KdV hierarchies and their relation to Kac-Moody algebras
The Korteweg-de Vries (KdV) equation equation was one of the first integrable systems which caught the attention of many researchers during the 19th century due to its several distinguishing characteristics. On the one hand, it admitted a special kind of solution called a soliton: a solitary wave ca...
- Autores:
-
Aragón Rodríguez, Manuel Alejandro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/76149
- Acceso en línea:
- https://hdl.handle.net/1992/76149
- Palabra clave:
- Integrable systems
Lie algebras
KdV equation
Lax equation
Física
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_429d0de02becd39794cc30bfd629bd0e |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/76149 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
KdV hierarchies and their relation to Kac-Moody algebras |
title |
KdV hierarchies and their relation to Kac-Moody algebras |
spellingShingle |
KdV hierarchies and their relation to Kac-Moody algebras Integrable systems Lie algebras KdV equation Lax equation Física |
title_short |
KdV hierarchies and their relation to Kac-Moody algebras |
title_full |
KdV hierarchies and their relation to Kac-Moody algebras |
title_fullStr |
KdV hierarchies and their relation to Kac-Moody algebras |
title_full_unstemmed |
KdV hierarchies and their relation to Kac-Moody algebras |
title_sort |
KdV hierarchies and their relation to Kac-Moody algebras |
dc.creator.fl_str_mv |
Aragón Rodríguez, Manuel Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Téllez Acosta, Gabriel |
dc.contributor.author.none.fl_str_mv |
Aragón Rodríguez, Manuel Alejandro |
dc.contributor.jury.none.fl_str_mv |
Reyes Lega, Andrés Fernando |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Física estadística |
dc.subject.keyword.eng.fl_str_mv |
Integrable systems |
topic |
Integrable systems Lie algebras KdV equation Lax equation Física |
dc.subject.keyword.none.fl_str_mv |
Lie algebras KdV equation Lax equation |
dc.subject.themes.none.fl_str_mv |
Física |
description |
The Korteweg-de Vries (KdV) equation equation was one of the first integrable systems which caught the attention of many researchers during the 19th century due to its several distinguishing characteristics. On the one hand, it admitted a special kind of solution called a soliton: a solitary wave capable of traveling without losing its form and that whose interactions are elastical; on the other hand, the KdV equation exhibited a large quantity of independent conserved quantities regardless of its high nonlinearity. One of the major breakthroughs in the study of the KdV equation came from Drinfeld and Sokolov in 1985, who showed there existed an algebraic structure underlying the KdV system associated to the recently famous Kac-Moody algebras. Moreover, beginning from an arbitrary affine Kac-Moody algebra, Drinfeld and Sokolov gave a method of constructing a hierarchy of evolution equations that could be solved under the same scheme under which the KdV equation could. The purpose of this work is to provide a fundamental background in which Drinfeld and Sokolov’s construction can be understood. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-05-31 |
dc.date.accessioned.none.fl_str_mv |
2025-04-21T15:52:22Z |
dc.date.available.none.fl_str_mv |
2025-04-21T15:52:22Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/76149 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/76149 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Gu Chaohao (Ed.) “Soliton theory and its applications”. In: Springer-Verlag, 1995 M. A. Aragon. “Opers as a generalisation of complex projective structures”. Universidad de los Andes, 2023 [G. K. Balanis. “The plasma inverse problem”. In: J. Math. Phys. 13.7 (1972) [J. Boussinesq. “Essai sur la theorie des eaux courantes”. In: Memoires presentes par divers savants ‘ l’Acad. des Sci. Inst. Nat. France XXIII (1877) M. D. Kruskal & R. M. Miura C. S. Gardner C. S. Greene. “Method for solving the Korteweg-de Vries equation”. In: Phys. Rev. Lett. 19 (1967) G. de Vries D. Korteweg. “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves”. In: Phil. Mag. 39 (1985) Boris Dubrovin, Di Yang, and Don Zagier. On tau-functions for the KdV hierarchy. 2021. arXiv: 1812.08488 [math-ph] M. Dunajski. Soliton, instantons and twistors. Oxford gradute texts in mathematics, 2010 L. D. Faddeev. “Properties of the S-matrix of the one-dimensional Schrodinger equation”. In: Amer. Math. Soc. Transl. 2nd ser. (1967), pp. 139–166 H. Flaschka. “The Toda lattice. II”. In: Phys. Rev. B 9 (1974) C. S. Gardener. “The Korteweg-de Vries equation and generalizations IV”. In: J. Math. Phys. 12 (1971) M. Henon. “Integrals of the Toda lattice”. In: Phys. Rev. B 9 (1974) J. E. Humphreys. Introduction to Lie Algebras and Representation Theory. Vol. 9. Graduate Texts in Mathematics. New York: Springer, 1972 [H. E. Moses I. Kay. “Reflectionless transmission through dielectrics and scattering potentials”. In: J. Appl. Phys. 27 (1956) B. M. Levitan I. M. Gelfand. “On the determination of a differential equation from its spectral function”. In: Amer. Math. soc. Transl. 2nd ser. 1 (1955) Nathan Jacobson. Lie Algebras. New York: Dover Publications, 1979 E. M. de Jager. On the origin of the Korteweg-de Vries equation. 2011. arXiv: math/0602661 [math.HO] V. G. Kac. Infinite Dimensional Lie Algebras. 3rd. Cambridge University Press, 1990 B. Kostant. “The Solution to a Generalized Toda Lattice and Representation Theory”. In: Advances in Mathematics 34 (1979) G. Lamb. “Elements of soliton theory”. In: (1980) P. Lax. “Integrals of nonlinear equations of evolution and solitary waves”. In: Comm. on pure and pplied Math. 21 (1968) P. A. Clarkson M. J. Ablowitz. Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, 1991. M. Toda M. Wadati. “The exact N-soliton solution of the Korteweg-de Vries equation”. In: J. Phys. Soc. Japan 32 (1972) V. A. Marchenko. “Sturm-Liouville Operators and Applications”. In: 1986. url: https://api.semanticscholar.org/CorpusID:118317624 R. M. Miura. “Korteweg-de Vries equation and generalization”. In: J. Math. Physics 9.9 (1968) A. C. Newell. Solitons in mathematics and physics. Ed. by Society for Industrial and Applied Mathematics. 1985 Russell. “Report on waves”. In: Rept. Fourteenth Meeting of the British Association for the Advancement of Science. Ed. by J. Murray. 1844 M. Toda. “Vibration of a chain with a non-linear interaction”. In: J. Phys. Soc. Jpn. 22 (1967) L. D. Faddeev V. E. Zhakarov. “The Korteweg-de Vries equation: a completely integrable Hamiltonian system”. In: Funct. Anal. Appl. 5 (1968) V. V. Sokolov V. G. Drinfeld. “Lie algebras and equations of Korteweg-de Vries type”. In: Journal of Soviet Mathematics 30 (1985) M. Verde. “Asymptotic expansion of phase shifts at high energies”. In: Nuovo cimento 2 (1955) F. W. Warner. Foundations of Differentiable Manifolds and Lie Groups. Vol. 94. Graduate Texts in Mathematics. New York: Springer, 1983 |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
47 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/4a3c8569-7eb0-4a8b-b838-251f115fe4f8/download https://repositorio.uniandes.edu.co/bitstreams/cfce3f79-4086-444e-8c69-259610c4ab36/download https://repositorio.uniandes.edu.co/bitstreams/a1b95fcf-1af2-496d-9f63-b627746fd78b/download https://repositorio.uniandes.edu.co/bitstreams/ca64d8c3-b2e0-4c16-b68f-303c7db2725b/download https://repositorio.uniandes.edu.co/bitstreams/125e47ff-e3fe-425c-b5b9-4b29791cb6c2/download https://repositorio.uniandes.edu.co/bitstreams/33effaf5-1fbc-4787-bcaf-0272d54a7144/download https://repositorio.uniandes.edu.co/bitstreams/501987ce-14fb-4453-8e62-e45665c755aa/download https://repositorio.uniandes.edu.co/bitstreams/9d394a80-6046-4853-b68d-219fcf7ea03d/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 ae9e573a68e7f92501b6913cc846c39f 59c6c1ac507771785cd70aa624b6a05e 1f77c8081af731a340b379feb7b05628 f25ce746be973f9d4698be121fae6c07 a2ef657cf7f65792c6992d3f97372e64 2efeb018c0f16a259ebde9bb87bc373f 8812a3b0f3034befbafd488fc904a73a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927618465693696 |
