Tailoring electronic phase separation in Pr-doped mixed-valence manganite
Mixed-valence manganites are oxides known for their complex phase diagrams. Consequently, they exhibit diverse physical properties, offering multiple degrees of freedom for precise control through various parameters. These include doping, temperature, and external stimuli such as magnetic or electri...
- Autores:
-
Carranza Celis, Diego Andrés
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75810
- Acceso en línea:
- https://hdl.handle.net/1992/75810
- Palabra clave:
- Mixed-valence manganites
Phase separation
Resistive switching
Física
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_2af42cf2c248b4070859e84d57c09595 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75810 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Tailoring electronic phase separation in Pr-doped mixed-valence manganite |
title |
Tailoring electronic phase separation in Pr-doped mixed-valence manganite |
spellingShingle |
Tailoring electronic phase separation in Pr-doped mixed-valence manganite Mixed-valence manganites Phase separation Resistive switching Física |
title_short |
Tailoring electronic phase separation in Pr-doped mixed-valence manganite |
title_full |
Tailoring electronic phase separation in Pr-doped mixed-valence manganite |
title_fullStr |
Tailoring electronic phase separation in Pr-doped mixed-valence manganite |
title_full_unstemmed |
Tailoring electronic phase separation in Pr-doped mixed-valence manganite |
title_sort |
Tailoring electronic phase separation in Pr-doped mixed-valence manganite |
dc.creator.fl_str_mv |
Carranza Celis, Diego Andrés |
dc.contributor.advisor.none.fl_str_mv |
Ramírez Rojas, Juan Gabriel |
dc.contributor.author.none.fl_str_mv |
Carranza Celis, Diego Andrés |
dc.contributor.jury.none.fl_str_mv |
Hernández Pico, Yenny Rocío Roa Rojas, Jairo |
dc.subject.keyword.eng.fl_str_mv |
Mixed-valence manganites Phase separation Resistive switching |
topic |
Mixed-valence manganites Phase separation Resistive switching Física |
dc.subject.themes.spa.fl_str_mv |
Física |
description |
Mixed-valence manganites are oxides known for their complex phase diagrams. Consequently, they exhibit diverse physical properties, offering multiple degrees of freedom for precise control through various parameters. These include doping, temperature, and external stimuli such as magnetic or electric fields, strain, and pressure. For example, rare-earth manganites doped with calcium can exhibit charge ordering phenomena, metal-to-insulator transitions, and magnetoresistance. The most famous phenomenon is colossal magnetoresistance, where electrical resistance changes by several orders of magnitude with relatively small magnetic fields. One suggested cause of colossal magnetoresistance is phase separation, a phenomenon referring to the coexistence of multiple phases, which has gained significant relevance in current research on mixed-valence manganites. Phase separation emerges due to disorder induced by chemical doping. The separated phases can consist of an antiferromagnetic insulating background coexisting with dispersed ferromagnetic metallic regions. Another case could involve a charge-ordered paramagnetic phase coexisting with disordered regions where ferromagnetic clusters emerge. In other words, a sample of mixed-valence manganite may contain a significant number of coexisting phases that interact with each other. Moreover, some phases can be hidden, which means that in some manganites, the respective complex phase diagram could be incomplete. The interaction between coexisting phases results in exotic physical behaviors that can be exploited in technological applications. However, a complete understanding of phase separation and its control in mixed-valence manganites is still lacking. In this thesis, phase separation in the manganite La5/8−xPrxCa3/8MnO3 (LPCMO) is studied. The existence of hidden phases in this phase-separated system is demonstrated. Additionally, it is shown how the fraction of each coexisting phase can be tailored, allowing control of the electrical resistance as well as the magnetic properties in LPCMO. LPCMO samples with different Pr-doping concentrations were fabricated. The dependence of the phase separation phenomenon on the doping level is studied. The coexistence of antiferromagnetic and ferromagnetic phases is studied through the measurement of magnetic properties. The emergence of a low-temperature paramagnetic phase is revealed using a magnetic resonance method. This dissertation discusses the connection between the reentrance of this paramagnetic phase and glass-like behavior at low