Contributions to the washboard effect evaluation on unpaved roads

Washboard or corrugation is a common phenomenon on unpaved roads, characterized by undulating patterns that not only cause discomfort to drivers but also pose safety risks due to the loss of wheel-road contact. This study integrates experimental, theoretical, and real-scale measurement approaches to...

Full description

Autores:
Ibagón Carvajal, Laura Marcela
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/76268
Acceso en línea:
https://hdl.handle.net/1992/76268
Palabra clave:
Washboard effect
Soil wheel interaction
Corrugation
Critical velocity
Soil undulations
Soil forces
Particle transport
Unpaved roads
Soil reinforcement
Geocells
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_3f52d53c6a5804fdafe89fff2adce126
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/76268
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Contributions to the washboard effect evaluation on unpaved roads
title Contributions to the washboard effect evaluation on unpaved roads
spellingShingle Contributions to the washboard effect evaluation on unpaved roads
Washboard effect
Soil wheel interaction
Corrugation
Critical velocity
Soil undulations
Soil forces
Particle transport
Unpaved roads
Soil reinforcement
Geocells
Ingeniería
title_short Contributions to the washboard effect evaluation on unpaved roads
title_full Contributions to the washboard effect evaluation on unpaved roads
title_fullStr Contributions to the washboard effect evaluation on unpaved roads
title_full_unstemmed Contributions to the washboard effect evaluation on unpaved roads
title_sort Contributions to the washboard effect evaluation on unpaved roads
dc.creator.fl_str_mv Ibagón Carvajal, Laura Marcela
dc.contributor.advisor.none.fl_str_mv Caicedo Hormaza, Bernardo
dc.contributor.author.none.fl_str_mv Ibagón Carvajal, Laura Marcela
dc.contributor.jury.none.fl_str_mv Medero, Gabriela
López-Caballero, Fernando
Estrada Mejía, Nicolás
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ingeniería::Grupo De Investigación En Geomateriales Y Sistema De Infraestructura
dc.subject.keyword.eng.fl_str_mv Washboard effect
Soil wheel interaction
Corrugation
Critical velocity
Soil undulations
Soil forces
Particle transport
Unpaved roads
Soil reinforcement
Geocells
topic Washboard effect
Soil wheel interaction
Corrugation
Critical velocity
Soil undulations
Soil forces
Particle transport
Unpaved roads
Soil reinforcement
Geocells
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description Washboard or corrugation is a common phenomenon on unpaved roads, characterized by undulating patterns that not only cause discomfort to drivers but also pose safety risks due to the loss of wheel-road contact. This study integrates experimental, theoretical, and real-scale measurement approaches to provide some understanding of the washboard phenomenon. Experimentally, the research evaluated key physical variables controlling washboard development using a multi-pass system in which a rotating wheel traverses a sandy path. Variables such as wheel velocity, wheel mass, and soil properties were examined to assess their influence on undulation formation. Theoretically, a model was developed to compute soil permanent displacements and contact forces by incorporating a simple rheological model, dynamic equilibrium principles, soil-bearing capacity, and macro-element models based on a conical stress distribution. Additionally, the washboard phenomenon was analyzed through particle transport dynamics, by applying a theoretical model previously proposed for sand dune formation. This approach evaluates ripple development via saltation and creep processes under variable wheel velocities and soil densities. Furthermore, the study examines the effectiveness of geosynthetic reinforcement at the road surface by evaluating a cellular confinement system (geocells). The use of geocells was found to enhance soil shear resistance and reduce undulation formation, as demonstrated by comparative experiments on reinforced and non-reinforced tracks. Finally, real-scale measurements from four Ecuadorian unpaved roads were analyzed to assess vehicle behavior at varying speeds. Overall, the findings provide some insights into the driving mechanisms of washboard development and show that vehicle velocity is a critical factor. Additionally, a feasible mitigation strategy is proposed, which may contribute to improved road performance and safety.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-10T18:33:48Z
dc.date.available.none.fl_str_mv 2025-06-10T18:33:48Z
dc.date.issued.none.fl_str_mv 2025-05-26
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/76268
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/76268
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Osama Abu Daoud and Khaled Ksaibati. Studying the effect of gravel roads geometric features on corrugation behavior. International Journal of Pavement Research and Technology, pages 1–9, 2021.
Osama Abu Daoud, Omar Albatayneh, Lars Forslof, and Khaled Ksaibati. Validating the practicality of utilising an image classifier developed using tensorflow framework in collecting corrugation data from gravel roads. International Journal of Pavement Engineering, 23(11):3797–3808, 2022.
Ahmed JR Al-Heety, Mohammed Hassouneh, and Fathi M Abdullah. Application of masw and ert methods for geotechnical site characterization: A case study for roads construction and infrastructure assessment in abu dhabi, uae. Journal of Applied Geophysics, 193:104408, 2021.
Ahmad Alhasan, David J White, and Kris De Brabanter. Quantifying roughness of unpaved roads by terrestrial laser scanning. Transportation Research Record, 2523(1):105–114, 2015.
ASTM. Astm d854: Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, 04, 2002.
ASTM. Astm d3080: Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, 2011.
ASTM. D6913: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM International, D6913, 2017.
ASTM. Astm d4595-17: Standard test method for tensile properties of geotextiles by the wide-width strip method. ASTM International, 2017.
ASTM. Astm d5035-11 (2019). standard test method for breaking force and elongation of textile fabrics (strip method). ASTM International, 2019.
ASTM International. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³)), 2021. URL https://www.astm.org/d1557-12r21.html. Developed by Subcommittee: D18.03, Last Updated: Jul 05, 2021.
Sayanti Banerjee, Bappaditya Manna, and JT Shahu. Geocell as a promising reinforcement technique for road pavement: a state of the art. Indian Geotechnical Journal, 54(4):1644–1665, 2024.
Richard J Bathurst and Rajagopal Karpurapu. Large-scale triaxial compression testing of geoceii-reinforced granular soils. Geotechnical testing journal, pages 296–303, 1993.
Anne-Florence Bitbol, Nicolas Taberlet, Stephen W Morris, and Jim N McElwaine. Scaling and dynamics of washboard roads. Physical Review E, 79(6): 061308, 2009.
Joseph A Both, Daniel C Hong, and Douglas A Kurtze. Corrugation of roads. Physica A: statistical mechanics and its applications, 301(1-4):545–559, 2001.
Edgar Buckingham. On physically similar systems; illustrations of the use of dimensional equations. Physical review, 4(4):345, 1914.
Miguel Angel Cabrera, Bernardo Caicedo, and Luc Thorel. Dynamic actuator for centrifuge modeling of soil-structure interaction. Geotechnical Testing Journal, 35(4):539–547, 2012.
Bernardo Caicedo. Geotechnics of roads: fundamentals. CRC Press, 2018.
Bernardo Caicedo and Gregoire Aguettant. Physical modeling of the washboard effect on unpaved roads. In Advances in Transportation Geotechnics IV: Proceedings of the 4th International Conference on Transportation Geotechnics Volume 1, pages 243–251. Springer, 2022.
Bernardo Caicedo, D Gómez, GA Arango, and ME Riascos. Physical and numerical modelling of a geocell gravity retaining wall. Physica A: Proceedings of the 10th International Conference on Geosynthetics, 10ICG, Berlin, Germany, pages 225–231, 2014.
A Cancelli, P Rimoldi, and F Montanelli. Index and performance tests for geocells in different applications. In Geosynthetic Soil Reinforcement Testing Procedures. ASTM International, 1993.
RH Chen and YM Chiu. Model tests of geocell retaining structures. Geotextiles and Geomembranes, 26(1):56–70, 2008.
Rong-Her Chen, Yu-Wen Huang, and Feng-Chi Huang. Confinement effect of geocells on sand samples under triaxial compression. Geotextiles and Geomembranes, 37:35–44, 2013.
Christophe Clanet, Fabien Hersen, and Lydéric Bocquet. Secrets of successful stone-skipping. Nature, 427(6969):29–29, 2004.
Committee on Publication Ethics (COPE). Cope position statement: Authorship and ai tools, 2023. URL https://publicationethics.org/guidance/ cope-position/authorship-and-ai-tools. Accessed: 2025-06-10.
Ronald U Cooke, Andrew Warren, and Andrew S Goudie. Desert geomorphology. CRC Press, 1993.
Vaughan Cornish. On the formation of sand-dunes. The Geographical Journal, 9 (3):278–302, 1897.
Tiago Moy da Silva and Américo T Bernardes. Ripples and grains segregation on unpaved road. International Journal of Modern Physics C, 29(12):1850120, 2018.
Sarper Demirdö˘gen, Ayhan Gürbüz, and Kaan Yünkül. 3d-printed geocells in footing systems: A comprehensive physical and numerical studies on scaling and performance under centric and eccentric loading scenarios. Transportation Geotechnics, 45:101214, 2024.
Lin Xu Feng, JO Avesani Neto, and Jorge Gabriel Zornberg. Evaluation of the elastic modulus improvement in geocell-reinforced unbound aggregates: Fullscale experimental sections on a highway. Transportation Geotechnics, 49:101444, 2024.
RB Furry. Simulation of the road-corrugation phenomenon. Highw Res Record, 438:54, 1973.
A Hegde and TG Sitharam. Experimental and numerical studies on footings supported on geocell reinforced sand and clay beds. International Journal of Geotechnical Engineering, 7(4):346–354, 2013.
IJ Hewitt, NJ Balmforth, and JN McElwaine. Granular and fluid washboards. Journal of fluid mechanics, 692:446–463, 2012.
Laura Ibagón, Bernardo Caicedo, Juan P Villacreses, and Fabricio Yépez. Modelling of washboard effect on unpaved roads experimental evidence on noncohesive materials. Transportation Geotechnics, 41:101015, 2023.
Laura Ibagón, Bernardo Caicedo, Juan P Villacreses, and Álvaro Achury- Florian. Theoretical modelling of the washboard phenomenon on unpaved roads. Transportation Geotechnics, page 101484, 2025.
Laura Ibagón, Bernardo Caicedo, Juan P. Villacreses, and Fernando López- Caballero. Mitigating washboard effect: A study on geocells as soil reinforcement for unpaved roads. Geotextiles and Geomembranes (under revision), 2025.
International Monetary Fund. Latin america and the caribbean: Large gaps in infrastructure, 2016. URL https://www.imf.org/external/pubs/ft/wp/2016/ wp16185.pdf. Accessed: 2024-04-20.
J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942– 1948. IEEE, 1995. doi: 10.1109/ICNN.1995.488968.
A. Lensen, M. Miranda, E. Álvarez, and Contributors. Pyswarms: A python-based framework for particle swarm optimization. https://pyswarms. readthedocs.io/, 2017. Accessed: 2024-04-11.
Hesham Mahgoub, Christina Bennett, and Ali Selim. Analysis of factors causing corrugation of gravel roads. Transportation research record, 2204(1):3–10, 2011.
KH Mamatha and SV Dinesh. Performance evaluation of geocell-reinforced pavements. International Journal of Geotechnical Engineering, 13(3):277–286, 2019.
Keith B Mather. Why do roads corrugate? Scientific American, 208(1):128–137, 1963.
Chiharu Matsuyama, Yukihiro Tanaka, Motohiro Sato, and Hiroyuki Shima. Corrugation of an unpaved road surface under vehicle weight. Proceedings of the Royal Society A, 476(2241):20200323, 2020.
David C Mays and Boris A Faybishenko. Washboards in unpaved highways as a complex dynamic system. Complexity, 5(6):51–60, 2000.
L. J. Miranda. PySwarms: a research toolkit for Particle Swarm Optimization in Python. Journal of Open Source Software, 3(21):433, 2018. doi: 10.21105/joss. 00433. URL https://doi.org/10.21105/joss.00433.
Hajime Naruse. cellbedform: Cellular automaton model for simulating bedform dynamics. https://github.com/narusehajime/cellbedform, 2018. GitHub repository.
Hiraku Nishimori and Noriyuki Ouchi. Formation of ripple patterns and dunes by wind-blown sand. Physical Review Letters, 71(1):197, 1993.
Baptiste Percier, Sebastien Manneville, Jim N McElwaine, Stephen W Morris, and Nicolas Taberlet. Lift and drag forces on an inclined plow moving over a granular surface. Physical Review E, 84(5):051302, 2011.
Baptiste Percier, Sébastien Manneville, and Nicolas Taberlet. Modeling a washboard road: From experimental measurements to linear stability analysis. Physical Review E, 87(1):012203, 2013.
Pixabay. Desert sand dunes nature texas [photograph], 2022. URL https: //pixabay.com/photos/desert-sand-dunes-nature-texas-7056210/. Retrieved January 24, 2025.
Geo Globe Polska. (2017). Geocells technical data sheet. Retrieved from https://www.geomaxx.es/aplicaciones-de-las-geoceldas-geomaxx/ficha-t%C3%A9cnica-geoceldas/.
Kenneth Pye and Haim Tsoar. Aeolian sand and sand dunes. Springer Science & Business Media, 2008.
K Rajagopal, NR Krishnaswamy, and G Madhavi Latha. Behaviour of sand confined with single and multiple geocells. Geotextiles and Geomembranes, 17(3): 171–184, 1999.
FE Relton. Corrugations on roads. Roads and Road Construction, 16(190):340– 342, 1938.
Lionel Rosellini, Fabien Hersen, Christophe Clanet, and Lyderic Bocquet. Skipping stones. Journal of Fluid Mechanics, 543:137–146, 2005.
Nayan Jyoti Sarma and Arindam Dey. Finite element-based design and analysis of unpaved roads over difficult subsoil: Sustainable application of geotextile reinforcement to attain long-term performance. Indian Geotechnical Journal, pages 1–28, 2024.
S Shoop, R Haehnel, V Janoo, D Harjes, and R Liston. Seasonal deterioration of unsurfaced roads. Journal of geotechnical and geoenvironmental engineering, 132 (7):852–860, 2006.
H.T.U. Smith and R.A. Bagnold. The physics of blown sand and desert dunes. Geographical Review, 33(1), 1943. doi: 10.2307/210635.
LV Socco and C Strobbia. Surface-wave method for near-surface characterization: A tutorial. Near surface geophysics, 2(4):165–185, 2004.
Teeranai Srimahachota, Hao Zheng, Motohiro Sato, Shunji Kanie, and Hiroyuki Shima. Dynamics of washboard road formation driven by a harmonic oscillator. Physical Review E, 96(6):062904, 2017.
Nicolas Taberlet, Stephen W Morris, and Jim N McElwaine. Washboard road: the dynamics of granular ripples formed by rolling wheels. Physical review letters, 99(6):068003, 2007.
Karl Terzaghi. Theoretical soil mechanics. John Wiley & Sons, 1943.
H Tsoar. Types of aeolian sand dunes and their formation. In Geomorphological fluid mechanics, pages 403–429. Springer, 2001.
Juan P Villacreses, Bernardo Caicedo, Silvia Caro, and Fabricio Yépez. Feasibility of the use of nonlinear solitary waves for the nondestructive measurement of young’s modulus of rocks and compacted materials. Transportation Geotechnics, 26:100437, 2021.
D. Wang, D. Tan, and L. Liu. Particle swarm optimization algorithm: an overview. Soft Computing, 22(2):387–408, 2018. doi: 10.1007/s00500-016-2474-6.
John P Wolf. Foundation vibration analysis using simple physical models. Pearson Education, 1994.
Jonathan TH Wu. Geosynthetic reinforced soil (GRS) walls. John Wiley & Sons, 2019.
X Yang and J Han. Geocell-reinforced granular fill under static and cyclical loading: a synthesis of analysis. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 44(4), 2013.
Xiaoming Yang, Jie Han, Sanat K Pokharel, Chandra Manandhar, Robert L Parsons, Dov Leshchinsky, and Izhar Halahmi. Accelerated pavement testing of unpaved roads with geocell-reinforced sand bases. Geotextiles and Geomembranes, 32:95 103, 2012.
Zen Yang. Strength and deformation characteristics of reinforced sand. University of California, Los Angeles, 1972.
Huiwen Zhang, ZhenWu, Jing Hu, Zhiping Zhang, Bin Xiao, and Jianping Ma. Numerical simulation of wind field and sand flux in crescentic sand dunes. Scientific Reports, 11(1):4973, 2021.
R. Zhang, T. Kawamura, and M. Kan. Numerical simulation of formation and movement of various sand dunes. In New Developments in Computational Fluid Dynamics: Proceedings of the Sixth International Nobeyama Workshop on the New Century of Computational Fluid Dynamics, Nobeyama, Japan, April 21 to 24, 2003, pages 165–174. Springer Berlin Heidelberg, 2005.
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 173 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Ingeniería
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Civil y Ambiental
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/642afd72-04ea-4c8d-8147-3247629d3166/download
https://repositorio.uniandes.edu.co/bitstreams/eac6052a-15c1-4bed-9e74-47d4bdb5fb50/download
https://repositorio.uniandes.edu.co/bitstreams/778fdf43-014a-4ef5-a364-3fe2486967f9/download
https://repositorio.uniandes.edu.co/bitstreams/7ae0ec84-db5f-432a-a8b3-8665d339c91b/download
https://repositorio.uniandes.edu.co/bitstreams/b7fb99c9-4d41-41cd-a335-c31be09fbcb4/download
https://repositorio.uniandes.edu.co/bitstreams/f7a6eb9c-c28f-47eb-afe6-f27975075f87/download
https://repositorio.uniandes.edu.co/bitstreams/00855570-892f-4b82-aed4-cc690963b13a/download
bitstream.checksum.fl_str_mv 5853c6235b0aaeee477601e994ee0b9b
3a3b2b303b6a5eabce4f34064ad3eb0b
ae9e573a68e7f92501b6913cc846c39f
3be403822b08b74e019d45d5fdf10887
acf1ce6338d6694ab33e093e4a2d1d17
c2a9c6a27b4ec5e19034b17bcd28daaa
e775714fef911a39eb6cc6843c1d0da1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1837005407822807040
spelling Caicedo Hormaza, Bernardovirtual::24163-1Ibagón Carvajal, Laura MarcelaMedero, GabrielaLópez-Caballero, FernandoEstrada Mejía, NicolásFacultad de Ingeniería::Grupo De Investigación En Geomateriales Y Sistema De Infraestructura2025-06-10T18:33:48Z2025-06-10T18:33:48Z2025-05-26https://hdl.handle.net/1992/76268instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Washboard or corrugation is a common phenomenon on unpaved roads, characterized by undulating patterns that not only cause discomfort to drivers but also pose safety risks due to the loss of wheel-road contact. This study integrates experimental, theoretical, and real-scale measurement approaches to provide some understanding of the washboard phenomenon. Experimentally, the research evaluated key physical variables controlling washboard development using a multi-pass system in which a rotating wheel traverses a sandy path. Variables such as wheel velocity, wheel mass, and soil properties were examined to assess their influence on undulation formation. Theoretically, a model was developed to compute soil permanent displacements and contact forces by incorporating a simple rheological model, dynamic equilibrium principles, soil-bearing capacity, and macro-element models based on a conical stress distribution. Additionally, the washboard phenomenon was analyzed through particle transport dynamics, by applying a theoretical model previously proposed for sand dune formation. This approach evaluates ripple development via saltation and creep processes under variable wheel velocities and soil densities. Furthermore, the study examines the effectiveness of geosynthetic reinforcement at the road surface by evaluating a cellular confinement system (geocells). The use of geocells was found to enhance soil shear resistance and reduce undulation formation, as demonstrated by comparative experiments on reinforced and non-reinforced tracks. Finally, real-scale measurements from four Ecuadorian unpaved roads were analyzed to assess vehicle behavior at varying speeds. Overall, the findings provide some insights into the driving mechanisms of washboard development and show that vehicle velocity is a critical factor. Additionally, a feasible mitigation strategy is proposed, which may contribute to improved road performance and safety.Doctorado173 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaDepartamento de Ingeniería Civil y Ambientalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Contributions to the washboard effect evaluation on unpaved roadsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDWashboard effectSoil wheel interactionCorrugationCritical velocitySoil undulationsSoil forcesParticle transportUnpaved roadsSoil reinforcementGeocellsIngenieríaOsama Abu Daoud and Khaled Ksaibati. Studying the effect of gravel roads geometric features on corrugation behavior. International Journal of Pavement Research and Technology, pages 1–9, 2021.Osama Abu Daoud, Omar Albatayneh, Lars Forslof, and Khaled Ksaibati. Validating the practicality of utilising an image classifier developed using tensorflow framework in collecting corrugation data from gravel roads. International Journal of Pavement Engineering, 23(11):3797–3808, 2022.Ahmed JR Al-Heety, Mohammed Hassouneh, and Fathi M Abdullah. Application of masw and ert methods for geotechnical site characterization: A case study for roads construction and infrastructure assessment in abu dhabi, uae. Journal of Applied Geophysics, 193:104408, 2021.Ahmad Alhasan, David J White, and Kris De Brabanter. Quantifying roughness of unpaved roads by terrestrial laser scanning. Transportation Research Record, 2523(1):105–114, 2015.ASTM. Astm d854: Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, 04, 2002.ASTM. Astm d3080: Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, 2011.ASTM. D6913: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM International, D6913, 2017.ASTM. Astm d4595-17: Standard test method for tensile properties of geotextiles by the wide-width strip method. ASTM International, 2017.ASTM. Astm d5035-11 (2019). standard test method for breaking force and elongation of textile fabrics (strip method). ASTM International, 2019.ASTM International. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³)), 2021. URL https://www.astm.org/d1557-12r21.html. Developed by Subcommittee: D18.03, Last Updated: Jul 05, 2021.Sayanti Banerjee, Bappaditya Manna, and JT Shahu. Geocell as a promising reinforcement technique for road pavement: a state of the art. Indian Geotechnical Journal, 54(4):1644–1665, 2024.Richard J Bathurst and Rajagopal Karpurapu. Large-scale triaxial compression testing of geoceii-reinforced granular soils. Geotechnical testing journal, pages 296–303, 1993.Anne-Florence Bitbol, Nicolas Taberlet, Stephen W Morris, and Jim N McElwaine. Scaling and dynamics of washboard roads. Physical Review E, 79(6): 061308, 2009.Joseph A Both, Daniel C Hong, and Douglas A Kurtze. Corrugation of roads. Physica A: statistical mechanics and its applications, 301(1-4):545–559, 2001.Edgar Buckingham. On physically similar systems; illustrations of the use of dimensional equations. Physical review, 4(4):345, 1914.Miguel Angel Cabrera, Bernardo Caicedo, and Luc Thorel. Dynamic actuator for centrifuge modeling of soil-structure interaction. Geotechnical Testing Journal, 35(4):539–547, 2012.Bernardo Caicedo. Geotechnics of roads: fundamentals. CRC Press, 2018.Bernardo Caicedo and Gregoire Aguettant. Physical modeling of the washboard effect on unpaved roads. In Advances in Transportation Geotechnics IV: Proceedings of the 4th International Conference on Transportation Geotechnics Volume 1, pages 243–251. Springer, 2022.Bernardo Caicedo, D Gómez, GA Arango, and ME Riascos. Physical and numerical modelling of a geocell gravity retaining wall. Physica A: Proceedings of the 10th International Conference on Geosynthetics, 10ICG, Berlin, Germany, pages 225–231, 2014.A Cancelli, P Rimoldi, and F Montanelli. Index and performance tests for geocells in different applications. In Geosynthetic Soil Reinforcement Testing Procedures. ASTM International, 1993.RH Chen and YM Chiu. Model tests of geocell retaining structures. Geotextiles and Geomembranes, 26(1):56–70, 2008.Rong-Her Chen, Yu-Wen Huang, and Feng-Chi Huang. Confinement effect of geocells on sand samples under triaxial compression. Geotextiles and Geomembranes, 37:35–44, 2013.Christophe Clanet, Fabien Hersen, and Lydéric Bocquet. Secrets of successful stone-skipping. Nature, 427(6969):29–29, 2004.Committee on Publication Ethics (COPE). Cope position statement: Authorship and ai tools, 2023. URL https://publicationethics.org/guidance/ cope-position/authorship-and-ai-tools. Accessed: 2025-06-10.Ronald U Cooke, Andrew Warren, and Andrew S Goudie. Desert geomorphology. CRC Press, 1993.Vaughan Cornish. On the formation of sand-dunes. The Geographical Journal, 9 (3):278–302, 1897.Tiago Moy da Silva and Américo T Bernardes. Ripples and grains segregation on unpaved road. International Journal of Modern Physics C, 29(12):1850120, 2018.Sarper Demirdö˘gen, Ayhan Gürbüz, and Kaan Yünkül. 3d-printed geocells in footing systems: A comprehensive physical and numerical studies on scaling and performance under centric and eccentric loading scenarios. Transportation Geotechnics, 45:101214, 2024.Lin Xu Feng, JO Avesani Neto, and Jorge Gabriel Zornberg. Evaluation of the elastic modulus improvement in geocell-reinforced unbound aggregates: Fullscale experimental sections on a highway. Transportation Geotechnics, 49:101444, 2024.RB Furry. Simulation of the road-corrugation phenomenon. Highw Res Record, 438:54, 1973.A Hegde and TG Sitharam. Experimental and numerical studies on footings supported on geocell reinforced sand and clay beds. International Journal of Geotechnical Engineering, 7(4):346–354, 2013.IJ Hewitt, NJ Balmforth, and JN McElwaine. Granular and fluid washboards. Journal of fluid mechanics, 692:446–463, 2012.Laura Ibagón, Bernardo Caicedo, Juan P Villacreses, and Fabricio Yépez. Modelling of washboard effect on unpaved roads experimental evidence on noncohesive materials. Transportation Geotechnics, 41:101015, 2023.Laura Ibagón, Bernardo Caicedo, Juan P Villacreses, and Álvaro Achury- Florian. Theoretical modelling of the washboard phenomenon on unpaved roads. Transportation Geotechnics, page 101484, 2025.Laura Ibagón, Bernardo Caicedo, Juan P. Villacreses, and Fernando López- Caballero. Mitigating washboard effect: A study on geocells as soil reinforcement for unpaved roads. Geotextiles and Geomembranes (under revision), 2025.International Monetary Fund. Latin america and the caribbean: Large gaps in infrastructure, 2016. URL https://www.imf.org/external/pubs/ft/wp/2016/ wp16185.pdf. Accessed: 2024-04-20.J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942– 1948. IEEE, 1995. doi: 10.1109/ICNN.1995.488968.A. Lensen, M. Miranda, E. Álvarez, and Contributors. Pyswarms: A python-based framework for particle swarm optimization. https://pyswarms. readthedocs.io/, 2017. Accessed: 2024-04-11.Hesham Mahgoub, Christina Bennett, and Ali Selim. Analysis of factors causing corrugation of gravel roads. Transportation research record, 2204(1):3–10, 2011.KH Mamatha and SV Dinesh. Performance evaluation of geocell-reinforced pavements. International Journal of Geotechnical Engineering, 13(3):277–286, 2019.Keith B Mather. Why do roads corrugate? Scientific American, 208(1):128–137, 1963.Chiharu Matsuyama, Yukihiro Tanaka, Motohiro Sato, and Hiroyuki Shima. Corrugation of an unpaved road surface under vehicle weight. Proceedings of the Royal Society A, 476(2241):20200323, 2020.David C Mays and Boris A Faybishenko. Washboards in unpaved highways as a complex dynamic system. Complexity, 5(6):51–60, 2000.L. J. Miranda. PySwarms: a research toolkit for Particle Swarm Optimization in Python. Journal of Open Source Software, 3(21):433, 2018. doi: 10.21105/joss. 00433. URL https://doi.org/10.21105/joss.00433.Hajime Naruse. cellbedform: Cellular automaton model for simulating bedform dynamics. https://github.com/narusehajime/cellbedform, 2018. GitHub repository.Hiraku Nishimori and Noriyuki Ouchi. Formation of ripple patterns and dunes by wind-blown sand. Physical Review Letters, 71(1):197, 1993.Baptiste Percier, Sebastien Manneville, Jim N McElwaine, Stephen W Morris, and Nicolas Taberlet. Lift and drag forces on an inclined plow moving over a granular surface. Physical Review E, 84(5):051302, 2011.Baptiste Percier, Sébastien Manneville, and Nicolas Taberlet. Modeling a washboard road: From experimental measurements to linear stability analysis. Physical Review E, 87(1):012203, 2013.Pixabay. Desert sand dunes nature texas [photograph], 2022. URL https: //pixabay.com/photos/desert-sand-dunes-nature-texas-7056210/. Retrieved January 24, 2025.Geo Globe Polska. (2017). Geocells technical data sheet. Retrieved from https://www.geomaxx.es/aplicaciones-de-las-geoceldas-geomaxx/ficha-t%C3%A9cnica-geoceldas/.Kenneth Pye and Haim Tsoar. Aeolian sand and sand dunes. Springer Science & Business Media, 2008.K Rajagopal, NR Krishnaswamy, and G Madhavi Latha. Behaviour of sand confined with single and multiple geocells. Geotextiles and Geomembranes, 17(3): 171–184, 1999.FE Relton. Corrugations on roads. Roads and Road Construction, 16(190):340– 342, 1938.Lionel Rosellini, Fabien Hersen, Christophe Clanet, and Lyderic Bocquet. Skipping stones. Journal of Fluid Mechanics, 543:137–146, 2005.Nayan Jyoti Sarma and Arindam Dey. Finite element-based design and analysis of unpaved roads over difficult subsoil: Sustainable application of geotextile reinforcement to attain long-term performance. Indian Geotechnical Journal, pages 1–28, 2024.S Shoop, R Haehnel, V Janoo, D Harjes, and R Liston. Seasonal deterioration of unsurfaced roads. Journal of geotechnical and geoenvironmental engineering, 132 (7):852–860, 2006.H.T.U. Smith and R.A. Bagnold. The physics of blown sand and desert dunes. Geographical Review, 33(1), 1943. doi: 10.2307/210635.LV Socco and C Strobbia. Surface-wave method for near-surface characterization: A tutorial. Near surface geophysics, 2(4):165–185, 2004.Teeranai Srimahachota, Hao Zheng, Motohiro Sato, Shunji Kanie, and Hiroyuki Shima. Dynamics of washboard road formation driven by a harmonic oscillator. Physical Review E, 96(6):062904, 2017.Nicolas Taberlet, Stephen W Morris, and Jim N McElwaine. Washboard road: the dynamics of granular ripples formed by rolling wheels. Physical review letters, 99(6):068003, 2007.Karl Terzaghi. Theoretical soil mechanics. John Wiley & Sons, 1943.H Tsoar. Types of aeolian sand dunes and their formation. In Geomorphological fluid mechanics, pages 403–429. Springer, 2001.Juan P Villacreses, Bernardo Caicedo, Silvia Caro, and Fabricio Yépez. Feasibility of the use of nonlinear solitary waves for the nondestructive measurement of young’s modulus of rocks and compacted materials. Transportation Geotechnics, 26:100437, 2021.D. Wang, D. Tan, and L. Liu. Particle swarm optimization algorithm: an overview. Soft Computing, 22(2):387–408, 2018. doi: 10.1007/s00500-016-2474-6.John P Wolf. Foundation vibration analysis using simple physical models. Pearson Education, 1994.Jonathan TH Wu. Geosynthetic reinforced soil (GRS) walls. John Wiley & Sons, 2019.X Yang and J Han. Geocell-reinforced granular fill under static and cyclical loading: a synthesis of analysis. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 44(4), 2013.Xiaoming Yang, Jie Han, Sanat K Pokharel, Chandra Manandhar, Robert L Parsons, Dov Leshchinsky, and Izhar Halahmi. Accelerated pavement testing of unpaved roads with geocell-reinforced sand bases. Geotextiles and Geomembranes, 32:95 103, 2012.Zen Yang. Strength and deformation characteristics of reinforced sand. University of California, Los Angeles, 1972.Huiwen Zhang, ZhenWu, Jing Hu, Zhiping Zhang, Bin Xiao, and Jianping Ma. Numerical simulation of wind field and sand flux in crescentic sand dunes. Scientific Reports, 11(1):4973, 2021.R. Zhang, T. Kawamura, and M. Kan. Numerical simulation of formation and movement of various sand dunes. In New Developments in Computational Fluid Dynamics: Proceedings of the Sixth International Nobeyama Workshop on the New Century of Computational Fluid Dynamics, Nobeyama, Japan, April 21 to 24, 2003, pages 165–174. Springer Berlin Heidelberg, 2005.201217101Publication0bac6825-483f-4d53-aa3f-fd7a20ce0cc076fcc284-15ff-46ea-8bd7-c7f7cf3cb821virtual::24163-176fcc284-15ff-46ea-8bd7-c7f7cf3cb821virtual::24163-197f760aa-7d5b-4f4e-9b7c-2079d17ab699https://scholar.google.es/citations?user=9Mm7xv4AAAAJvirtual::24163-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000246379virtual::24163-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000002929ORIGINALContributions to the washboard effect evaluation on unpaved roads.pdfContributions to the washboard effect evaluation on unpaved roads.pdfapplication/pdf39308326https://repositorio.uniandes.edu.co/bitstreams/642afd72-04ea-4c8d-8147-3247629d3166/download5853c6235b0aaeee477601e994ee0b9bMD52Autorización Bilbioteca.pdfAutorización Bilbioteca.pdfHIDEapplication/pdf303069https://repositorio.uniandes.edu.co/bitstreams/eac6052a-15c1-4bed-9e74-47d4bdb5fb50/download3a3b2b303b6a5eabce4f34064ad3eb0bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/778fdf43-014a-4ef5-a364-3fe2486967f9/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTContributions to the washboard effect evaluation on unpaved roads.pdf.txtContributions to the washboard effect evaluation on unpaved roads.pdf.txtExtracted texttext/plain100282https://repositorio.uniandes.edu.co/bitstreams/7ae0ec84-db5f-432a-a8b3-8665d339c91b/download3be403822b08b74e019d45d5fdf10887MD54Autorización Bilbioteca.pdf.txtAutorización Bilbioteca.pdf.txtExtracted texttext/plain2042https://repositorio.uniandes.edu.co/bitstreams/b7fb99c9-4d41-41cd-a335-c31be09fbcb4/downloadacf1ce6338d6694ab33e093e4a2d1d17MD56THUMBNAILContributions to the washboard effect evaluation on unpaved roads.pdf.jpgContributions to the washboard effect evaluation on unpaved roads.pdf.jpgIM Thumbnailimage/jpeg10121https://repositorio.uniandes.edu.co/bitstreams/f7a6eb9c-c28f-47eb-afe6-f27975075f87/downloadc2a9c6a27b4ec5e19034b17bcd28daaaMD55Autorización Bilbioteca.pdf.jpgAutorización Bilbioteca.pdf.jpgIM Thumbnailimage/jpeg14332https://repositorio.uniandes.edu.co/bitstreams/00855570-892f-4b82-aed4-cc690963b13a/downloade775714fef911a39eb6cc6843c1d0da1MD571992/76268oai:repositorio.uniandes.edu.co:1992/762682025-06-11 04:08:28.73https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K