spelling |
Téllez Acosta, Gabrielvirtual::24039-1Aragón Rodríguez, Manuel AlejandroReyes Lega, Andrés Fernandovirtual::24040-1Facultad de Ciencias::Física estadística2025-04-21T15:52:22Z2025-04-21T15:52:22Z2024-05-31https://hdl.handle.net/1992/76149instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The Korteweg-de Vries (KdV) equation equation was one of the first integrable systems which caught the attention of many researchers during the 19th century due to its several distinguishing characteristics. On the one hand, it admitted a special kind of solution called a soliton: a solitary wave capable of traveling without losing its form and that whose interactions are elastical; on the other hand, the KdV equation exhibited a large quantity of independent conserved quantities regardless of its high nonlinearity. One of the major breakthroughs in the study of the KdV equation came from Drinfeld and Sokolov in 1985, who showed there existed an algebraic structure underlying the KdV system associated to the recently famous Kac-Moody algebras. Moreover, beginning from an arbitrary affine Kac-Moody algebra, Drinfeld and Sokolov gave a method of constructing a hierarchy of evolution equations that could be solved under the same scheme under which the KdV equation could. The purpose of this work is to provide a fundamental background in which Drinfeld and Sokolov’s construction can be understood.Pregrado47 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2KdV hierarchies and their relation to Kac-Moody algebrasTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPIntegrable systemsLie algebrasKdV equationLax equationFísicaGu Chaohao (Ed.) “Soliton theory and its applications”. In: Springer-Verlag, 1995M. A. Aragon. “Opers as a generalisation of complex projective structures”. Universidad de los Andes, 2023[G. K. Balanis. “The plasma inverse problem”. In: J. Math. Phys. 13.7 (1972)[J. Boussinesq. “Essai sur la theorie des eaux courantes”. In: Memoires presentes par divers savants ‘ l’Acad. des Sci. Inst. Nat. France XXIII (1877)M. D. Kruskal & R. M. Miura C. S. Gardner C. S. Greene. “Method for solving the Korteweg-de Vries equation”. In: Phys. Rev. Lett. 19 (1967)G. de Vries D. Korteweg. “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves”. In: Phil. Mag. 39 (1985)Boris Dubrovin, Di Yang, and Don Zagier. On tau-functions for the KdV hierarchy. 2021. arXiv: 1812.08488 [math-ph]M. Dunajski. Soliton, instantons and twistors. Oxford gradute texts in mathematics, 2010L. D. Faddeev. “Properties of the S-matrix of the one-dimensional Schrodinger equation”. In: Amer. Math. Soc. Transl. 2nd ser. (1967), pp. 139–166H. Flaschka. “The Toda lattice. II”. In: Phys. Rev. B 9 (1974)C. S. Gardener. “The Korteweg-de Vries equation and generalizations IV”. In: J. Math. Phys. 12 (1971)M. Henon. “Integrals of the Toda lattice”. In: Phys. Rev. B 9 (1974)J. E. Humphreys. Introduction to Lie Algebras and Representation Theory. Vol. 9. Graduate Texts in Mathematics. New York: Springer, 1972[H. E. Moses I. Kay. “Reflectionless transmission through dielectrics and scattering potentials”. In: J. Appl. Phys. 27 (1956)B. M. Levitan I. M. Gelfand. “On the determination of a differential equation from its spectral function”. In: Amer. Math. soc. Transl. 2nd ser. 1 (1955)Nathan Jacobson. Lie Algebras. New York: Dover Publications, 1979E. M. de Jager. On the origin of the Korteweg-de Vries equation. 2011. arXiv: math/0602661 [math.HO]V. G. Kac. Infinite Dimensional Lie Algebras. 3rd. Cambridge University Press, 1990B. Kostant. “The Solution to a Generalized Toda Lattice and Representation Theory”. In: Advances in Mathematics 34 (1979)G. Lamb. “Elements of soliton theory”. In: (1980)P. Lax. “Integrals of nonlinear equations of evolution and solitary waves”. In: Comm. on pure and pplied Math. 21 (1968)P. A. Clarkson M. J. Ablowitz. Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, 1991.M. Toda M. Wadati. “The exact N-soliton solution of the Korteweg-de Vries equation”. In: J. Phys. Soc. Japan 32 (1972)V. A. Marchenko. “Sturm-Liouville Operators and Applications”. In: 1986. url: https://api.semanticscholar.org/CorpusID:118317624R. M. Miura. “Korteweg-de Vries equation and generalization”. In: J. Math. Physics 9.9 (1968)A. C. Newell. Solitons in mathematics and physics. Ed. by Society for Industrial and Applied Mathematics. 1985Russell. “Report on waves”. In: Rept. Fourteenth Meeting of the British Association for the Advancement of Science. Ed. by J. Murray. 1844M. Toda. “Vibration of a chain with a non-linear interaction”. In: J. Phys. Soc. Jpn. 22 (1967)L. D. Faddeev V. E. Zhakarov. “The Korteweg-de Vries equation: a completely integrable Hamiltonian system”. In: Funct. Anal. Appl. 5 (1968)V. V. Sokolov V. G. Drinfeld. “Lie algebras and equations of Korteweg-de Vries type”. In: Journal of Soviet Mathematics 30 (1985)M. Verde. “Asymptotic expansion of phase shifts at high energies”. In: Nuovo cimento 2 (1955)F. W. Warner. Foundations of Differentiable Manifolds and Lie Groups. Vol. 94. Graduate Texts in Mathematics. New York: Springer, 1983201923451Publicationhttps://scholar.google.es/citations?user=1JHuoIAAAAAJvirtual::24039-1https://scholar.google.es/citations?user=04V0g64AAAAJvirtual::24040-10000-0002-6357-260Xvirtual::24039-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000077224virtual::24039-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055174virtual::24040-198ad9270-ae12-4bd0-9e5e-6ff873936418virtual::24039-198ad9270-ae12-4bd0-9e5e-6ff873936418virtual::24039-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::24040-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::24040-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/4a3c8569-7eb0-4a8b-b838-251f115fe4f8/download4460e5956bc1d1639be9ae6146a50347MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/cfce3f79-4086-444e-8c69-259610c4ab36/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALKdVhierarchies and their relation to Kac-Moody algebras.pdfKdVhierarchies and their relation to Kac-Moody algebras.pdfapplication/pdf444583https://repositorio.uniandes.edu.co/bitstreams/a1b95fcf-1af2-496d-9f63-b627746fd78b/download59c6c1ac507771785cd70aa624b6a05eMD53Formato_Repositorio-firma.pdfFormato_Repositorio-firma.pdfHIDEapplication/pdf414380https://repositorio.uniandes.edu.co/bitstreams/ca64d8c3-b2e0-4c16-b68f-303c7db2725b/download1f77c8081af731a340b379feb7b05628MD54TEXTKdVhierarchies and their relation to Kac-Moody algebras.pdf.txtKdVhierarchies and their relation to Kac-Moody algebras.pdf.txtExtracted texttext/plain102885https://repositorio.uniandes.edu.co/bitstreams/125e47ff-e3fe-425c-b5b9-4b29791cb6c2/downloadf25ce746be973f9d4698be121fae6c07MD55Formato_Repositorio-firma.pdf.txtFormato_Repositorio-firma.pdf.txtExtracted texttext/plain2017https://repositorio.uniandes.edu.co/bitstreams/33effaf5-1fbc-4787-bcaf-0272d54a7144/downloada2ef657cf7f65792c6992d3f97372e64MD57THUMBNAILKdVhierarchies and their relation to Kac-Moody algebras.pdf.jpgKdVhierarchies and their relation to Kac-Moody algebras.pdf.jpgGenerated Thumbnailimage/jpeg7272https://repositorio.uniandes.edu.co/bitstreams/501987ce-14fb-4453-8e62-e45665c755aa/download2efeb018c0f16a259ebde9bb87bc373fMD56Formato_Repositorio-firma.pdf.jpgFormato_Repositorio-firma.pdf.jpgGenerated Thumbnailimage/jpeg11141https://repositorio.uniandes.edu.co/bitstreams/9d394a80-6046-4853-b68d-219fcf7ea03d/download8812a3b0f3034befbafd488fc904a73aMD581992/76149oai:repositorio.uniandes.edu.co:1992/761492025-04-22 04:01:22.972http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |