Tailoring electronic phase separation in Pr-doped mixed-valence manganite

Mixed-valence manganites are oxides known for their complex phase diagrams. Consequently, they exhibit diverse physical properties, offering multiple degrees of freedom for precise control through various parameters. These include doping, temperature, and external stimuli such as magnetic or electri...

Full description

Autores:
Carranza Celis, Diego Andrés
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75810
Acceso en línea:
https://hdl.handle.net/1992/75810
Palabra clave:
Mixed-valence manganites
Phase separation
Resistive switching
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_2af42cf2c248b4070859e84d57c09595
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75810
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Tailoring electronic phase separation in Pr-doped mixed-valence manganite
title Tailoring electronic phase separation in Pr-doped mixed-valence manganite
spellingShingle Tailoring electronic phase separation in Pr-doped mixed-valence manganite
Mixed-valence manganites
Phase separation
Resistive switching
Física
title_short Tailoring electronic phase separation in Pr-doped mixed-valence manganite
title_full Tailoring electronic phase separation in Pr-doped mixed-valence manganite
title_fullStr Tailoring electronic phase separation in Pr-doped mixed-valence manganite
title_full_unstemmed Tailoring electronic phase separation in Pr-doped mixed-valence manganite
title_sort Tailoring electronic phase separation in Pr-doped mixed-valence manganite
dc.creator.fl_str_mv Carranza Celis, Diego Andrés
dc.contributor.advisor.none.fl_str_mv Ramírez Rojas, Juan Gabriel
dc.contributor.author.none.fl_str_mv Carranza Celis, Diego Andrés
dc.contributor.jury.none.fl_str_mv Hernández Pico, Yenny Rocío
Roa Rojas, Jairo
dc.subject.keyword.eng.fl_str_mv Mixed-valence manganites
Phase separation
Resistive switching
topic Mixed-valence manganites
Phase separation
Resistive switching
Física
dc.subject.themes.spa.fl_str_mv Física
description Mixed-valence manganites are oxides known for their complex phase diagrams. Consequently, they exhibit diverse physical properties, offering multiple degrees of freedom for precise control through various parameters. These include doping, temperature, and external stimuli such as magnetic or electric fields, strain, and pressure. For example, rare-earth manganites doped with calcium can exhibit charge ordering phenomena, metal-to-insulator transitions, and magnetoresistance. The most famous phenomenon is colossal magnetoresistance, where electrical resistance changes by several orders of magnitude with relatively small magnetic fields. One suggested cause of colossal magnetoresistance is phase separation, a phenomenon referring to the coexistence of multiple phases, which has gained significant relevance in current research on mixed-valence manganites. Phase separation emerges due to disorder induced by chemical doping. The separated phases can consist of an antiferromagnetic insulating background coexisting with dispersed ferromagnetic metallic regions. Another case could involve a charge-ordered paramagnetic phase coexisting with disordered regions where ferromagnetic clusters emerge. In other words, a sample of mixed-valence manganite may contain a significant number of coexisting phases that interact with each other. Moreover, some phases can be hidden, which means that in some manganites, the respective complex phase diagram could be incomplete. The interaction between coexisting phases results in exotic physical behaviors that can be exploited in technological applications. However, a complete understanding of phase separation and its control in mixed-valence manganites is still lacking. In this thesis, phase separation in the manganite La5/8−xPrxCa3/8MnO3 (LPCMO) is studied. The existence of hidden phases in this phase-separated system is demonstrated. Additionally, it is shown how the fraction of each coexisting phase can be tailored, allowing control of the electrical resistance as well as the magnetic properties in LPCMO. LPCMO samples with different Pr-doping concentrations were fabricated. The dependence of the phase separation phenomenon on the doping level is studied. The coexistence of antiferromagnetic and ferromagnetic phases is studied through the measurement of magnetic properties. The emergence of a low-temperature paramagnetic phase is revealed using a magnetic resonance method. This dissertation discusses the connection between the reentrance of this paramagnetic phase and glass-like behavior at low temperatures. Magnetic resonance measurements also revealed multiple resonance modes, suggesting the possible presence of hidden phases in LPCMO’s phase separation scheme. Additionally, the magnetic resonance method itself is proposed as a powerful tool for detecting hidden phases in phase-separated systems. Furthermore, this thesis demonstrates that both volatile and non-volatile resistive switching can be induced in LPCMO. Non-volatile resistive switching is achieved by tailoring the fraction of separated phases using electric and magnetic fields. Such tailoring enables the realization of multi-state resistive switching. A possible explanation for the mechanism that allows control of the separated phases is offered in this thesis; measurements of minor temperature loops demonstrate that the evolution of phase separation depends on the sample's thermal history. Consequently, Joule heating caused by electrical pulses can be used to control the fraction of the antiferromagnetic insulating phase. The findings of this thesis provide a new perspective on the phase separation phenomenon in LPCMO. Moreover, the achievement of both volatile and non-volatile resistive switching, along with the ability to perform multi-state resistive switching, highlights the versatility of LPCMO for potential use in next-generation memory devices.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-12-06
dc.date.accessioned.none.fl_str_mv 2025-01-30T12:21:07Z
dc.date.available.none.fl_str_mv 2025-01-30T12:21:07Z
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75810
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75810
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 158 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Ciencias - Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/0884cd3e-16e3-4d0b-8293-6a8ecadebae9/download
https://repositorio.uniandes.edu.co/bitstreams/6c29e8a8-1909-43f5-886b-2ba2ed253741/download
https://repositorio.uniandes.edu.co/bitstreams/da686390-d40d-4b49-be84-6f683eeae6e9/download
https://repositorio.uniandes.edu.co/bitstreams/ea0f6be6-497e-4983-bfa4-d2950487c156/download
https://repositorio.uniandes.edu.co/bitstreams/4010a6c1-9a2d-4df9-9ae3-082cb627ff5c/download
https://repositorio.uniandes.edu.co/bitstreams/6c01180f-aecd-436c-abc5-be8ef4e8cd14/download
https://repositorio.uniandes.edu.co/bitstreams/76d7db38-3b38-4c10-a36e-e57a1c90a4b2/download
https://repositorio.uniandes.edu.co/bitstreams/a8cf3f7f-1a51-4c14-b90a-90e8827b0108/download
bitstream.checksum.fl_str_mv 159a018d3a9c6a8b7135ffb45a44bd4e
6b0aa479ffc3930c4e3f880629a4afc8
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
8f0a654133475cdbc25755a709ae7841
1b4e4f67549ae13dcce418c82b8bc445
9ee64bf4087d23b60b45176196a5bcce
0497a31ef4b63be26c66537b27ce6e6b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927689029615616
spelling Ramírez Rojas, Juan Gabrielvirtual::22845-1Carranza Celis, Diego AndrésHernández Pico, Yenny RocíoRoa Rojas, Jairo2025-01-30T12:21:07Z2025-01-30T12:21:07Z2024-12-06https://hdl.handle.net/1992/75810instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Mixed-valence manganites are oxides known for their complex phase diagrams. Consequently, they exhibit diverse physical properties, offering multiple degrees of freedom for precise control through various parameters. These include doping, temperature, and external stimuli such as magnetic or electric fields, strain, and pressure. For example, rare-earth manganites doped with calcium can exhibit charge ordering phenomena, metal-to-insulator transitions, and magnetoresistance. The most famous phenomenon is colossal magnetoresistance, where electrical resistance changes by several orders of magnitude with relatively small magnetic fields. One suggested cause of colossal magnetoresistance is phase separation, a phenomenon referring to the coexistence of multiple phases, which has gained significant relevance in current research on mixed-valence manganites. Phase separation emerges due to disorder induced by chemical doping. The separated phases can consist of an antiferromagnetic insulating background coexisting with dispersed ferromagnetic metallic regions. Another case could involve a charge-ordered paramagnetic phase coexisting with disordered regions where ferromagnetic clusters emerge. In other words, a sample of mixed-valence manganite may contain a significant number of coexisting phases that interact with each other. Moreover, some phases can be hidden, which means that in some manganites, the respective complex phase diagram could be incomplete. The interaction between coexisting phases results in exotic physical behaviors that can be exploited in technological applications. However, a complete understanding of phase separation and its control in mixed-valence manganites is still lacking. In this thesis, phase separation in the manganite La5/8−xPrxCa3/8MnO3 (LPCMO) is studied. The existence of hidden phases in this phase-separated system is demonstrated. Additionally, it is shown how the fraction of each coexisting phase can be tailored, allowing control of the electrical resistance as well as the magnetic properties in LPCMO. LPCMO samples with different Pr-doping concentrations were fabricated. The dependence of the phase separation phenomenon on the doping level is studied. The coexistence of antiferromagnetic and ferromagnetic phases is studied through the measurement of magnetic properties. The emergence of a low-temperature paramagnetic phase is revealed using a magnetic resonance method. This dissertation discusses the connection between the reentrance of this paramagnetic phase and glass-like behavior at low temperatures. Magnetic resonance measurements also revealed multiple resonance modes, suggesting the possible presence of hidden phases in LPCMO’s phase separation scheme. Additionally, the magnetic resonance method itself is proposed as a powerful tool for detecting hidden phases in phase-separated systems. Furthermore, this thesis demonstrates that both volatile and non-volatile resistive switching can be induced in LPCMO. Non-volatile resistive switching is achieved by tailoring the fraction of separated phases using electric and magnetic fields. Such tailoring enables the realization of multi-state resistive switching. A possible explanation for the mechanism that allows control of the separated phases is offered in this thesis; measurements of minor temperature loops demonstrate that the evolution of phase separation depends on the sample's thermal history. Consequently, Joule heating caused by electrical pulses can be used to control the fraction of the antiferromagnetic insulating phase. The findings of this thesis provide a new perspective on the phase separation phenomenon in LPCMO. Moreover, the achievement of both volatile and non-volatile resistive switching, along with the ability to perform multi-state resistive switching, highlights the versatility of LPCMO for potential use in next-generation memory devices.DoctoradoNANOSCIENCE AND QUANTUM PHENOMENA158 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Tailoring electronic phase separation in Pr-doped mixed-valence manganiteTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDMixed-valence manganitesPhase separationResistive switchingFísica201527970Publication6ce2beec-157c-481d-8faa-d682fa74a732virtual::22845-16ce2beec-157c-481d-8faa-d682fa74a732virtual::22845-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000154482virtual::22845-1ORIGINALautorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf226339https://repositorio.uniandes.edu.co/bitstreams/0884cd3e-16e3-4d0b-8293-6a8ecadebae9/download159a018d3a9c6a8b7135ffb45a44bd4eMD51Tailoring electronic phase separation in Pr-doped mixed-valence manganite.pdfTailoring electronic phase separation in Pr-doped mixed-valence manganite.pdfapplication/pdf24298633https://repositorio.uniandes.edu.co/bitstreams/6c29e8a8-1909-43f5-886b-2ba2ed253741/download6b0aa479ffc3930c4e3f880629a4afc8MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/da686390-d40d-4b49-be84-6f683eeae6e9/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/ea0f6be6-497e-4983-bfa4-d2950487c156/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain1991https://repositorio.uniandes.edu.co/bitstreams/4010a6c1-9a2d-4df9-9ae3-082cb627ff5c/download8f0a654133475cdbc25755a709ae7841MD55Tailoring electronic phase separation in Pr-doped mixed-valence manganite.pdf.txtTailoring electronic phase separation in Pr-doped mixed-valence manganite.pdf.txtExtracted texttext/plain100365https://repositorio.uniandes.edu.co/bitstreams/6c01180f-aecd-436c-abc5-be8ef4e8cd14/download1b4e4f67549ae13dcce418c82b8bc445MD57THUMBNAILautorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg11132https://repositorio.uniandes.edu.co/bitstreams/76d7db38-3b38-4c10-a36e-e57a1c90a4b2/download9ee64bf4087d23b60b45176196a5bcceMD56Tailoring electronic phase separation in Pr-doped mixed-valence manganite.pdf.jpgTailoring electronic phase separation in Pr-doped mixed-valence manganite.pdf.jpgGenerated Thumbnailimage/jpeg6751https://repositorio.uniandes.edu.co/bitstreams/a8cf3f7f-1a51-4c14-b90a-90e8827b0108/download0497a31ef4b63be26c66537b27ce6e6bMD581992/75810oai:repositorio.uniandes.edu.co:1992/758102025-03-05 09:39:21.909http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K