 23:1065–1073, 2006.URL https://doi.org/10.1002/yea.1412.[92] P. Liu, M. Acar, and T. Z. Young. Yeast replicator: A high-throughputmultiplexed microfluidics platform for automated measurements of singlecellaging. Cell Reports, 13(3):634–644, 2015. doi: 10.1016/j.celrep.2015.09.012. URL https://doi.org/10.1016/j.celrep.2015.09.012.[93] M. Jin, P. Bittihn, N. Hao, Y. Li, R. O’Laughlin, L. Pillus, L. S. Tsimring,and ... Divergent aging of isogenic yeast cells revealed through singlecellphenotypic dynamics. Cell Systems, 8(3):242–253.e3, 2019. doi: 10.1016/j.cels.2019.02.002. URL https://doi.org/10.1016/j.cels.2019.02.002.[94] M. C. Jo, W. Dang, L. Gu, W. Liu, and L. Qin. High-throughput analysisof yeast replicative aging using a microfluidic system. Proc. Natl. Acad.Sci. USA, 112:9364–9369, 2015. URL https://doi.org/10.1073/pnas.1510328112.[95] Paul Lee, Neal C. Helman, Wendell A. Lim, and Pei-Jung Hung. A microfluidicsystem for dynamic yeast cell imaging. BioTechniques, 44:91–95, 2008. doi: 10.2144/000112812. URL https://doi.org/10.2144/000112673.[96] M M Crane, I B Clark, E Bakker, S Smith, and P S Swain. A microfluidicsystem for studying ageing and dynamic single-cell responses in buddingyeast. PLoS One, 9:e100042, June 2014. doi: 10.1371/journal.pone.0100042. URL https://doi.org/10.1371/journal.pone.0100042.[97] Yang Li, Meng Jin, Richard O’Laughlin, et al. Multigenerational silencingdynamics control cell aging. Proceedings of the National Academyof Sciences of the United States of America, 114(42):11253–11258, 2017.doi: 10.1073/pnas.1703379114. URL https://doi.org/10.1073/pnas.1703379114.[98] Morgan Delarue, Grzegorz Poterewicz, Olcay Hoxha, Jennifer Choi, WoojinYoo, Jesse Kauser, Liam Holt, and Oskar Hallatschek. Scwish networkis essential for survival under mechanical pressure. Proc. Natl. Acad.Sci. USA, 114:13465–13470, 2017. doi: 10.1073/pnas.1713994114. URLhttps://doi.org/10.1073/pnas.1711204114.[99] Burak Okumus, David Landgraf, Geetartha C. Lai, Shalin Bakshi,Juan Carlos Arias-Castro, Semih Yildiz, Daan Huh, Rafael Fernandez-Lopez, Collin N. Peterson, Erkan Toprak, et al. Mechanical slowing-downof cytoplasmic diffusion allows in vivo counting of proteins in individualcells. Nat. Commun., 7:11641, 2016. doi: 10.1038/ncomms11641.[100] Burak Okumus, J. Charles, C.J. Baker, Juan Carlos Arias-Castro, GeetarthaC. Lai, E. Leoncini, Shalin Bakshi, S. Luro, David Landgraf, andJohan Paulsson. Microfluidics-assisted cell screening (macs): An automatedplatform for single-cell microscopy of suspension cultures. NatProtoc, 13:170–194, 2018. doi: 10.1038/s41596-017-0026-5.[101] E. S. Alexander, Z. Zhang, R. T. Colin, Kennith E. M., and Anton P. J.M. The mechanical properties of saccharomyces cerevisiae. Proc. Natl.Acad. Sci. USA, 97:9871–9874, 2000. doi: 10.1073/pnas.97.18.9871. URLhttps://doi.org/10.1073/pnas.97.18.9871.[102] Liam J. Holt, O Hallatschek, and Morgan Delarue. Mechano-chemostatsto study the effects of compressive stress on yeast, volume 147 of Methodsin Cell Biology, pages 215–231. Elsevier, 2018. ISBN 978-0-12-814282-0.doi: 10.1016/bs.mcb.2018.06.010. URL https://doi.org/10.1016/bs.mcb.2018.06.010.[103] S. Leupold, G. Hubmann, A. Litsios, A. C. Meinema, A. Papagiannakis,V. Takhaveev, and M. Heinemann. Saccharomyces cerevisiae goes throughdistinct metabolic phases during its replicative lifespan. Elife, 8, 2019.[104] Ivo F Sbalzarini and Petros Koumoutsakos. Feature point tracking andtrajectory analysis for video imaging in cell biology. Journal of StructuralBiology, 151(2):182–195, 2005. doi: 10.1016/j.jsb.2005.06.002.[105] R. Kubo, N. Hashitsume, and M. Toda. Statistical Physics II: NonequilibriumStatistical Mechanics, volume 31 of Springer Series in Solid-StateSciences. Springer, 1991.[106] Elliott W. Montroll and George H. Weiss. Random walks on lattices. ii.Journal of Mathematical Physics, 6(2):167, 1965. doi: 10.1063/1.1704269.[107] Benoit B. Mandelbrot and John W. Van Ness. Fractional brownian motions,fractional noises and applications. SIAM Journal on Applied Mathematics,10(4), October 1968.[108] David G. Kleinbaum and Mitchel Klein. Survival Analysis: A Self-Learning Text. Statistics for Biology and Health. Springer, New York,NY, USA, 3 edition, 2012. URL https://link.springer.com/chapter/10.1007/978-1-4419-6646-9_1.[109] Alexei V. Chechkin, Ralf Metzler, Joseph Klafter, and Vsevolod Yu. Gonchar.Introduction to the theory of lévy flights. In Anomalous Transport,pages 129–162. Wiley-VCH, 2008. ISBN 9783527622979. doi: 10.1002/9783527622979.200321100Publicationhttps://scholar.google.es/citations?user=x8-YWMsAAAAJvirtual::22891-10000-0002-1802-3337virtual::22891-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000001817virtual::22891-1a4c0056f-ab75-4234-9297-925380d7633avirtual::22891-1a4c0056f-ab75-4234-9297-925380d7633avirtual::22891-1ORIGINALformatoAutorizacionTesis.pdfformatoAutorizacionTesis.pdfHIDEapplication/pdf245806https://repositorio.uniandes.edu.co/bitstreams/144338a8-3393-47a8-af28-44ada8767394/download8277c0282fa27cdb62ee0f459e9a32bdMD51Physical Properties of the Cytoplasm.pdfPhysical Properties of the Cytoplasm.pdfapplication/pdf87028532https://repositorio.uniandes.edu.co/bitstreams/521fcd14-cadb-4b48-9a61-8b738e1fe80f/download00ae3297ded9d4b192c39b3d03d34bc3MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniandes.edu.co/bitstreams/9f29df1f-978d-4545-9173-b8e21217cf0d/download24013099e9e6abb1575dc6ce0855efd5MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/47d863a0-e038-403a-a281-5089e21d6fd7/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTformatoAutorizacionTesis.pdf.txtformatoAutorizacionTesis.pdf.txtExtracted texttext/plain2054https://repositorio.uniandes.edu.co/bitstreams/bbef3633-d2f1-4c0a-96a6-33c63bbcd533/downloadbf4dd3aba3d7caf336238dcbe602b0eeMD55Physical Properties of the Cytoplasm.pdf.txtPhysical Properties of the Cytoplasm.pdf.txtExtracted texttext/plain100431https://repositorio.uniandes.edu.co/bitstreams/1ca7b06a-6b8e-4916-b8d3-752787080790/downloadc26bfb2327eb743f9ecfa836f72add07MD57THUMBNAILformatoAutorizacionTesis.pdf.jpgformatoAutorizacionTesis.pdf.jpgGenerated Thumbnailimage/jpeg10902https://repositorio.uniandes.edu.co/bitstreams/c8f3c2d9-40c5-4505-8960-faf8d4a1bc1f/downloadcda6a018ac25f793e605737129d24876MD56Physical Properties of the Cytoplasm.pdf.jpgPhysical Properties of the Cytoplasm.pdf.jpgGenerated Thumbnailimage/jpeg4628https://repositorio.uniandes.edu.co/bitstreams/8d0f1658-7b32-4258-8973-66f9ce2d4f4f/downloadaeae14cdfdaca985a72896b547412091MD581992/75865oai:repositorio.uniandes.edu.co:1992/758652025-03-05 09:39:20.456http://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |