The physical properties of the cytoplasm change during aging in s. cerevisiae

Age-related diseases are among the leading causes of mortality, with conditions like cardiovascular diseases, cancer, and diabetes escalating exponentially with age. Delaying aging may have a bigger payoff than tackling individual diseases.To achieve this goal, a deeper understanding of aging at the...

Full description

Autores:
Durán Chaparro, David Camilo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75865
Acceso en línea:
https://hdl.handle.net/1992/75865
Palabra clave:
Aging
Macromolecular crowding
Microfluidics
Yeast
Diffusion
Saccharomyces cerevisiae
Slipstreaming
Replicative Aging
Chronological Aging
Genetically Encoded Multimeric Nanoparticles (GEMs)
Physical Properties of the Cell
Physics of Aging
Física
Biología
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial 4.0 International
id UNIANDES2_449b618867d4012960e13affbbcd666f
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75865
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv The physical properties of the cytoplasm change during aging in s. cerevisiae
title The physical properties of the cytoplasm change during aging in s. cerevisiae
spellingShingle The physical properties of the cytoplasm change during aging in s. cerevisiae
Aging
Macromolecular crowding
Microfluidics
Yeast
Diffusion
Saccharomyces cerevisiae
Slipstreaming
Replicative Aging
Chronological Aging
Genetically Encoded Multimeric Nanoparticles (GEMs)
Physical Properties of the Cell
Physics of Aging
Física
Biología
Ingeniería
title_short The physical properties of the cytoplasm change during aging in s. cerevisiae
title_full The physical properties of the cytoplasm change during aging in s. cerevisiae
title_fullStr The physical properties of the cytoplasm change during aging in s. cerevisiae
title_full_unstemmed The physical properties of the cytoplasm change during aging in s. cerevisiae
title_sort The physical properties of the cytoplasm change during aging in s. cerevisiae
dc.creator.fl_str_mv Durán Chaparro, David Camilo
dc.contributor.advisor.none.fl_str_mv Pedraza Leal, Juan Manuel
dc.contributor.author.none.fl_str_mv Durán Chaparro, David Camilo
dc.contributor.jury.none.fl_str_mv Leidy, Chad
Veenhoff, Liesbeth M.
Holt, Liam J.
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias
dc.subject.keyword.eng.fl_str_mv Aging
Macromolecular crowding
Microfluidics
Yeast
Diffusion
Saccharomyces cerevisiae
Slipstreaming
Replicative Aging
Chronological Aging
Genetically Encoded Multimeric Nanoparticles (GEMs)
Physical Properties of the Cell
Physics of Aging
topic Aging
Macromolecular crowding
Microfluidics
Yeast
Diffusion
Saccharomyces cerevisiae
Slipstreaming
Replicative Aging
Chronological Aging
Genetically Encoded Multimeric Nanoparticles (GEMs)
Physical Properties of the Cell
Physics of Aging
Física
Biología
Ingeniería
dc.subject.themes.none.fl_str_mv Física
Biología
Ingeniería
description Age-related diseases are among the leading causes of mortality, with conditions like cardiovascular diseases, cancer, and diabetes escalating exponentially with age. Delaying aging may have a bigger payoff than tackling individual diseases.To achieve this goal, a deeper understanding of aging at the cellular level is crucial. While several hallmarks of aging have been identified, there is still an absence of a Unified Theory of Aging. Many of these hallmarks appear to be interconnected through physical phenomena like phase separation. Physical Properties hold promise as a unifying framework, potentially offering avenues for rejuvenating cells through physical interventions. Macromolecular crowding emerges as a key aspect in this context, intimately linked with phase separation. While its effects have been observed at nanometer and organelle scales, understanding crowding at the mesoscale (10-100 nm) remains elusive. Our study delves into this mesoscale crowding using Genetically Encoded Multimeric Nanoparticles (GEMs), revealing how changes in cytoplasmic physical properties correlate with different cellular states during the aging process. Our research sheds light on the intricate relationship between macromolecular crowding, phase separation, and cellular aging, offering insights that could pave the way for novel therapeutic interventions. Additionally, we highlight potential biases in traditional single-cell aging studies due to cell trapping pressures. To address this, we developed a microfluidic device that makes use of the Slipstreaming Effect to trap single cells in a low-pressure environment, providing a more accurate representation of cellular aging. This study aims to contribute valuable insights into the aging process, ultimately striving to enhance the quality of life for individuals.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-30T19:53:52Z
dc.date.available.none.fl_str_mv 2025-01-30T19:53:52Z
dc.date.issued.none.fl_str_mv 2025-01-29
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75865
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75865
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [1] B. Gompertz. On the nature of the function expressive of the law of
human mortality, and on a new mode of determining the value of life
contingencies. Philosophical Transactions of the Royal Society, 115:513–
585, 1825. ISSN 0261-0523. doi: 10.1098/rstl.1825.0026. URL https:
//doi.org/10.1098/rstl.1825.0026.
[2] W.B. Zhang, D.B. Sinha, W.E. Pittman, E. Hvatum, N. Stroustrup, and
Z. Pincus. Extended twilight among isogenic c. elegans causes a disproportionate
scaling between lifespan and health. Cell Syst, 3(4):333–345.e4,
2016. doi: 10.1016/j.cels.2016.09.003. URL https://doi.org/10.1016/
j.cels.2016.09.003.
[3] A. V. Belikov. Age-related diseases as vicious cycles. Ageing
Research Reviews, 49:11–26, 2019. doi: 10.1016/j.arr.2018.11.
002. URL https://www.sciencedirect.com/science/article/pii/
S1568163718300345?via%3Dihub.
[4] C. Lopez-Otin, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer.
The hallmarks of aging. Cell, 153(6):1194–1217, 2013. doi: 10.1016/j.cell.
2013.05.039. URL https://doi.org/10.1016/j.cell.2013.05.039.
[5] C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer.
Hallmarks of aging: An expanding universe. Cell, 186(2):243–278,
2023. doi: 10.1016/j.cell.2022.11.001. URL https://doi.org/10.1016/
j.cell.2022.11.001.
[6] Z. Xie, K.A. Jay, D.L. Smith, Y. Zhang, Z. Liu, J. Zheng, and E.H.
Blackburn. Early telomerase inactivation accelerates aging independently
of telomere length. Cell, 160:928–939, 2015. doi: 10.1016/j.cell.2015.01.
005. URL https://doi.org/10.1016/j.cell.2015.02.002.
[7] S. Alberti and A. A. Hyman. Biomolecular condensates at the nexus
of cellular stress, protein aggregation disease, and ageing. Nat Rev Mol
Cell Biol, 22(3):196–213, 2021. doi: 10.1038/s41580-020-00326-6. URL
https://www.nature.com/articles/s41580-020-00326-6.
[8] S. Sil, S. Keegan, F. Ettefa, L. T. Denes, J. D. Boeke, and L. J. Holt. Condensation
of line-1 is critical for retrotransposition. eLife, 12:e82991, 2023.
doi: 10.7554/eLife.82991. URL https://elifesciences.org/articles/
82991.
[9] Brian M. Wasko and Matt Kaeberlein. Yeast replicative aging: a paradigm
for defining conserved longevity interventions. FEMS Yeast Research, 14
(1):148–159, February 2014. doi: 10.1111/1567-1364.12104. URL https:
//doi.org/10.1111/1567-1364.12104. Published: 01 February 2014.
[10] D.A. Sinclair, K. Mills, and L. Guarente. Aging in Saccharomyces cerevisiae.
Annual Review of Microbiology, 52:533–560, 1998. doi: 10.
1146/annurev.micro.52.1.533. URL https://www.annualreviews.org/
content/journals/10.1146/annurev.micro.52.1.533.
[11] V.D. Longo et al. Replicative and chronological aging in Saccharomyces
cerevisiae. Cell Metab., 16:18–31, 2012. URL https://doi.org/10.
1016/j.cmet.2012.06.002.
[12] P. Fabrizio and V. Longo. The chronological life span of Saccharomyces
cerevisiae. Aging Cell, 2:73–81, 2003. URL https://doi.org/10.1046/
j.1474-9728.2003.00033.x.
[13] V. Longo, E. Gralla, and J. Valentine. Superoxide dismutase activity is
essential for stationary phase survival in Saccharomyces cerevisiae. mitochondrial
production of toxic oxygen species in vivo. J. Biol. Chem.,
271:12275–12280, 1996. URL https://doi.org/10.1074/jbc.271.21.
12275.
[14] R.K. Mortimer and J.R. Johnston. Life span of individual yeast cells. Nature,
183:1751–1752, 1959. URL https://www.nature.com/articles/
1831751a0.
[15] Kenneth L. Chen, Matthew M. Crane, and Matt Kaeberlein. Microfluidic
technologies for yeast replicative lifespan studies. Mechanisms of Ageing
and Development, 161:262–269, 2017. ISSN 0047-6374. doi: https://
doi.org/10.1016/j.mad.2016.03.009. URL https://www.sciencedirect.
com/science/article/pii/S0047637416300306. SI:Yeast life and
death.
[16] Felix Richter, Saskia Bindschedler, Maryline Calonne-Salmon, Stéphane
Declerck, Pilar Junier, and Claire E Stanley. Fungi-on-a-Chip: microfluidic
platforms for single-cell studies on fungi. FEMS Microbiology Reviews,
46(6):fuac039, 08 2022. ISSN 0168-6445. doi: 10.1093/femsre/fuac039.
URL https://doi.org/10.1093/femsre/fuac039.
[17] Michael Polymenis and Brian K. Kennedy. Chronological and replicative
lifespan in yeast: do they meet in the middle? Cell Cycle, 11(19):3531–
3532, October 1 2012. ISSN 1551-4005. doi: 10.4161/cc.22041. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478299/. Epub
2012 Sep 5.
[18] Y. Zhang, C. Luo, K. Zou, Z. Xie, O. Brandman, and Q. Ouyang. Single
cell analysis of yeast replicative aging using a new generation of microfluidic
device. PLoS ONE, 7:e48275, 2012. doi: 10.1371/journal.pone.
0048275. URL https://doi.org/10.1371/journal.pone.0048275.
[19] S. N. Mouton, D. J. Thaller, M. M. Crane, I. L. Rempel, O. T. Terpstra,
A. Steen, and L. M. Veenhoff. A physicochemical perspective of aging
from single-cell analysis of ph, macromolecular, and organellar crowding
in yeast. eLife, 9:e54707, 2020. URL https://elifesciences.org/
articles/54707.
[20] S. N. Mouton, A. J. Boersma, and L. M. Veenhoff. A physicochemical
perspective on cellular ageing. Trends Biochem Sci, 48(11):949–962, 2023.
doi: 10.1016/j.tibs.2023.08.007. URL https://www.sciencedirect.com/
science/article/pii/S0968000423002104?via%3Dihub.
[21] A. Hughes and D. Gottschling. An early age increase in vacuolar ph
limits mitochondrial function and lifespan in yeast. Nature, 492:261–
265, 2012. doi: 10.1038/nature11654. URL https://doi.org/10.1038/
nature11654.
[22] R. John Ellis. A characteristic of the interiors of all cells is the high total
concentration of macromolecules they contain. Trends in Biochemical
Sciences, 26:597, 2001. ISSN 0968-0004. doi: 10.1016/S0968-0004(01)
01938-7. URL http://tibs.trends.com. University of Warwick, CV4
7AL. Email: jellis@bio.warwick.ac.uk.
[23] K. Luby-Phelps. Cytoarchitecture and physical properties of cytoplasm:
volume, viscosity, diffusion, intracellular surface area. International Review
of Cytology, 192:189–221, 2000. doi: 10.1016/s0074-7696(08)60527-6.
URL https://doi.org/10.1016/s0074-7696(08)60527-6.
[24] David S. Goodsell. Biosites: Cytoplasm. https://pdb101.rcsb.org/
sci-art/goodsell-gallery/biosites-cytoplasm, 2024. Accessed:
2024-05-01.
[25] Germán Rivas and Allen P. Minton. Macromolecular crowding in vitro,
in vivo, and in between. Trends in Biochemical Sciences, 41(11):970–981,
November 2016. doi: 10.1016/j.tibs.2016.08.013. URL https://doi.org/
10.1016/j.tibs.2016.08.013. Published: September 23, 2016.
[26] M.M. Crane and M. Kaeberlein. The paths of mortality: how understanding
the biology of aging can help explain systems behavior of single cells.
Curr. Opin. Syst. Biol., 8:25–31, 2018. URL https://doi.org/10.1016%
2Fj.coisb.2017.11.010.
[27] S.B. Zimmerman and S.O. Trach. Estimation of macromolecule concentrations
and excluded volume effects for the cytoplasm of Escherichia
coli. J. Mol. Biol., 222:599–620, 1991. URL https://doi.org/10.1016/
0022-2836(91)90499-v.
[28] J. Spitzer and B. Poolman. How crowded is the prokaryotic cytoplasm?
FEBS Lett., 587:2094–2098, 2013.
[29] J.B. Woodruff et al. The centrosome is a selective condensate that nucleates
microtubules by concentrating tubulin. Cell, 169:1066–1077, 2017.
[30] Arnold J Boersma, Inge S Zuhorn, and Bert Poolman. A sensor for quantification
of macromolecular crowding in living cells. Nature Methods, 12:
227–229, 2015. doi: 10.1038/nmeth.3257. URL https://www.nature.
com/articles/nmeth.3257.
[31] Sandrine Morlot, Jia Song, Isabelle Léger-Silvestre, Audrey Matifas,
Olivier Gadal, and Gilles Charvin. Excessive rdna transcription drives the
disruption in nuclear homeostasis during entry into senescence in budding
yeast. Cell Reports, 28:408–422, 2019. doi: 10.1016/j.celrep.2019.06.032.
URL https://doi.org/10.1016/j.celrep.2019.06.032.
[32] M. C. Munder, D. Midtvedt, T. Franzmann, E. Nüske, O. Otto, M. Herbig,
and S. ... Alberti. A ph-driven transition of the cytoplasm from a fluidto
a solid-like state promotes entry into dormancy. eLife, 5:e09347, 2016.
[33] B. R. Parry, I. V. Surovtsev, M. T. Cabeen, C. S. O’Hern, E. R. Dufresne,
and C. Jacobs-Wagner. The bacterial cytoplasm has glass-like properties
and is fluidized by metabolic activity. Cell, 156(1-2):183–194, 2013. doi:
10.1016/j.cell.2013.11.028.
[34] M. Bonucci, T. Shu, and L. J. Holt. How it feels in a cell. Trends Cell
Biol, 33(11):924–938, 2023. doi: 10.1016/j.tcb.2023.05.002. URL https:
//doi.org/10.1016/j.tcb.2023.05.002.
[35] E.D. Zanotto and J. Mauro. The glassy state of matter: Its definition
and ultimate fate. Journal of Non-crystalline Solids, 459:30–57, 2017.
doi: 10.1016/J.JNONCRYSOL.2017.05.019. URL https://doi.org/10.
1016/j.jnoncrysol.2017.05.019.
[36] L. Berthier. Dynamic heterogeneity in amorphous materials. Materials
Science, Physics, Ageing Research Reviews, 4:42, 2011. doi: 10.1103/
Physics.4.42. URL https://doi.org/10.1103/Physics.4.42.
[37] M. Delarue, G. P. Brittingham, L. J. Holt, K. J. Kennedy, S. Pinglay,
S. Pfeffer, and I. V. ... Surovtsev. mtorc1 controls phase separation
and the biophysical properties of the cytoplasm by tuning crowding.
Cell, 174(2):338–349.e20, 2018. doi: 10.1016/j.cell.2018.05.
042. URL https://www.sciencedirect.com/science/article/pii/
S0092867418306548?via%3Dihub.
[38] Michael C Konopka, Irina A Shkel, Scott Cayley, M Thomas Record, and
James C Weisshaar. Crowding and confinement effects on protein diffusion
in vivo. Journal of Bacteriology, 188, 2006. doi: 10.1128/jb.01982-05. URL
https://doi.org/10.1128/jb.01982-05.
[39] M. A. McCormick, J. R. Delaney, M. Tsuchiya, S. Tsuchiyama, A. Shemorry,
S. Sim, and B. K. ... Kennedy. A comprehensive analysis of
replicative lifespan in 4,698 single-gene deletion strains uncovers conserved
mechanisms of aging. Cell Metabolism, 22(5):895–906, 2015.
doi: 10.1016/j.cmet.2015.09.008. URL https://www.sciencedirect.
com/science/article/pii/S1550413115004659?via%3Dihub.
[40] Craig Pickering, Dylan Hicks, and John Kiely. Why are masters sprinters
slower than their younger counterparts? physiological, biomechanical,
and motor control related implications for training program design.
Journal of Aging and Physical Activity, 29:708–719, 2021. doi: https://
doi.org/10.1123/japa.2020-0302. URL https://doi.org/10.1123/japa.
2020-0302. First Published Online: 15 Jan 2021.
[41] R. S. Balaban. How hot are single cells? The Journal of General
Physiology, 152(8):e202012629, 2020. doi: 10.1085/jgp.202012629. URL
https://doi.org/10.1085/jgp.202012629,.
[42] P. Leuenberger et al. Cell-wide analysis of protein thermal unfolding reveals
determinants of thermostability. Science, 355:eaai7825, 2017.
[43] C. Kenyon. The genetics of ageing. Nature, 464:504–512, 2010. doi:
10.1038/nature08980.
[44] H. Qian, M.P. Sheetz, and E.L. Elson. Single particle tracking. analysis
of diffusion and flow in two-dimensional systems. Biophysical Journal,
60(4):910–921, 1991. ISSN 0006-3495. doi: https://doi.org/10.
1016/S0006-3495(91)82125-7. URL https://www.sciencedirect.com/
science/article/pii/S0006349591821257.
[45] Michael J. Saxton and Kenneth Jacobson. Single-particle tracking: applications
to membrane dynamics. Annual Review of Biophysics and
Biomolecular Structure, 26:373–399, 1997. doi: 10.1146/annurev.biophys.
26.1.373. URL https://doi.org/10.1146/annurev.biophys.26.1.373.
[46] Lina Carlini, Gregory P. Brittingham, Liam J. Holt, and Tarun M.
Kapoor. Microtubules enhance mesoscale effective diffusivity in the
crowded metaphase cytoplasm. Developmental Cell, 54(5):574–582.E4,
2020. doi: 10.1016/j.devcel.2020.07.020. URL https://doi.org/10.
1016/j.devcel.2020.07.020. Published on August 19, 2020.
[47] A. Einstein. Über die von der molekularkinetischen theorie der wärme
geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen.
Annalen der Physik, 17:549–560, 1905. doi: 10.1002/andp.19053220806.
URL https://doi.org/10.1002/andp.19053220806.
[48] S.C. Weber, M.A. Thompson, W.E. Moerner, A.J. Spakowitz, and J.A.
Theriot. Analytical tools to distinguish the effects of localization error,
confinement, and medium elasticity on the velocity autocorrelation function.
Biophysical Journal, 102(11):2443–2450, 2012. doi: 10.1016/j.bpj.
2012.03.062. URL https://doi.org/10.1016/j.bpj.2012.03.062.
[49] James A Dix and A S Verkman. Crowding effects on diffusion in solutions
and cells. Annual Review of Biophysics, 37:247–263, 2008. doi: 10.1146/
annurev.biophys.37.032807.125824.
[50] Stanislav Burov, S. M. Ali Tabei, Toan Huynh, et al. Distribution of directional
change as a signature of complex dynamics. Proceedings of the
National Academy of Sciences, 110(49):19689–19694, 2013. doi: 10.1073/
pnas.1319473110. URL https://doi.org/10.1073/pnas.1319473110.
Contributed by Stuart A. Rice, October 18, 2013 (sent for review July
30, 2013).
[51] H.E. Hurst. Long-term storage capacity of reservoirs. Transactions of
the American Society of Civil Engineers, 116:770, 1951. doi: 10.1061/
TACEAT.0006518. URL https://doi.org/10.1061/TACEAT.0006518.
[52] Robert Brown. The Miscellaneous Botanical Works of Robert Brown:
Volume 1. R. Hardwicke, London, 1866. URL https://doi.org/10.
1017/CBO9781107775473.
[53] Cindy M. Hernandez, David C. Duran-Chaparro, Trevor van Eeuwen,
Michael P. Rout, and Liam J. Holt. Development and characterization
of 50 nanometer diameter genetically encoded multimeric nanoparticles.
BioRxiv, July 2024. doi: 10.1101/2024.07.05.602291. URL https://doi.
org/10.1101/2024.07.05.602291. bioRxiv preprint, available under a
CC-BY 4.0 International license.
[54] Grace A. McLaughlin, Erin M. Langdon, John M. Crutchley, Liam J.
Holt, M. Gregory Forest, Jay M. Newby, and Amy S. Gladfelter. Spatial
heterogeneity of the cytosol revealed by machine learning-based 3d particle
tracking. Molecular Biology of the Cell, 31(14), 2020. doi: 10.1091/mbc.
E20-03-0210. URL https://doi.org/10.1091/mbc.E20-03-0210.
[55] Begoña Monterroso, William Margolin, Arnold J. Boersma, Germán Rivas,
Bert Poolman, and Silvia Zorrilla. Macromolecular crowding, phase
separation, and homeostasis in the orchestration of bacterial cellular
functions. Chemical Reviews, 124(4):1899–1949, 2024. doi: 10.1021/
acs.chemrev.3c00622. URL https://doi.org/10.1021/acs.chemrev.
3c00622.
[56] Ohad Medalia, I Weber, AS Frangakis, D Nicastro, G Gerisch, and
W Baumeister. Macromolecular architecture in eukaryotic cells visualized
by cryoelectron tomography. Science, 298(5596):1209–1213, 2002. doi:
10.1126/science.1076184. URL http://dx.doi.org/10.1126/science.
1076184.
[57] Ken A Dill, Kingshuk Ghosh, and Jeremy D Schmit. Physical limits of
cells and proteomes. Proceedings of the National Academy of Sciences,
108(44):17876–17882, 2011. doi: 10.1073/pnas.1114477108.
[58] Luciano Brocchieri and Samuel Karlin. Protein length in eukaryotic
and prokaryotic proteomes. Nucleic Acids Research, 33(10):3390–3400,
2005. doi: 10.1093/nar/gki615. URL https://academic.oup.com/nar/
article/33/10/3390/1009070.
[59] Jianzhi Zhang. Protein-length distributions for the three domains of life.
Trends in Genetics, 16(3):107–109, 2000. doi: 10.1016/s0168-9525(99)
01922-8. URL http://dx.doi.org/10.1016/s0168-9525(99)01922-8.
[60] Kim Henrick and Janet M Thornton. Pqs: a protein quaternary
structure file server. Trends in Biochemical Sciences, 23(9):358–361,
1998. doi: 10.1016/s0968-0004(98)01253-5. URL http://dx.doi.org/
10.1016/s0968-0004(98)01253-5.
[61] Martin Wühr, Timo Güttler, Leonid Peshkin, Graeme C McAlister,
Matthew Sonnett, Kazuhiro Ishihara, Aaron C Groen, Max Presler,
Brent K Erickson, Timothy J Mitchison, et al. The nuclear proteome of a
vertebrate. Current Biology, 25(20):2663–2671, 2015. doi: 10.1016/j.cub.
2015.08.047. URL http://dx.doi.org/10.1016/j.cub.2015.08.047.
[62] Florian C Keber, Thomas Nguyen, Clifford P Brangwynne, and Martin
Wühr. Evidence for widespread cytoplasmic structuring into mesoscopic
condensates. bioRxiv, page 2021.12.17.473234, 2021. URL https://www.
biorxiv.org/content/10.1101/2021.12.17.473234v1.
[63] Thomas G Mason and David A Weitz. Optical measurements of frequencydependent
linear viscoelastic moduli of complex fluids. Physical Review
Letters, 74(7):1250–1253, 1995. doi: 10.1103/PhysRevLett.74.1250. URL
http://dx.doi.org/10.1103/PhysRevLett.74.1250.
[64] Tong Shu, Tamás Szórádi, Gururaj R. Kidiyoor, Ying Xie, Nora L. Herzog,
Andrew Bazley, Martina Bonucci, Sarah Keegan, Shivanjali Saxena,
Farida Ettefa, Gregory Brittingham, Joël Lemiere, David Fenyö, Fred
Chang, Morgan Delarue, and Liam J. Holt. nucgems probe the biophysical
properties of the nucleoplasm. bioRxiv, 2021. doi: 10.1101/2021.11.
18.469159. URL https://doi.org/10.1101/2021.11.18.469159.
[65] Jérémy Lemière, Pablo Real-Calderon, Laura J Holt, Thomas G Fai,
and Fred Chang. Control of nuclear size by osmotic forces in schizosaccharomyces
pombe. Elife, 11, 2022. doi: 10.7554/eLife.76075. URL
http://dx.doi.org/10.7554/eLife.76075.
[66] Tobias W Giessen, Benjamin J Orlando, Andrew A Verdegaal, Melissa G
Chambers, Jules Gardener, David C Bell, Gabriel Birrane, Maofu Liao,
and Pamela A Silver. Large protein organelles form a new iron sequestration
system with high storage capacity. eLife, 8:e46070, 2019. doi:
https://doi.org/.
[67] Edward T Baldwin, Thijs van Eeuwen, David Hoyos, Anna Zalevsky,
Evguenia P Tchesnokov, Reinaldo Sánchez, Benjamin D Miller, Laura H
Di Stefano, F Xavier Ruiz, Matthew Hancock, et al. Structures, functions,
and adaptations of the human line-1 orf2 protein. Nature, pages 1–3, Dec
2023. doi: 10.1038/s41586-023-06947-z. URL https://www.nature.com/
articles/s41586-023-06947-z.
[68] Christopher W Akey, Dharmendra Singh, Christopher Ouch, Isabel
Echeverria, Ilia Nudelman, Jeffrey M Varberg, Zhi Yu, Fang Fang, Yan
Shi, Jiaxuan Wang, et al. Comprehensive structure and functional adaptations
of the yeast nuclear pore complex. Cell, Dec 2021. doi: 10.1016/j.cell.
2021.12.015. URL http://dx.doi.org/10.1016/j.cell.2021.12.015.
[69] Nicolas Chenouard, Ihor Smal, Fabrice de Chaumont, Martin Maška,
Ivo F. Sbalzarini, Yuwen Gong, Julien Cardinale, Chloe Carthel, Stefano
Coraluppi, Michael Winter, Assaf R. Cohen, William J. Godinez,
Karl Rohr, Yannis Kalaidzidis, Liya Liang, James Duncan, Hao Shen,
Yushi Xu, Kristoffer E. G. Magnusson, Joakim Jaldén, Helen M. Blau,
Perrine Paul-Gilloteaux, Pierre Roudot, Charles Kervrann, Frédéric Waharte,
Jean-Yves Tinevez, Spencer L. Shorte, Johannes Willemse, Kees
Celler, Gilles P. van Wezel, Hangwei Dan, Yung-Sheng Tsai, Carlos Ortiz
de Solórzano, Jean-Christophe Olivo-Marin, and Erik Meijering. Objective
comparison of particle tracking methods. Nature Methods, 11(3):
281–289, March 2014. URL http://dx.doi.org/10.1038/nmeth.2808.
[70] S. Keegan, L. J. Holt, and D. Fenyö. Gemspa: a napari plugin for analysis
of single particle tracking data. bioRxiv, 2023. doi: 10.1101/2023.06.26.
546612.
[71] J. Surre, C. Saint-Ruf, V. Collin, et al. Strong increase in the autofluorescence
of cells signals struggle for survival. Scientific Reports, 8(1):12088,
2018. doi: 10.1038/s41598-018-30623-2. URL https://www.nature.com/
articles/s41598-018-30623-2.
[72] C. Stringer, T. Wang, M. Michaelos, and et al. Cellpose: a generalist
algorithm for cellular segmentation. Nat Methods, 18(1):100–106,
2021. doi: 10.1038/s41592-020-01018-x. URL https://www.nature.com/
articles/s41592-020-01018-x.
[73] G. E. Neurohr, R. L. Terry, J. Lengefeld, M. Bonney, G. P. Brittingham,
F. Moretto, and S. G. ... Manalis. Excessive cell growth causes
cytoplasm dilution and contributes to senescence. Cell, 176(5):1083–
1097.e18, 2019. doi: 10.1016/j.cell.2019.01.033. URL https://10.0.3.
248/j.cell.2019.01.018.
[74] S. Fehrmann, G. Charvin, Y. Goulev, H. Aguilaniu, and C. Paoletti. Aging
yeast cells undergo a sharp entry into senescence unrelated to the loss
of mitochondrial membrane potential. Cell Rep, 5(6):1589–1599, 2013.
doi: 10.1016/j.celrep.2013.11.013. URL https://doi.org/10.1016/j.
celrep.2013.11.013.
[75] S. S. Lee, I. Avalos Vizcarra, D. H. Huberts, M. Heinemann, and L. P. Lee.
Whole lifespan microscopic observation of budding yeast aging through a
microfluidic dissection platform. Proc. Natl. Acad. Sci. USA, 109:4916–
4920, 2012. URL https://doi.org/10.1073/pnas.1113505109.
[76] D. C. Duran, I. M. Acosta, R. Acevedo, D. A. Forero, C. A. Hernández,
J. M. Pedraza, and E. Suesca. Slipstreaming mother machine: A
microfluidic device for single-cell dynamic imaging of yeast. Micromachines
(Basel), 12(1):4, 2020. doi: 10.3390/mi12010004. URL https:
//www.mdpi.com/2072-666X/12/1/4.
[77] G. S. Davidson, C. P. Allen, R. M. Joe, O. Meirelles, S. Roy, M. R.
Wilson, and M. ... Werner-Washburne. The proteomics of quiescent and
nonquiescent cell differentiation in yeast stationary-phase cultures. Mol
Biol Cell, 22(7):988–998, 2011. doi: 10.1091/mbc.E10-06-0499. URL
https://doi.org/10.1091/mbc.e10-06-0499.
[78] D. Laporte, L. Gouleme, L. Jimenez, and I. Sagot. Yeast quiescence exit
swiftness is influenced by cell volume and chronological age. Microb Cell,
5(2):104–111, 2017. doi: 10.15698/mic2018.02.615. URL https://doi.
org/10.15698%2Fmic2018.02.615.
[79] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361, 1977. doi:
10.1021/j100540a008. URL https://doi.org/10.1021/j100540a008.
[80] P. O. J. Scherer. Computational Physics. Springer, Heidelberg, Germany,
2 edition, 2013.
[81] O. Marescal and I. M. Cheeseman. Cellular mechanisms and regulation
of quiescence. Developmental Cell, 55(3):259–271, 2020. doi: 10.1016/
j.devcel.2020.09.029. URL https://doi.org/10.1016/j.devcel.2020.
09.029.
[82] M.Y. Terzi, M. Izmirli, and B. Gogebakan. The cell fate: senescence
or quiescence. Mol Biol Rep, 43:1213–1220, 2016. doi: 10.
1007/s11033-016-4065-0. URL https://link.springer.com/article/
10.1007/s11033-016-4065-0.
[83] L Hayflick and PS Moorhead. The serial cultivation of human diploid cell
strains. Experimental Cell Research, 25(3):585–621, 1961. ISSN 0014-4827.
doi: 10.1016/0014-4827(61)90192-6. URL https://www.sciencedirect.
com/science/article/pii/0014482761901926.
[84] M. Kaeberlein, 3rd Powers, R. W., K. Steffen, E. Westman, D. Hu, E. O.
Kerr, N. Dang, K. T. Kirkland, S. Fields, and B. K. Kennedy. Regulation
of yeast replicative life span by tor and sch9 in response to nutrients.
Science, 310:1193–1196, 2005. URL https://www.science.org/doi/10.
1126/science.1115535.
[85] K. Steinkraus and M.K. Kaeberlein. Replicative aging in yeast:
The means to the end. Annu. Rev. Cell Dev. Biol., 24:29–54,
2008. URL https://www.annualreviews.org/content/journals/10.
1146/annurev.cellbio.23.090506.123509.
[86] S.C. Mei and C. Brenner. Calorie restriction-mediated replicative lifespan
extension in yeast is non-cell autonomous. PLoS Biol, 13, 2015. URL
https://doi.org/10.1371/journal.pbio.1002048.
[87] D. H. Huberts, J. Gonzalez, M. Heinemann, G. Hubmann, S. S. Lee,
A. Litsios, and E. C. Wit. Calorie restriction does not elicit a robust extension
of replicative lifespan in Saccharomyces cerevisiae. Proc. Natl.
Acad. Sci. USA, 111:11727–11731, 2014. URL https://doi.org/10.
1073/pnas.1410024111.
[88] F. Meitinger, A. Khmelinskii, S. Morlot, B. Kurtulmus, S. Palani,
A. Andres-Pons, and G. ... Pereira. A memory system of negative polarity
cues prevents replicative aging. Cell, 159:1056–1069, 2014. URL
https://pubmed.ncbi.nlm.nih.gov/25416945/.
[89] I. Müller, M. Zimmermann, D. Becker, and M. Flömer. Calendar life
span versus budding life span of Saccharomyces cerevisiae. Mech. Ageing
Dev., 12:47–52, 1980. URL https://doi.org/10.1016/0047-6374(80)
90028-7.
[90] Z. Xie, Y. Zhang, K. Zou, O. Brandman, Q. Ouyang, and H. Li. Molecular
phenotyping of aging in single yeast cells using a novel microfluidic device.
Aging Cell, 11:599–606, 2012. doi: 10.1111/j.1474-9726.2012.00821.x.
URL https://onlinelibrary.wiley.com/doi/10.1111/j.1474-9726.
2012.00821.x.
[91] J. Ryley and O. Pereira-Smith. Microfluidics device for single cell gene expression
analysis in Saccharomyces cerevisiae. Yeast, 23:1065–1073, 2006.
URL https://doi.org/10.1002/yea.1412.
[92] P. Liu, M. Acar, and T. Z. Young. Yeast replicator: A high-throughput
multiplexed microfluidics platform for automated measurements of singlecell
aging. Cell Reports, 13(3):634–644, 2015. doi: 10.1016/j.celrep.2015.
09.012. URL https://doi.org/10.1016/j.celrep.2015.09.012.
[93] M. Jin, P. Bittihn, N. Hao, Y. Li, R. O’Laughlin, L. Pillus, L. S. Tsimring,
and ... Divergent aging of isogenic yeast cells revealed through singlecell
phenotypic dynamics. Cell Systems, 8(3):242–253.e3, 2019. doi: 10.
1016/j.cels.2019.02.002. URL https://doi.org/10.1016/j.cels.2019.
02.002.
[94] M. C. Jo, W. Dang, L. Gu, W. Liu, and L. Qin. High-throughput analysis
of yeast replicative aging using a microfluidic system. Proc. Natl. Acad.
Sci. USA, 112:9364–9369, 2015. URL https://doi.org/10.1073/pnas.
1510328112.
[95] Paul Lee, Neal C. Helman, Wendell A. Lim, and Pei-Jung Hung. A microfluidic
system for dynamic yeast cell imaging. BioTechniques, 44:91–
95, 2008. doi: 10.2144/000112812. URL https://doi.org/10.2144/
000112673.
[96] M M Crane, I B Clark, E Bakker, S Smith, and P S Swain. A microfluidic
system for studying ageing and dynamic single-cell responses in budding
yeast. PLoS One, 9:e100042, June 2014. doi: 10.1371/journal.pone.
0100042. URL https://doi.org/10.1371/journal.pone.0100042.
[97] Yang Li, Meng Jin, Richard O’Laughlin, et al. Multigenerational silencing
dynamics control cell aging. Proceedings of the National Academy
of Sciences of the United States of America, 114(42):11253–11258, 2017.
doi: 10.1073/pnas.1703379114. URL https://doi.org/10.1073/pnas.
1703379114.
[98] Morgan Delarue, Grzegorz Poterewicz, Olcay Hoxha, Jennifer Choi, Woojin
Yoo, Jesse Kauser, Liam Holt, and Oskar Hallatschek. Scwish network
is essential for survival under mechanical pressure. Proc. Natl. Acad.
Sci. USA, 114:13465–13470, 2017. doi: 10.1073/pnas.1713994114. URL
https://doi.org/10.1073/pnas.1711204114.
[99] Burak Okumus, David Landgraf, Geetartha C. Lai, Shalin Bakshi,
Juan Carlos Arias-Castro, Semih Yildiz, Daan Huh, Rafael Fernandez-
Lopez, Collin N. Peterson, Erkan Toprak, et al. Mechanical slowing-down
of cytoplasmic diffusion allows in vivo counting of proteins in individual
cells. Nat. Commun., 7:11641, 2016. doi: 10.1038/ncomms11641.
[100] Burak Okumus, J. Charles, C.J. Baker, Juan Carlos Arias-Castro, Geetartha
C. Lai, E. Leoncini, Shalin Bakshi, S. Luro, David Landgraf, and
Johan Paulsson. Microfluidics-assisted cell screening (macs): An automated
platform for single-cell microscopy of suspension cultures. Nat
Protoc, 13:170–194, 2018. doi: 10.1038/s41596-017-0026-5.
[101] E. S. Alexander, Z. Zhang, R. T. Colin, Kennith E. M., and Anton P. J.
M. The mechanical properties of saccharomyces cerevisiae. Proc. Natl.
Acad. Sci. USA, 97:9871–9874, 2000. doi: 10.1073/pnas.97.18.9871. URL
https://doi.org/10.1073/pnas.97.18.9871.
[102] Liam J. Holt, O Hallatschek, and Morgan Delarue. Mechano-chemostats
to study the effects of compressive stress on yeast, volume 147 of Methods
in Cell Biology, pages 215–231. Elsevier, 2018. ISBN 978-0-12-814282-0.
doi: 10.1016/bs.mcb.2018.06.010. URL https://doi.org/10.1016/bs.
mcb.2018.06.010.
[103] S. Leupold, G. Hubmann, A. Litsios, A. C. Meinema, A. Papagiannakis,
V. Takhaveev, and M. Heinemann. Saccharomyces cerevisiae goes through
distinct metabolic phases during its replicative lifespan. Elife, 8, 2019.
[104] Ivo F Sbalzarini and Petros Koumoutsakos. Feature point tracking and
trajectory analysis for video imaging in cell biology. Journal of Structural
Biology, 151(2):182–195, 2005. doi: 10.1016/j.jsb.2005.06.002.
[105] R. Kubo, N. Hashitsume, and M. Toda. Statistical Physics II: Nonequilibrium
Statistical Mechanics, volume 31 of Springer Series in Solid-State
Sciences. Springer, 1991.
[106] Elliott W. Montroll and George H. Weiss. Random walks on lattices. ii.
Journal of Mathematical Physics, 6(2):167, 1965. doi: 10.1063/1.1704269.
[107] Benoit B. Mandelbrot and John W. Van Ness. Fractional brownian motions,
fractional noises and applications. SIAM Journal on Applied Mathematics,
10(4), October 1968.
[108] David G. Kleinbaum and Mitchel Klein. Survival Analysis: A Self-
Learning Text. Statistics for Biology and Health. Springer, New York,
NY, USA, 3 edition, 2012. URL https://link.springer.com/chapter/
10.1007/978-1-4419-6646-9_1.
[109] Alexei V. Chechkin, Ralf Metzler, Joseph Klafter, and Vsevolod Yu. Gonchar.
Introduction to the theory of lévy flights. In Anomalous Transport,
pages 129–162. Wiley-VCH, 2008. ISBN 9783527622979. doi: 10.1002/
9783527622979.
dc.rights.en.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 228 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Ciencias - Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/144338a8-3393-47a8-af28-44ada8767394/download
https://repositorio.uniandes.edu.co/bitstreams/521fcd14-cadb-4b48-9a61-8b738e1fe80f/download
https://repositorio.uniandes.edu.co/bitstreams/9f29df1f-978d-4545-9173-b8e21217cf0d/download
https://repositorio.uniandes.edu.co/bitstreams/47d863a0-e038-403a-a281-5089e21d6fd7/download
https://repositorio.uniandes.edu.co/bitstreams/bbef3633-d2f1-4c0a-96a6-33c63bbcd533/download
https://repositorio.uniandes.edu.co/bitstreams/1ca7b06a-6b8e-4916-b8d3-752787080790/download
https://repositorio.uniandes.edu.co/bitstreams/c8f3c2d9-40c5-4505-8960-faf8d4a1bc1f/download
https://repositorio.uniandes.edu.co/bitstreams/8d0f1658-7b32-4258-8973-66f9ce2d4f4f/download
bitstream.checksum.fl_str_mv 8277c0282fa27cdb62ee0f459e9a32bd
00ae3297ded9d4b192c39b3d03d34bc3
24013099e9e6abb1575dc6ce0855efd5
ae9e573a68e7f92501b6913cc846c39f
bf4dd3aba3d7caf336238dcbe602b0ee
c26bfb2327eb743f9ecfa836f72add07
cda6a018ac25f793e605737129d24876
aeae14cdfdaca985a72896b547412091
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159142983892992
spelling Pedraza Leal, Juan Manuelvirtual::22891-1Durán Chaparro, David CamiloLeidy, ChadVeenhoff, Liesbeth M.Holt, Liam J.Facultad de Ciencias2025-01-30T19:53:52Z2025-01-30T19:53:52Z2025-01-29https://hdl.handle.net/1992/75865instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Age-related diseases are among the leading causes of mortality, with conditions like cardiovascular diseases, cancer, and diabetes escalating exponentially with age. Delaying aging may have a bigger payoff than tackling individual diseases.To achieve this goal, a deeper understanding of aging at the cellular level is crucial. While several hallmarks of aging have been identified, there is still an absence of a Unified Theory of Aging. Many of these hallmarks appear to be interconnected through physical phenomena like phase separation. Physical Properties hold promise as a unifying framework, potentially offering avenues for rejuvenating cells through physical interventions. Macromolecular crowding emerges as a key aspect in this context, intimately linked with phase separation. While its effects have been observed at nanometer and organelle scales, understanding crowding at the mesoscale (10-100 nm) remains elusive. Our study delves into this mesoscale crowding using Genetically Encoded Multimeric Nanoparticles (GEMs), revealing how changes in cytoplasmic physical properties correlate with different cellular states during the aging process. Our research sheds light on the intricate relationship between macromolecular crowding, phase separation, and cellular aging, offering insights that could pave the way for novel therapeutic interventions. Additionally, we highlight potential biases in traditional single-cell aging studies due to cell trapping pressures. To address this, we developed a microfluidic device that makes use of the Slipstreaming Effect to trap single cells in a low-pressure environment, providing a more accurate representation of cellular aging. This study aims to contribute valuable insights into the aging process, ultimately striving to enhance the quality of life for individuals.Universidad de los AndesNYU Langone HealthDoctorado228 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2The physical properties of the cytoplasm change during aging in s. cerevisiaeTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDAgingMacromolecular crowdingMicrofluidicsYeastDiffusionSaccharomyces cerevisiaeSlipstreamingReplicative AgingChronological AgingGenetically Encoded Multimeric Nanoparticles (GEMs)Physical Properties of the CellPhysics of AgingFísicaBiologíaIngeniería[1] B. Gompertz. On the nature of the function expressive of the law ofhuman mortality, and on a new mode of determining the value of lifecontingencies. Philosophical Transactions of the Royal Society, 115:513–585, 1825. ISSN 0261-0523. doi: 10.1098/rstl.1825.0026. URL https://doi.org/10.1098/rstl.1825.0026.[2] W.B. Zhang, D.B. Sinha, W.E. Pittman, E. Hvatum, N. Stroustrup, andZ. Pincus. Extended twilight among isogenic c. elegans causes a disproportionatescaling between lifespan and health. Cell Syst, 3(4):333–345.e4,2016. doi: 10.1016/j.cels.2016.09.003. URL https://doi.org/10.1016/j.cels.2016.09.003.[3] A. V. Belikov. Age-related diseases as vicious cycles. AgeingResearch Reviews, 49:11–26, 2019. doi: 10.1016/j.arr.2018.11.002. URL https://www.sciencedirect.com/science/article/pii/S1568163718300345?via%3Dihub.[4] C. Lopez-Otin, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer.The hallmarks of aging. Cell, 153(6):1194–1217, 2013. doi: 10.1016/j.cell.2013.05.039. URL https://doi.org/10.1016/j.cell.2013.05.039.[5] C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer.Hallmarks of aging: An expanding universe. Cell, 186(2):243–278,2023. doi: 10.1016/j.cell.2022.11.001. URL https://doi.org/10.1016/j.cell.2022.11.001.[6] Z. Xie, K.A. Jay, D.L. Smith, Y. Zhang, Z. Liu, J. Zheng, and E.H.Blackburn. Early telomerase inactivation accelerates aging independentlyof telomere length. Cell, 160:928–939, 2015. doi: 10.1016/j.cell.2015.01.005. URL https://doi.org/10.1016/j.cell.2015.02.002.[7] S. Alberti and A. A. Hyman. Biomolecular condensates at the nexusof cellular stress, protein aggregation disease, and ageing. Nat Rev MolCell Biol, 22(3):196–213, 2021. doi: 10.1038/s41580-020-00326-6. URLhttps://www.nature.com/articles/s41580-020-00326-6.[8] S. Sil, S. Keegan, F. Ettefa, L. T. Denes, J. D. Boeke, and L. J. Holt. Condensationof line-1 is critical for retrotransposition. eLife, 12:e82991, 2023.doi: 10.7554/eLife.82991. URL https://elifesciences.org/articles/82991.[9] Brian M. Wasko and Matt Kaeberlein. Yeast replicative aging: a paradigmfor defining conserved longevity interventions. FEMS Yeast Research, 14(1):148–159, February 2014. doi: 10.1111/1567-1364.12104. URL https://doi.org/10.1111/1567-1364.12104. Published: 01 February 2014.[10] D.A. Sinclair, K. Mills, and L. Guarente. Aging in Saccharomyces cerevisiae.Annual Review of Microbiology, 52:533–560, 1998. doi: 10.1146/annurev.micro.52.1.533. URL https://www.annualreviews.org/content/journals/10.1146/annurev.micro.52.1.533.[11] V.D. Longo et al. Replicative and chronological aging in Saccharomycescerevisiae. Cell Metab., 16:18–31, 2012. URL https://doi.org/10.1016/j.cmet.2012.06.002.[12] P. Fabrizio and V. Longo. The chronological life span of Saccharomycescerevisiae. Aging Cell, 2:73–81, 2003. URL https://doi.org/10.1046/j.1474-9728.2003.00033.x.[13] V. Longo, E. Gralla, and J. Valentine. Superoxide dismutase activity isessential for stationary phase survival in Saccharomyces cerevisiae. mitochondrialproduction of toxic oxygen species in vivo. J. Biol. Chem.,271:12275–12280, 1996. URL https://doi.org/10.1074/jbc.271.21.12275.[14] R.K. Mortimer and J.R. Johnston. Life span of individual yeast cells. Nature,183:1751–1752, 1959. URL https://www.nature.com/articles/1831751a0.[15] Kenneth L. Chen, Matthew M. Crane, and Matt Kaeberlein. Microfluidictechnologies for yeast replicative lifespan studies. Mechanisms of Ageingand Development, 161:262–269, 2017. ISSN 0047-6374. doi: https://doi.org/10.1016/j.mad.2016.03.009. URL https://www.sciencedirect.com/science/article/pii/S0047637416300306. SI:Yeast life anddeath.[16] Felix Richter, Saskia Bindschedler, Maryline Calonne-Salmon, StéphaneDeclerck, Pilar Junier, and Claire E Stanley. Fungi-on-a-Chip: microfluidicplatforms for single-cell studies on fungi. FEMS Microbiology Reviews,46(6):fuac039, 08 2022. ISSN 0168-6445. doi: 10.1093/femsre/fuac039.URL https://doi.org/10.1093/femsre/fuac039.[17] Michael Polymenis and Brian K. Kennedy. Chronological and replicativelifespan in yeast: do they meet in the middle? Cell Cycle, 11(19):3531–3532, October 1 2012. ISSN 1551-4005. doi: 10.4161/cc.22041. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478299/. Epub2012 Sep 5.[18] Y. Zhang, C. Luo, K. Zou, Z. Xie, O. Brandman, and Q. Ouyang. Singlecell analysis of yeast replicative aging using a new generation of microfluidicdevice. PLoS ONE, 7:e48275, 2012. doi: 10.1371/journal.pone.0048275. URL https://doi.org/10.1371/journal.pone.0048275.[19] S. N. Mouton, D. J. Thaller, M. M. Crane, I. L. Rempel, O. T. Terpstra,A. Steen, and L. M. Veenhoff. A physicochemical perspective of agingfrom single-cell analysis of ph, macromolecular, and organellar crowdingin yeast. eLife, 9:e54707, 2020. URL https://elifesciences.org/articles/54707.[20] S. N. Mouton, A. J. Boersma, and L. M. Veenhoff. A physicochemicalperspective on cellular ageing. Trends Biochem Sci, 48(11):949–962, 2023.doi: 10.1016/j.tibs.2023.08.007. URL https://www.sciencedirect.com/science/article/pii/S0968000423002104?via%3Dihub.[21] A. Hughes and D. Gottschling. An early age increase in vacuolar phlimits mitochondrial function and lifespan in yeast. Nature, 492:261–265, 2012. doi: 10.1038/nature11654. URL https://doi.org/10.1038/nature11654.[22] R. John Ellis. A characteristic of the interiors of all cells is the high totalconcentration of macromolecules they contain. Trends in BiochemicalSciences, 26:597, 2001. ISSN 0968-0004. doi: 10.1016/S0968-0004(01)01938-7. URL http://tibs.trends.com. University of Warwick, CV47AL. Email: jellis@bio.warwick.ac.uk.[23] K. Luby-Phelps. Cytoarchitecture and physical properties of cytoplasm:volume, viscosity, diffusion, intracellular surface area. International Reviewof Cytology, 192:189–221, 2000. doi: 10.1016/s0074-7696(08)60527-6.URL https://doi.org/10.1016/s0074-7696(08)60527-6.[24] David S. Goodsell. Biosites: Cytoplasm. https://pdb101.rcsb.org/sci-art/goodsell-gallery/biosites-cytoplasm, 2024. Accessed:2024-05-01.[25] Germán Rivas and Allen P. Minton. Macromolecular crowding in vitro,in vivo, and in between. Trends in Biochemical Sciences, 41(11):970–981,November 2016. doi: 10.1016/j.tibs.2016.08.013. URL https://doi.org/10.1016/j.tibs.2016.08.013. Published: September 23, 2016.[26] M.M. Crane and M. Kaeberlein. The paths of mortality: how understandingthe biology of aging can help explain systems behavior of single cells.Curr. Opin. Syst. Biol., 8:25–31, 2018. URL https://doi.org/10.1016%2Fj.coisb.2017.11.010.[27] S.B. Zimmerman and S.O. Trach. Estimation of macromolecule concentrationsand excluded volume effects for the cytoplasm of Escherichiacoli. J. Mol. Biol., 222:599–620, 1991. URL https://doi.org/10.1016/0022-2836(91)90499-v.[28] J. Spitzer and B. Poolman. How crowded is the prokaryotic cytoplasm?FEBS Lett., 587:2094–2098, 2013.[29] J.B. Woodruff et al. The centrosome is a selective condensate that nucleatesmicrotubules by concentrating tubulin. Cell, 169:1066–1077, 2017.[30] Arnold J Boersma, Inge S Zuhorn, and Bert Poolman. A sensor for quantificationof macromolecular crowding in living cells. Nature Methods, 12:227–229, 2015. doi: 10.1038/nmeth.3257. URL https://www.nature.com/articles/nmeth.3257.[31] Sandrine Morlot, Jia Song, Isabelle Léger-Silvestre, Audrey Matifas,Olivier Gadal, and Gilles Charvin. Excessive rdna transcription drives thedisruption in nuclear homeostasis during entry into senescence in buddingyeast. Cell Reports, 28:408–422, 2019. doi: 10.1016/j.celrep.2019.06.032.URL https://doi.org/10.1016/j.celrep.2019.06.032.[32] M. C. Munder, D. Midtvedt, T. Franzmann, E. Nüske, O. Otto, M. Herbig,and S. ... Alberti. A ph-driven transition of the cytoplasm from a fluidtoa solid-like state promotes entry into dormancy. eLife, 5:e09347, 2016.[33] B. R. Parry, I. V. Surovtsev, M. T. Cabeen, C. S. O’Hern, E. R. Dufresne,and C. Jacobs-Wagner. The bacterial cytoplasm has glass-like propertiesand is fluidized by metabolic activity. Cell, 156(1-2):183–194, 2013. doi:10.1016/j.cell.2013.11.028.[34] M. Bonucci, T. Shu, and L. J. Holt. How it feels in a cell. Trends CellBiol, 33(11):924–938, 2023. doi: 10.1016/j.tcb.2023.05.002. URL https://doi.org/10.1016/j.tcb.2023.05.002.[35] E.D. Zanotto and J. Mauro. The glassy state of matter: Its definitionand ultimate fate. Journal of Non-crystalline Solids, 459:30–57, 2017.doi: 10.1016/J.JNONCRYSOL.2017.05.019. URL https://doi.org/10.1016/j.jnoncrysol.2017.05.019.[36] L. Berthier. Dynamic heterogeneity in amorphous materials. MaterialsScience, Physics, Ageing Research Reviews, 4:42, 2011. doi: 10.1103/Physics.4.42. URL https://doi.org/10.1103/Physics.4.42.[37] M. Delarue, G. P. Brittingham, L. J. Holt, K. J. Kennedy, S. Pinglay,S. Pfeffer, and I. V. ... Surovtsev. mtorc1 controls phase separationand the biophysical properties of the cytoplasm by tuning crowding.Cell, 174(2):338–349.e20, 2018. doi: 10.1016/j.cell.2018.05.042. URL https://www.sciencedirect.com/science/article/pii/S0092867418306548?via%3Dihub.[38] Michael C Konopka, Irina A Shkel, Scott Cayley, M Thomas Record, andJames C Weisshaar. Crowding and confinement effects on protein diffusionin vivo. Journal of Bacteriology, 188, 2006. doi: 10.1128/jb.01982-05. URLhttps://doi.org/10.1128/jb.01982-05.[39] M. A. McCormick, J. R. Delaney, M. Tsuchiya, S. Tsuchiyama, A. Shemorry,S. Sim, and B. K. ... Kennedy. A comprehensive analysis ofreplicative lifespan in 4,698 single-gene deletion strains uncovers conservedmechanisms of aging. Cell Metabolism, 22(5):895–906, 2015.doi: 10.1016/j.cmet.2015.09.008. URL https://www.sciencedirect.com/science/article/pii/S1550413115004659?via%3Dihub.[40] Craig Pickering, Dylan Hicks, and John Kiely. Why are masters sprintersslower than their younger counterparts? physiological, biomechanical,and motor control related implications for training program design.Journal of Aging and Physical Activity, 29:708–719, 2021. doi: https://doi.org/10.1123/japa.2020-0302. URL https://doi.org/10.1123/japa.2020-0302. First Published Online: 15 Jan 2021.[41] R. S. Balaban. How hot are single cells? The Journal of GeneralPhysiology, 152(8):e202012629, 2020. doi: 10.1085/jgp.202012629. URLhttps://doi.org/10.1085/jgp.202012629,.[42] P. Leuenberger et al. Cell-wide analysis of protein thermal unfolding revealsdeterminants of thermostability. Science, 355:eaai7825, 2017.[43] C. Kenyon. The genetics of ageing. Nature, 464:504–512, 2010. doi:10.1038/nature08980.[44] H. Qian, M.P. Sheetz, and E.L. Elson. Single particle tracking. analysisof diffusion and flow in two-dimensional systems. Biophysical Journal,60(4):910–921, 1991. ISSN 0006-3495. doi: https://doi.org/10.1016/S0006-3495(91)82125-7. URL https://www.sciencedirect.com/science/article/pii/S0006349591821257.[45] Michael J. Saxton and Kenneth Jacobson. Single-particle tracking: applicationsto membrane dynamics. Annual Review of Biophysics andBiomolecular Structure, 26:373–399, 1997. doi: 10.1146/annurev.biophys.26.1.373. URL https://doi.org/10.1146/annurev.biophys.26.1.373.[46] Lina Carlini, Gregory P. Brittingham, Liam J. Holt, and Tarun M.Kapoor. Microtubules enhance mesoscale effective diffusivity in thecrowded metaphase cytoplasm. Developmental Cell, 54(5):574–582.E4,2020. doi: 10.1016/j.devcel.2020.07.020. URL https://doi.org/10.1016/j.devcel.2020.07.020. Published on August 19, 2020.[47] A. Einstein. Über die von der molekularkinetischen theorie der wärmegeforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen.Annalen der Physik, 17:549–560, 1905. doi: 10.1002/andp.19053220806.URL https://doi.org/10.1002/andp.19053220806.[48] S.C. Weber, M.A. Thompson, W.E. Moerner, A.J. Spakowitz, and J.A.Theriot. Analytical tools to distinguish the effects of localization error,confinement, and medium elasticity on the velocity autocorrelation function.Biophysical Journal, 102(11):2443–2450, 2012. doi: 10.1016/j.bpj.2012.03.062. URL https://doi.org/10.1016/j.bpj.2012.03.062.[49] James A Dix and A S Verkman. Crowding effects on diffusion in solutionsand cells. Annual Review of Biophysics, 37:247–263, 2008. doi: 10.1146/annurev.biophys.37.032807.125824.[50] Stanislav Burov, S. M. Ali Tabei, Toan Huynh, et al. Distribution of directionalchange as a signature of complex dynamics. Proceedings of theNational Academy of Sciences, 110(49):19689–19694, 2013. doi: 10.1073/pnas.1319473110. URL https://doi.org/10.1073/pnas.1319473110.Contributed by Stuart A. Rice, October 18, 2013 (sent for review July30, 2013).[51] H.E. Hurst. Long-term storage capacity of reservoirs. Transactions ofthe American Society of Civil Engineers, 116:770, 1951. doi: 10.1061/TACEAT.0006518. URL https://doi.org/10.1061/TACEAT.0006518.[52] Robert Brown. The Miscellaneous Botanical Works of Robert Brown:Volume 1. R. Hardwicke, London, 1866. URL https://doi.org/10.1017/CBO9781107775473.[53] Cindy M. Hernandez, David C. Duran-Chaparro, Trevor van Eeuwen,Michael P. Rout, and Liam J. Holt. Development and characterizationof 50 nanometer diameter genetically encoded multimeric nanoparticles.BioRxiv, July 2024. doi: 10.1101/2024.07.05.602291. URL https://doi.org/10.1101/2024.07.05.602291. bioRxiv preprint, available under aCC-BY 4.0 International license.[54] Grace A. McLaughlin, Erin M. Langdon, John M. Crutchley, Liam J.Holt, M. Gregory Forest, Jay M. Newby, and Amy S. Gladfelter. Spatialheterogeneity of the cytosol revealed by machine learning-based 3d particletracking. Molecular Biology of the Cell, 31(14), 2020. doi: 10.1091/mbc.E20-03-0210. URL https://doi.org/10.1091/mbc.E20-03-0210.[55] Begoña Monterroso, William Margolin, Arnold J. Boersma, Germán Rivas,Bert Poolman, and Silvia Zorrilla. Macromolecular crowding, phaseseparation, and homeostasis in the orchestration of bacterial cellularfunctions. Chemical Reviews, 124(4):1899–1949, 2024. doi: 10.1021/acs.chemrev.3c00622. URL https://doi.org/10.1021/acs.chemrev.3c00622.[56] Ohad Medalia, I Weber, AS Frangakis, D Nicastro, G Gerisch, andW Baumeister. Macromolecular architecture in eukaryotic cells visualizedby cryoelectron tomography. Science, 298(5596):1209–1213, 2002. doi:10.1126/science.1076184. URL http://dx.doi.org/10.1126/science.1076184.[57] Ken A Dill, Kingshuk Ghosh, and Jeremy D Schmit. Physical limits ofcells and proteomes. Proceedings of the National Academy of Sciences,108(44):17876–17882, 2011. doi: 10.1073/pnas.1114477108.[58] Luciano Brocchieri and Samuel Karlin. Protein length in eukaryoticand prokaryotic proteomes. Nucleic Acids Research, 33(10):3390–3400,2005. doi: 10.1093/nar/gki615. URL https://academic.oup.com/nar/article/33/10/3390/1009070.[59] Jianzhi Zhang. Protein-length distributions for the three domains of life.Trends in Genetics, 16(3):107–109, 2000. doi: 10.1016/s0168-9525(99)01922-8. URL http://dx.doi.org/10.1016/s0168-9525(99)01922-8.[60] Kim Henrick and Janet M Thornton. Pqs: a protein quaternarystructure file server. Trends in Biochemical Sciences, 23(9):358–361,1998. doi: 10.1016/s0968-0004(98)01253-5. URL http://dx.doi.org/10.1016/s0968-0004(98)01253-5.[61] Martin Wühr, Timo Güttler, Leonid Peshkin, Graeme C McAlister,Matthew Sonnett, Kazuhiro Ishihara, Aaron C Groen, Max Presler,Brent K Erickson, Timothy J Mitchison, et al. The nuclear proteome of avertebrate. Current Biology, 25(20):2663–2671, 2015. doi: 10.1016/j.cub.2015.08.047. URL http://dx.doi.org/10.1016/j.cub.2015.08.047.[62] Florian C Keber, Thomas Nguyen, Clifford P Brangwynne, and MartinWühr. Evidence for widespread cytoplasmic structuring into mesoscopiccondensates. bioRxiv, page 2021.12.17.473234, 2021. URL https://www.biorxiv.org/content/10.1101/2021.12.17.473234v1.[63] Thomas G Mason and David A Weitz. Optical measurements of frequencydependentlinear viscoelastic moduli of complex fluids. Physical ReviewLetters, 74(7):1250–1253, 1995. doi: 10.1103/PhysRevLett.74.1250. URLhttp://dx.doi.org/10.1103/PhysRevLett.74.1250.[64] Tong Shu, Tamás Szórádi, Gururaj R. Kidiyoor, Ying Xie, Nora L. Herzog,Andrew Bazley, Martina Bonucci, Sarah Keegan, Shivanjali Saxena,Farida Ettefa, Gregory Brittingham, Joël Lemiere, David Fenyö, FredChang, Morgan Delarue, and Liam J. Holt. nucgems probe the biophysicalproperties of the nucleoplasm. bioRxiv, 2021. doi: 10.1101/2021.11.18.469159. URL https://doi.org/10.1101/2021.11.18.469159.[65] Jérémy Lemière, Pablo Real-Calderon, Laura J Holt, Thomas G Fai,and Fred Chang. Control of nuclear size by osmotic forces in schizosaccharomycespombe. Elife, 11, 2022. doi: 10.7554/eLife.76075. URLhttp://dx.doi.org/10.7554/eLife.76075.[66] Tobias W Giessen, Benjamin J Orlando, Andrew A Verdegaal, Melissa GChambers, Jules Gardener, David C Bell, Gabriel Birrane, Maofu Liao,and Pamela A Silver. Large protein organelles form a new iron sequestrationsystem with high storage capacity. eLife, 8:e46070, 2019. doi:https://doi.org/.[67] Edward T Baldwin, Thijs van Eeuwen, David Hoyos, Anna Zalevsky,Evguenia P Tchesnokov, Reinaldo Sánchez, Benjamin D Miller, Laura HDi Stefano, F Xavier Ruiz, Matthew Hancock, et al. Structures, functions,and adaptations of the human line-1 orf2 protein. Nature, pages 1–3, Dec2023. doi: 10.1038/s41586-023-06947-z. URL https://www.nature.com/articles/s41586-023-06947-z.[68] Christopher W Akey, Dharmendra Singh, Christopher Ouch, IsabelEcheverria, Ilia Nudelman, Jeffrey M Varberg, Zhi Yu, Fang Fang, YanShi, Jiaxuan Wang, et al. Comprehensive structure and functional adaptationsof the yeast nuclear pore complex. Cell, Dec 2021. doi: 10.1016/j.cell.2021.12.015. URL http://dx.doi.org/10.1016/j.cell.2021.12.015.[69] Nicolas Chenouard, Ihor Smal, Fabrice de Chaumont, Martin Maška,Ivo F. Sbalzarini, Yuwen Gong, Julien Cardinale, Chloe Carthel, StefanoCoraluppi, Michael Winter, Assaf R. Cohen, William J. Godinez,Karl Rohr, Yannis Kalaidzidis, Liya Liang, James Duncan, Hao Shen,Yushi Xu, Kristoffer E. G. Magnusson, Joakim Jaldén, Helen M. Blau,Perrine Paul-Gilloteaux, Pierre Roudot, Charles Kervrann, Frédéric Waharte,Jean-Yves Tinevez, Spencer L. Shorte, Johannes Willemse, KeesCeller, Gilles P. van Wezel, Hangwei Dan, Yung-Sheng Tsai, Carlos Ortizde Solórzano, Jean-Christophe Olivo-Marin, and Erik Meijering. Objectivecomparison of particle tracking methods. Nature Methods, 11(3):281–289, March 2014. URL http://dx.doi.org/10.1038/nmeth.2808.[70] S. Keegan, L. J. Holt, and D. Fenyö. Gemspa: a napari plugin for analysisof single particle tracking data. bioRxiv, 2023. doi: 10.1101/2023.06.26.546612.[71] J. Surre, C. Saint-Ruf, V. Collin, et al. Strong increase in the autofluorescenceof cells signals struggle for survival. Scientific Reports, 8(1):12088,2018. doi: 10.1038/s41598-018-30623-2. URL https://www.nature.com/articles/s41598-018-30623-2.[72] C. Stringer, T. Wang, M. Michaelos, and et al. Cellpose: a generalistalgorithm for cellular segmentation. Nat Methods, 18(1):100–106,2021. doi: 10.1038/s41592-020-01018-x. URL https://www.nature.com/articles/s41592-020-01018-x.[73] G. E. Neurohr, R. L. Terry, J. Lengefeld, M. Bonney, G. P. Brittingham,F. Moretto, and S. G. ... Manalis. Excessive cell growth causescytoplasm dilution and contributes to senescence. Cell, 176(5):1083–1097.e18, 2019. doi: 10.1016/j.cell.2019.01.033. URL https://10.0.3.248/j.cell.2019.01.018.[74] S. Fehrmann, G. Charvin, Y. Goulev, H. Aguilaniu, and C. Paoletti. Agingyeast cells undergo a sharp entry into senescence unrelated to the lossof mitochondrial membrane potential. Cell Rep, 5(6):1589–1599, 2013.doi: 10.1016/j.celrep.2013.11.013. URL https://doi.org/10.1016/j.celrep.2013.11.013.[75] S. S. Lee, I. Avalos Vizcarra, D. H. Huberts, M. Heinemann, and L. P. Lee.Whole lifespan microscopic observation of budding yeast aging through amicrofluidic dissection platform. Proc. Natl. Acad. Sci. USA, 109:4916–4920, 2012. URL https://doi.org/10.1073/pnas.1113505109.[76] D. C. Duran, I. M. Acosta, R. Acevedo, D. A. Forero, C. A. Hernández,J. M. Pedraza, and E. Suesca. Slipstreaming mother machine: Amicrofluidic device for single-cell dynamic imaging of yeast. Micromachines(Basel), 12(1):4, 2020. doi: 10.3390/mi12010004. URL https://www.mdpi.com/2072-666X/12/1/4.[77] G. S. Davidson, C. P. Allen, R. M. Joe, O. Meirelles, S. Roy, M. R.Wilson, and M. ... Werner-Washburne. The proteomics of quiescent andnonquiescent cell differentiation in yeast stationary-phase cultures. MolBiol Cell, 22(7):988–998, 2011. doi: 10.1091/mbc.E10-06-0499. URLhttps://doi.org/10.1091/mbc.e10-06-0499.[78] D. Laporte, L. Gouleme, L. Jimenez, and I. Sagot. Yeast quiescence exitswiftness is influenced by cell volume and chronological age. Microb Cell,5(2):104–111, 2017. doi: 10.15698/mic2018.02.615. URL https://doi.org/10.15698%2Fmic2018.02.615.[79] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.The Journal of Physical Chemistry, 81(25):2340–2361, 1977. doi:10.1021/j100540a008. URL https://doi.org/10.1021/j100540a008.[80] P. O. J. Scherer. Computational Physics. Springer, Heidelberg, Germany,2 edition, 2013.[81] O. Marescal and I. M. Cheeseman. Cellular mechanisms and regulationof quiescence. Developmental Cell, 55(3):259–271, 2020. doi: 10.1016/j.devcel.2020.09.029. URL https://doi.org/10.1016/j.devcel.2020.09.029.[82] M.Y. Terzi, M. Izmirli, and B. Gogebakan. The cell fate: senescenceor quiescence. Mol Biol Rep, 43:1213–1220, 2016. doi: 10.1007/s11033-016-4065-0. URL https://link.springer.com/article/10.1007/s11033-016-4065-0.[83] L Hayflick and PS Moorhead. The serial cultivation of human diploid cellstrains. Experimental Cell Research, 25(3):585–621, 1961. ISSN 0014-4827.doi: 10.1016/0014-4827(61)90192-6. URL https://www.sciencedirect.com/science/article/pii/0014482761901926.[84] M. Kaeberlein, 3rd Powers, R. W., K. Steffen, E. Westman, D. Hu, E. O.Kerr, N. Dang, K. T. Kirkland, S. Fields, and B. K. Kennedy. Regulationof yeast replicative life span by tor and sch9 in response to nutrients.Science, 310:1193–1196, 2005. URL https://www.science.org/doi/10.1126/science.1115535.[85] K. Steinkraus and M.K. Kaeberlein. Replicative aging in yeast:The means to the end. Annu. Rev. Cell Dev. Biol., 24:29–54,2008. URL https://www.annualreviews.org/content/journals/10.1146/annurev.cellbio.23.090506.123509.[86] S.C. Mei and C. Brenner. Calorie restriction-mediated replicative lifespanextension in yeast is non-cell autonomous. PLoS Biol, 13, 2015. URLhttps://doi.org/10.1371/journal.pbio.1002048.[87] D. H. Huberts, J. Gonzalez, M. Heinemann, G. Hubmann, S. S. Lee,A. Litsios, and E. C. Wit. Calorie restriction does not elicit a robust extensionof replicative lifespan in Saccharomyces cerevisiae. Proc. Natl.Acad. Sci. USA, 111:11727–11731, 2014. URL https://doi.org/10.1073/pnas.1410024111.[88] F. Meitinger, A. Khmelinskii, S. Morlot, B. Kurtulmus, S. Palani,A. Andres-Pons, and G. ... Pereira. A memory system of negative polaritycues prevents replicative aging. Cell, 159:1056–1069, 2014. URLhttps://pubmed.ncbi.nlm.nih.gov/25416945/.[89] I. Müller, M. Zimmermann, D. Becker, and M. Flömer. Calendar lifespan versus budding life span of Saccharomyces cerevisiae. Mech. AgeingDev., 12:47–52, 1980. URL https://doi.org/10.1016/0047-6374(80)90028-7.[90] Z. Xie, Y. Zhang, K. Zou, O. Brandman, Q. Ouyang, and H. Li. Molecularphenotyping of aging in single yeast cells using a novel microfluidic device.Aging Cell, 11:599–606, 2012. doi: 10.1111/j.1474-9726.2012.00821.x.URL https://onlinelibrary.wiley.com/doi/10.1111/j.1474-9726.2012.00821.x.[91] J. Ryley and O. Pereira-Smith. Microfluidics device for single cell gene expressionanalysis in Saccharomyces cerevisiae. Yeast, 23:1065–1073, 2006.URL https://doi.org/10.1002/yea.1412.[92] P. Liu, M. Acar, and T. Z. Young. Yeast replicator: A high-throughputmultiplexed microfluidics platform for automated measurements of singlecellaging. Cell Reports, 13(3):634–644, 2015. doi: 10.1016/j.celrep.2015.09.012. URL https://doi.org/10.1016/j.celrep.2015.09.012.[93] M. Jin, P. Bittihn, N. Hao, Y. Li, R. O’Laughlin, L. Pillus, L. S. Tsimring,and ... Divergent aging of isogenic yeast cells revealed through singlecellphenotypic dynamics. Cell Systems, 8(3):242–253.e3, 2019. doi: 10.1016/j.cels.2019.02.002. URL https://doi.org/10.1016/j.cels.2019.02.002.[94] M. C. Jo, W. Dang, L. Gu, W. Liu, and L. Qin. High-throughput analysisof yeast replicative aging using a microfluidic system. Proc. Natl. Acad.Sci. USA, 112:9364–9369, 2015. URL https://doi.org/10.1073/pnas.1510328112.[95] Paul Lee, Neal C. Helman, Wendell A. Lim, and Pei-Jung Hung. A microfluidicsystem for dynamic yeast cell imaging. BioTechniques, 44:91–95, 2008. doi: 10.2144/000112812. URL https://doi.org/10.2144/000112673.[96] M M Crane, I B Clark, E Bakker, S Smith, and P S Swain. A microfluidicsystem for studying ageing and dynamic single-cell responses in buddingyeast. PLoS One, 9:e100042, June 2014. doi: 10.1371/journal.pone.0100042. URL https://doi.org/10.1371/journal.pone.0100042.[97] Yang Li, Meng Jin, Richard O’Laughlin, et al. Multigenerational silencingdynamics control cell aging. Proceedings of the National Academyof Sciences of the United States of America, 114(42):11253–11258, 2017.doi: 10.1073/pnas.1703379114. URL https://doi.org/10.1073/pnas.1703379114.[98] Morgan Delarue, Grzegorz Poterewicz, Olcay Hoxha, Jennifer Choi, WoojinYoo, Jesse Kauser, Liam Holt, and Oskar Hallatschek. Scwish networkis essential for survival under mechanical pressure. Proc. Natl. Acad.Sci. USA, 114:13465–13470, 2017. doi: 10.1073/pnas.1713994114. URLhttps://doi.org/10.1073/pnas.1711204114.[99] Burak Okumus, David Landgraf, Geetartha C. Lai, Shalin Bakshi,Juan Carlos Arias-Castro, Semih Yildiz, Daan Huh, Rafael Fernandez-Lopez, Collin N. Peterson, Erkan Toprak, et al. Mechanical slowing-downof cytoplasmic diffusion allows in vivo counting of proteins in individualcells. Nat. Commun., 7:11641, 2016. doi: 10.1038/ncomms11641.[100] Burak Okumus, J. Charles, C.J. Baker, Juan Carlos Arias-Castro, GeetarthaC. Lai, E. Leoncini, Shalin Bakshi, S. Luro, David Landgraf, andJohan Paulsson. Microfluidics-assisted cell screening (macs): An automatedplatform for single-cell microscopy of suspension cultures. NatProtoc, 13:170–194, 2018. doi: 10.1038/s41596-017-0026-5.[101] E. S. Alexander, Z. Zhang, R. T. Colin, Kennith E. M., and Anton P. J.M. The mechanical properties of saccharomyces cerevisiae. Proc. Natl.Acad. Sci. USA, 97:9871–9874, 2000. doi: 10.1073/pnas.97.18.9871. URLhttps://doi.org/10.1073/pnas.97.18.9871.[102] Liam J. Holt, O Hallatschek, and Morgan Delarue. Mechano-chemostatsto study the effects of compressive stress on yeast, volume 147 of Methodsin Cell Biology, pages 215–231. Elsevier, 2018. ISBN 978-0-12-814282-0.doi: 10.1016/bs.mcb.2018.06.010. URL https://doi.org/10.1016/bs.mcb.2018.06.010.[103] S. Leupold, G. Hubmann, A. Litsios, A. C. Meinema, A. Papagiannakis,V. Takhaveev, and M. Heinemann. Saccharomyces cerevisiae goes throughdistinct metabolic phases during its replicative lifespan. Elife, 8, 2019.[104] Ivo F Sbalzarini and Petros Koumoutsakos. Feature point tracking andtrajectory analysis for video imaging in cell biology. Journal of StructuralBiology, 151(2):182–195, 2005. doi: 10.1016/j.jsb.2005.06.002.[105] R. Kubo, N. Hashitsume, and M. Toda. Statistical Physics II: NonequilibriumStatistical Mechanics, volume 31 of Springer Series in Solid-StateSciences. Springer, 1991.[106] Elliott W. Montroll and George H. Weiss. Random walks on lattices. ii.Journal of Mathematical Physics, 6(2):167, 1965. doi: 10.1063/1.1704269.[107] Benoit B. Mandelbrot and John W. Van Ness. Fractional brownian motions,fractional noises and applications. SIAM Journal on Applied Mathematics,10(4), October 1968.[108] David G. Kleinbaum and Mitchel Klein. Survival Analysis: A Self-Learning Text. Statistics for Biology and Health. Springer, New York,NY, USA, 3 edition, 2012. URL https://link.springer.com/chapter/10.1007/978-1-4419-6646-9_1.[109] Alexei V. Chechkin, Ralf Metzler, Joseph Klafter, and Vsevolod Yu. Gonchar.Introduction to the theory of lévy flights. In Anomalous Transport,pages 129–162. Wiley-VCH, 2008. ISBN 9783527622979. doi: 10.1002/9783527622979.200321100Publicationhttps://scholar.google.es/citations?user=x8-YWMsAAAAJvirtual::22891-10000-0002-1802-3337virtual::22891-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000001817virtual::22891-1a4c0056f-ab75-4234-9297-925380d7633avirtual::22891-1a4c0056f-ab75-4234-9297-925380d7633avirtual::22891-1ORIGINALformatoAutorizacionTesis.pdfformatoAutorizacionTesis.pdfHIDEapplication/pdf245806https://repositorio.uniandes.edu.co/bitstreams/144338a8-3393-47a8-af28-44ada8767394/download8277c0282fa27cdb62ee0f459e9a32bdMD51Physical Properties of the Cytoplasm.pdfPhysical Properties of the Cytoplasm.pdfapplication/pdf87028532https://repositorio.uniandes.edu.co/bitstreams/521fcd14-cadb-4b48-9a61-8b738e1fe80f/download00ae3297ded9d4b192c39b3d03d34bc3MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniandes.edu.co/bitstreams/9f29df1f-978d-4545-9173-b8e21217cf0d/download24013099e9e6abb1575dc6ce0855efd5MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/47d863a0-e038-403a-a281-5089e21d6fd7/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTformatoAutorizacionTesis.pdf.txtformatoAutorizacionTesis.pdf.txtExtracted texttext/plain2054https://repositorio.uniandes.edu.co/bitstreams/bbef3633-d2f1-4c0a-96a6-33c63bbcd533/downloadbf4dd3aba3d7caf336238dcbe602b0eeMD55Physical Properties of the Cytoplasm.pdf.txtPhysical Properties of the Cytoplasm.pdf.txtExtracted texttext/plain100431https://repositorio.uniandes.edu.co/bitstreams/1ca7b06a-6b8e-4916-b8d3-752787080790/downloadc26bfb2327eb743f9ecfa836f72add07MD57THUMBNAILformatoAutorizacionTesis.pdf.jpgformatoAutorizacionTesis.pdf.jpgGenerated Thumbnailimage/jpeg10902https://repositorio.uniandes.edu.co/bitstreams/c8f3c2d9-40c5-4505-8960-faf8d4a1bc1f/downloadcda6a018ac25f793e605737129d24876MD56Physical Properties of the Cytoplasm.pdf.jpgPhysical Properties of the Cytoplasm.pdf.jpgGenerated Thumbnailimage/jpeg4628https://repositorio.uniandes.edu.co/bitstreams/8d0f1658-7b32-4258-8973-66f9ce2d4f4f/downloadaeae14cdfdaca985a72896b547412091MD581992/75865oai:repositorio.uniandes.edu.co:1992/758652025-03-05 09:39:20.456http://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K