temperatures. Magnetic resonance measurements also revealed multiple resonance modes, suggesting the possible presence of hidden phases in LPCMO’s phase separation scheme. Additionally, the magnetic resonance method itself is proposed as a powerful tool for detecting hidden phases in phase-separated systems. Furthermore, this thesis demonstrates that both volatile and non-volatile resistive switching can be induced in LPCMO. Non-volatile resistive switching is achieved by tailoring the fraction of separated phases using electric and magnetic fields. Such tailoring enables the realization of multi-state resistive switching. A possible explanation for the mechanism that allows control of the separated phases is offered in this thesis; measurements of minor temperature loops demonstrate that the evolution of phase separation depends on the sample's thermal history. Consequently, Joule heating caused by electrical pulses can be used to control the fraction of the antiferromagnetic insulating phase. The findings of this thesis provide a new perspective on the phase separation phenomenon in LPCMO. Moreover, the achievement of both volatile and non-volatile resistive switching, along with the ability to perform multi-state resistive switching, highlights the versatility of LPCMO for potential use in next-generation memory devices. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-12-06 |
dc.date.accessioned.none.fl_str_mv |
2025-01-30T12:21:07Z |
dc.date.available.none.fl_str_mv |
2025-01-30T12:21:07Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75810 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75810 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
158 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ciencias - Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/0884cd3e-16e3-4d0b-8293-6a8ecadebae9/download https://repositorio.uniandes.edu.co/bitstreams/6c29e8a8-1909-43f5-886b-2ba2ed253741/download https://repositorio.uniandes.edu.co/bitstreams/da686390-d40d-4b49-be84-6f683eeae6e9/download https://repositorio.uniandes.edu.co/bitstreams/ea0f6be6-497e-4983-bfa4-d2950487c156/download https://repositorio.uniandes.edu.co/bitstreams/4010a6c1-9a2d-4df9-9ae3-082cb627ff5c/download https://repositorio.uniandes.edu.co/bitstreams/6c01180f-aecd-436c-abc5-be8ef4e8cd14/download https://repositorio.uniandes.edu.co/bitstreams/76d7db38-3b38-4c10-a36e-e57a1c90a4b2/download https://repositorio.uniandes.edu.co/bitstreams/a8cf3f7f-1a51-4c14-b90a-90e8827b0108/download |
bitstream.checksum.fl_str_mv |
159a018d3a9c6a8b7135ffb45a44bd4e 6b0aa479ffc3930c4e3f880629a4afc8 4460e5956bc1d1639be9ae6146a50347 ae9e573a68e7f92501b6913cc846c39f 8f0a654133475cdbc25755a709ae7841 1b4e4f67549ae13dcce418c82b8bc445 9ee64bf4087d23b60b45176196a5bcce 0497a31ef4b63be26c66537b27ce6e6b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927689029615616 |
spelling |
Ramírez Rojas, Juan Gabrielvirtual::22845-1Carranza Celis, Diego AndrésHernández Pico, Yenny RocíoRoa Rojas, Jairo2025-01-30T12:21:07Z2025-01-30T12:21:07Z2024-12-06https://hdl.handle.net/1992/75810instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Mixed-valence manganites are oxides known for their complex phase diagrams. Consequently, they exhibit diverse physical properties, offering multiple degrees of freedom for precise control through various parameters. These include doping, temperature, and external stimuli such as magnetic or electric fields, strain, and pressure. For example, rare-earth manganites doped with calcium can exhibit charge ordering phenomena, metal-to-insulator transitions, and magnetoresistance. The most famous phenomenon is colossal magnetoresistance, where electrical resistance changes by several orders of magnitude with relatively small magnetic fields. One suggested cause of colossal magnetoresistance is phase separation, a phenomenon referring to the coexistence of multiple phases, which has gained significant relevance in current research on mixed-valence manganites. Phase separation emerges due to disorder induced by chemical doping. The separated phases can consist of an antiferromagnetic insulating background coexisting with dispersed ferromagnetic metallic regions. Another case could involve a charge-ordered paramagnetic phase coexisting with disordered regions where ferromagnetic clusters emerge. In other words, a sample of mixed-valence manganite may contain a significant number of coexisting phases that interact with each other. Moreover, some phases can be hidden, which means that in some manganites, the respective complex phase diagram could be incomplete. The interaction between coexisting phases results in exotic physical behaviors that can be exploited in technological applications. However, a complete understanding of phase separation and its control in mixed-valence manganites is still lacking. In this thesis, phase separation in the manganite La5/8−xPrxCa3/8MnO3 (LPCMO) is studied. The existence of hidden phases in this phase-separated system is demonstrated. Additionally, it is shown how the fraction of each coexisting phase can be tailored, allowing control of the electrical resistance as well as the magnetic properties in LPCMO. LPCMO samples with different Pr-doping concentrations were fabricated. The dependence of the phase separation phenomenon on the doping level is studied. The coexistence of antiferromagnetic and ferromagnetic phases is studied through the measurement of magnetic properties. The emergence of a low-temperature paramagnetic phase is revealed using a magnetic resonance method. This dissertation discusses the connection between the reentrance of this paramagnetic phase and glass-like behavior at low temperatures. Magnetic resonance measurements also revealed multiple resonance modes, suggesting the possible presence of hidden phases in LPCMO’s phase separation scheme. Additionally, the magnetic resonance method itself is proposed as a powerful tool for detecting hidden phases in phase-separated systems. Furthermore, this thesis demonstrates that both volatile and non-volatile resistive switching can be induced in LPCMO. Non-volatile resistive switching is achieved by tailoring the fraction of separated phases using electric and magnetic fields. Such tailoring enables the realization of multi-state resistive switching. A possible explanation for the mechanism that allows control of the separated phases is offered in this thesis; measurements of minor temperature loops demonstrate that the evolution of phase separation depends on the sample's thermal history. Consequently, Joule heating caused by electrical pulses can be used to control the fraction of the antiferromagnetic insulating phase. The findings of this thesis provide a new perspective on the phase separation phenomenon in LPCMO. Moreover, the achievement of both volatile and non-volatile resistive switching, along with the ability to perform multi-state resistive switching, highlights the versatility of LPCMO for potential use in next-generation memory devices.DoctoradoNANOSCIENCE AND QUANTUM PHENOMENA158 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Tailoring electronic phase separation in Pr-doped mixed-valence manganiteTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDMixed-valence manganitesPhase separationResistive switchingFísica201527970Publication6ce2beec-157c-481d-8faa-d682fa74a732virtual::22845-16ce2beec-157c-481d-8faa-d682fa74a732virtual::22845-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000154482virtual::22845-1ORIGINALautorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf226339https://repositorio.uniandes.edu.co/bitstreams/0884cd3e-16e3-4d0b-8293-6a8ecadebae9/download159a018d3a9c6a8b7135ffb45a44bd4eMD51Tailoring electronic phase separation in Pr-doped mixed-valence manganite.pdfTailoring electronic phase separation in Pr-doped mixed-valence manganite.pdfapplication/pdf24298633https://repositorio.uniandes.edu.co/bitstreams/6c29e8a8-1909-43f5-886b-2ba2ed253741/download6b0aa479ffc3930c4e3f880629a4afc8MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/da686390-d40d-4b49-be84-6f683eeae6e9/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/ea0f6be6-497e-4983-bfa4-d2950487c156/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain1991https://repositorio.uniandes.edu.co/bitstreams/4010a6c1-9a2d-4df9-9ae3-082cb627ff5c/download8f0a654133475cdbc25755a709ae7841MD55Tailoring electronic phase separation in Pr-doped mixed-valence manganite.pdf.txtTailoring electronic phase separation in Pr-doped mixed-valence manganite.pdf.txtExtracted texttext/plain100365https://repositorio.uniandes.edu.co/bitstreams/6c01180f-aecd-436c-abc5-be8ef4e8cd14/download1b4e4f67549ae13dcce418c82b8bc445MD57THUMBNAILautorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg11132https://repositorio.uniandes.edu.co/bitstreams/76d7db38-3b38-4c10-a36e-e57a1c90a4b2/download9ee64bf4087d23b60b45176196a5bcceMD56Tailoring electronic phase separation in Pr-doped mixed-valence manganite.pdf.jpgTailoring electronic phase separation in Pr-doped mixed-valence manganite.pdf.jpgGenerated Thumbnailimage/jpeg6751https://repositorio.uniandes.edu.co/bitstreams/a8cf3f7f-1a51-4c14-b90a-90e8827b0108/download0497a31ef4b63be26c66537b27ce6e6bMD581992/75810oai:repositorio.uniandes.edu.co:1992/758102025-03-05 09:39:21.909http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |