Life in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia
The lowland ecosystems of the Magdalena River Valley exhibit a marked gradient, from tropical dry forests in the south of the valley to tropical rainforests and swamps in the north. These ecosystems have a composition of fauna and flora characterized not only by a high level of diversity but also by...
- Autores:
-
Montes Rojas, Andrés Fernando
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75421
- Acceso en línea:
- https://hdl.handle.net/1992/75421
- Palabra clave:
- Life-history traits
Occupancy modeling
Camera traps
Dryland
Human-made disturbance
Extreme environment
Gradient
Imperfect detection
Spatial autocorrelation
Multispecies occupancy
Ecological restoration
Corridors
Functional diversity
Conservation strategies
Biología
- Rights
- embargoedAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_1f053c0bb42a35d5b604a8f893fa40f9 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75421 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Life in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia |
title |
Life in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia |
spellingShingle |
Life in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia Life-history traits Occupancy modeling Camera traps Dryland Human-made disturbance Extreme environment Gradient Imperfect detection Spatial autocorrelation Multispecies occupancy Ecological restoration Corridors Functional diversity Conservation strategies Biología |
title_short |
Life in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia |
title_full |
Life in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia |
title_fullStr |
Life in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia |
title_full_unstemmed |
Life in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia |
title_sort |
Life in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia |
dc.creator.fl_str_mv |
Montes Rojas, Andrés Fernando |
dc.contributor.advisor.none.fl_str_mv |
Link Ospina, Andrés |
dc.contributor.author.none.fl_str_mv |
Montes Rojas, Andrés Fernando |
dc.contributor.jury.none.fl_str_mv |
Pardo Vargas, Lain E. Cadena Ordóñez, Carlos Daniel |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Centro de Investigaciones Ecológicas la Macarena |
dc.subject.keyword.eng.fl_str_mv |
Life-history traits Occupancy modeling Camera traps Dryland Human-made disturbance Extreme environment Gradient Imperfect detection Spatial autocorrelation Multispecies occupancy Ecological restoration Corridors Functional diversity |
topic |
Life-history traits Occupancy modeling Camera traps Dryland Human-made disturbance Extreme environment Gradient Imperfect detection Spatial autocorrelation Multispecies occupancy Ecological restoration Corridors Functional diversity Conservation strategies Biología |
dc.subject.keyword.none.fl_str_mv |
Conservation strategies |
dc.subject.themes.spa.fl_str_mv |
Biología |
description |
The lowland ecosystems of the Magdalena River Valley exhibit a marked gradient, from tropical dry forests in the south of the valley to tropical rainforests and swamps in the north. These ecosystems have a composition of fauna and flora characterized not only by a high level of diversity but also by a high level of vulnerability due to the productive processes there. Activities such as cattle ranching, agriculture, mining, and urban expansion have led to an enormous transformation of the forests, threatening the species that live there. Under these conditions, forest-dwelling animals, such as medium and large mammals and some birds, are exposed to pressures that compromise their long-term persistence in the landscape. This project focused on the effects of environmental and anthropogenic factors on the diversity and occupancy patterns of mammals and ground-dwelling birds along the lowland forests of the Magdalena River Valley. It uses camera trap data from eight study sites (30 to 35 camera traps per site) located along the gradient. The study is divided into three chapters, in the first I used a multispecies occupancy model to assess the response of mammals and birds to the extreme conditions of an arid ecosystem and human activity, and how this response may vary with two species' traits, body mass and percentage of carnivory. In the second chapter, I focused on the effects of environmental and anthropogenic disturbance gradients on the community structure and occupancy patterns of mammals and ground-dwelling birds along the Magdalena River valley. Finally, in the third chapter, I evaluated the effectiveness of a conservation strategy based on restoration corridors to improve landscape connectivity for ground-dwelling fauna. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-12-11 |
dc.date.accessioned.none.fl_str_mv |
2025-01-15T13:40:59Z |
dc.date.accepted.none.fl_str_mv |
2025-01-15 |
dc.date.available.none.fl_str_mv |
2026-05-31 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75421 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75421 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Acharya, B. K., Sanders, N. J., Vijayan, L., & Chettri, B. (2011). Elevational gradients in bird diversity in the Eastern Himalaya: An evaluation of distribution patterns and their underlying mechanisms. PloS One, 6(12), e29097. Acosta-Galvis, A. R. (2012). Anfibios de los enclaves secos en la ecorregión de La Tatacoa y su área de influencia, alto Magdalena, Colombia. Biota Colombiana, 13(2). Ahumada, J. A., Hurtado, J., & Lizcano, D. (2013). Monitoring the status and trends of tropical forest terrestrial vertebrate communities from camera trap data: A tool for conservation. PloS One, 8(9), e73707. Ahumada, J. A., Silva, C. E., Gajapersad, K., Hallam, C., Hurtado, J., Martin, E., McWilliam, A., Mugerwa, B., O’Brien, T., & Rovero, F. (2011). Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1578), 2703–2711. Allen, R. B., Forsyth, D. M., Allen, R. K., Affeld, K., & MacKenzie, D. I. (2015). Solar radiation determines site occupancy of coexisting tropical and temperate deer species introduced to New Zealand forests. PLoS One, 10(6), e0128924. Almond, R. E. A., Grooten, M., & Peterson, T. (2020). Living Planet Report 2020-Bending the curve of biodiversity loss. World Wildlife Fund. Andronache, I., Marin, M., Fischer, R., Ahammer, H., Radulovic, M., Ciobotaru, A.-M., Jelinek, H. F., Di Ieva, A., Pintilii, R.-D., & Drăghici, C.-C. (2019). Dynamics of forest fragmentation and connectivity using particle and fractal analysis. Scientific Reports, 9(1), 12228. Arroyave, M. del P., Gómez, C., Gutiérrez, M. E., Múnera, D. P., Zapata, P. A., Vergara, I. C., Andrade, L. M., & Ramos, K. C. (2006). Impactos de las carreteras sobre la fauna silvestre y sus principales medidas de manejo. Revista Eia, 5, 45–57. Asensio, N., José-Domínguez, J. M., & Dunn, J. C. (2018). Socioecological factors affecting range defensibility among howler monkeys. International Journal of Primatology, 39, 90–104. Ayram, C. A. C., Etter, A., Díaz-Timoté, J., Buriticá, S. R., Ramírez, W., & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117, 106630. Bauer, B., Berti, E., Ryser, R., Gauzens, B., Hirt, M. R., Rosenbaum, B., Digel, C., Ott, D., Scheu, S., & Brose, U. (2022). Biotic filtering by species’ interactions constrains food‐web variability across spatial and abiotic gradients. Ecology Letters, 25(5), 1225–1236. https://doi.org/10.1111/ele.13995 Barcelos, D., Vieira, E. M., Pinheiro, M. S., & Ferreira, G. B. (2022). A before− after assessment of the response of mammals to tourism in a Brazilian national park. Oryx, 56(6), 854–863. Bastos, B., Pradhan, N., Tarroso, P., Brito, J. C., & Boratyński, Z. (2021). Environmental determinants of minimum body temperature in mammals. Journal of Vertebrate Biology, 70(2), 21004.1. Beier, P., & Noss, R. F. (1998). Do habitat corridors provide connectivity? Conservation Biology, 12(6), 1241–1252. Benitez-Lopez, A., Alkemade, R., Schipper, A. M., Ingram, D. J., Verweij, P. A., Eikelboom, J. A. J., & Huijbregts, M. A. J. (2017). The impact of hunting on tropical mammal and bird populations. Science, 356(6334), 180–183. Bergmann, C. (1848). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Betts, M. G., Wolf, C., Ripple, W. J., Phalan, B., Millers, K. A., Duarte, A., Butchart, S. H., & Levi, T. (2017). Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature, 547(7664), 441–444. Birdlife International. (2024). BirdLife Data Zone. https://datazone.birdlife.org/site/dnlrequest Birds of the World—Comprehensive life histories for all bird species and families. (2024). https://birdsoftheworld.org/bow/home Bogoni, J. A., Ferraz, K. M., & Peres, C. A. (2022). Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biological Conservation, 272, 109635. Boron, V., Deere, N. J., Xofis, P., Link, A., Quiñones-Guerrero, A., Payan, E., & Tzanopoulos, J. (2019). Richness, diversity, and factors influencing occupancy of mammal communities across human-modified landscapes in Colombia. Biological Conservation, 232, 108–116. Boron, V., Xofis, P., Link, A., Payan, E., & Tzanopoulos, J. (2020). Conserving predators across agricultural landscapes in Colombia: Habitat use and space partitioning by jaguars, pumas, ocelots and jaguarundis. Oryx, 54(4), 554–563. Brito, J. C., Godinho, R., Martínez‐Freiría, F., Pleguezuelos, J. M., Rebelo, H., Santos, X., Vale, C. G., Velo‐Antón, G., Boratyński, Z., & Carvalho, S. B. (2014). Unravelling biodiversity, evolution and threats to conservation in the Sahara‐Sahel. Biological Reviews, 89(1), 215–231. Brito, J. C., Sow, A. S., Vale, C. G., Pizzigalli, C., Hamidou, D., Gonçalves, D. V., Martínez-Freiría, F., Santarém, F., Rebelo, H., & Campos, J. C. (2022). Diversity, distribution and conservation of land mammals in Mauritania, North-West Africa. Plos One, 17(8), e0269870. Brito, J. C., Tarroso, P., Vale, C. G., Martínez‐Freiría, F., Boratyński, Z., Campos, J. C., Ferreira, S., Godinho, R., Gonçalves, D. V., & Leite, J. V. (2016). Conservation biogeography of the Sahara‐Sahel: Additional protected areas are needed to secure unique biodiversity. Diversity and Distributions, 22(4), 371–384. Brodie, J. F., Williams, S., & Garner, B. (2021). The decline of mammal functional and evolutionary diversity worldwide. Proceedings of the National Academy of Sciences, 118(3), e1921849118. Brooks, S. P., & Gelman, A. (1998). General Methods for Monitoring Convergence of Iterative Simulations. Journal of Computational and Graphical Statistics, 7(4), 434–455. https://doi.org/10.1080/10618600.1998.10474787 Cardinale, B. J., Palmer, M. A., & Collins, S. L. (2002). Species diversity enhances ecosystem functioning through interspecific facilitation. Nature, 415(6870), 426–429. Cazalis, V. (2022). Species richness response to human pressure hides important assemblage transformations. Proceedings of the National Academy of Sciences, 119(19), e2107361119. https://doi.org/10.1073/pnas.2107361119 Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 1(5), e1400253. Chaparro-Herrera, S., Echeverry-Galvis, M. Á., Córdoba-Córdoba, S., & Sua-Becerra, A. (2013). Listado actualizado de las aves endémicas y casi-endémicas de Colombia. Biota Colombiana, 14(2). Chen, C., Brodie, J. F., Kays, R., Davies, T. J., Liu, R., Fisher, J. T., Ahumada, J., McShea, W., Sheil, D., & Agwanda, B. (2022). Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. Conservation Letters, 15(2), e12865. Chetkiewicz, C.-L. B., St. Clair, C. C., & Boyce, M. S. (2006). Corridors for conservation: Integrating pattern and process. Annu. Rev. Ecol. Evol. Syst., 37, 317–342. Congedo, L. (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. Cormont, A., Vos, C. C., van Turnhout, C. A., Foppen, R. P., & ter Braak, C. J. (2011). Using life-history traits to explain bird population responses to changing weather variability. Climate Research, 49(1), 59–71. Correa Ayram, C. A., Mendoza, M. E., Etter, A., & Salicrup, D. R. P. (2016). Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Progress in Physical Geography, 40(1), 7–37. Cushman, S. A., McRae, B., Adriaensen, F., Beier, P., Shirley, M., & Zeller, K. (2013). Biological corridors and connectivity. Key Topics in Conservation Biology 2, 384–404. de Gabriel Hernando, M., Fernández‐Gil, J., Roa, I., Juan, J., Ortega, F., de la Calzada, F., & Revilla, E. (2021). Warming threatens habitat suitability and breeding occupancy of rear‐edge alpine bird specialists. Ecography, 44(8), 1191–1204. de Luna Uribe, A. G. (2017). Ecología, densidades poblacionales y estado de conservación de los Primates del Magdalena medio colombiano con énfasis en uno de los primates más amenazados con la extinción en el mundo, el mono araña café (Ateles hybridus) [PhD Thesis]. Universidad Complutense de Madrid. de Luna, A. G., & Link, A. (2018). Distribution, population density and conservation of the critically endangered brown spider monkey (Ateles hybridus) and other primates of the inter-Andean forests of Colombia. Biodiversity and Conservation, 27(13), 3469–3511. de Thoisy, B., Richard-Hansen, C., Goguillon, B., Joubert, P., Obstancias, J., Winterton, P., & Brosse, S. (2010). Rapid evaluation of threats to biodiversity: Human footprint score and large vertebrate species responses in French Guiana. Biodiversity and Conservation, 19(6), 1567–1584. https://doi.org/10.1007/s10531-010-9787-z Degen, A. A. (2012). Ecophysiology of small desert mammals. Springer Science & Business Media. Di Bitetti, M. S., Paviolo, A., Ferrari, C. A., De Angelo, C., & Di Blanco, Y. (2008). Differential responses to hunting in two sympatric species of brocket deer (Mazama americana and M. nana). Biotropica, 40(5), 636–645. Di Fiore, A., Link, A., Schmitt, C., & Spehar, S. (2009). Dispersal patterns in sympatric woolly and spider monkeys: Integrating molecular and observational data. Behaviour, 146(4–5), 437–470. Dorazio, R. M., & Royle, J. A. (2005). Estimating size and composition of biological communities by modeling the occurrence of species. Journal of the American Statistical Association, 100(470), 389–398. Dosen, J., Fortin, M.-J., & Raboy, B. E. (2017). Restoration strategies to improve connectivity for golden-headed lion tamarins (Leontopithecus chrysomelas) in the Bahian Atlantic Forest, Brazil. International Journal of Primatology, 38, 962–983. Doser, J. W., Finley, A. O., & Banerjee, S. (2023). Joint species distribution models with imperfect detection for high‐dimensional spatial data. Ecology, 104(9), e4137. https://doi.org/10.1002/ecy.4137 Doser, J. W., Finley, A. O., Kéry, M., & Zipkin, E. F. (2022). spOccupancy: An R package for single‐species, multi‐species, and integrated spatial occupancy models. Methods in Ecology and Evolution, 13(8), 1670–1678. https://doi.org/10.1111/2041-210X.13897 Drouilly, M., Clark, A., & O’Riain, M. J. (2018). Multi-species occupancy modelling of mammal and ground bird communities in rangeland in the Karoo: A case for dryland systems globally. Biological Conservation, 224, 16–25. Dybzinski, R., Fargione, J. E., Zak, D. R., Fornara, D., & Tilman, D. (2008). Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia, 158(1), 85–93. Fahrig, L. (2013). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40(9), 1649–1663. https://doi.org/10.1111/jbi.12130 Fegraus, E. H., Lin, K., Ahumada, J. A., Baru, C., Chandra, S., & Youn, C. (2011). Data acquisition and management software for camera trap data: A case study from the TEAM Network. Ecological Informatics, 6(6), 345–353. Fegraus, E. H., & MacCarthy, J. (2016). Camera Trap Data Management and Interoperability. Camera Trapping for Wildlife Research. FR a. F. Zimmerman. Exeter UK, Pelagic Publishing, 33, 42. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 Finley, A. O. (2013). Using JAGS in R with the rjags package. Flynn, D. F., Gogol‐Prokurat, M., Nogeire, T., Molinari, N., Richers, B. T., Lin, B. B., Simpson, N., Mayfield, M. M., & DeClerck, F. (2009). Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters, 12(1), 22–33. Gagic, V., Bartomeus, I., Jonsson, T., Taylor, A., Winqvist, C., Fischer, C., Slade, E. M., Steffan-Dewenter, I., Emmerson, M., & Potts, S. G. (2015). Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences, 282(1801), 20142620. Galvis, G., & Iván Mojica, J. (2007). The Magdalena River fresh water fishes and fisheries. Aquatic Ecosystem Health & Management, 10(2), 127–139. Gálvez, N., Hernández, F., Laker, J., Gilabert, H., Petitpas, R., Bonacic, C., Gimona, A., Hester, A., & Macdonald, D. W. (2013). Forest cover outside protected areas plays an important role in the conservation of the Vulnerable guiña Leopardus guigna. Oryx, 47(2), 251–258. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC press. Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., Bradshaw, C. J., Laurance, W. F., & Lovejoy, T. E. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378–381. Gibson, L. A., Wilson, B. A., & Aberton, J. G. (2004). Landscape characteristics associated with species richness and occurrence of small native mammals inhabiting a coastal heathland: A spatial modelling approach. Biological Conservation, 120(1), 75–89. Gittleman, J. L., & Kot, M. (1990). Adaptation: Statistics and a null model for estimating phylogenetic effects. Systematic Zoology, 39(3), 227–241. Gomez, J. P., Ponciano, J. M., Londoño, G. A., & Robinson, S. K. (2020). The biotic interactions hypothesis partially explains bird species turnover along a lowland Neotropical precipitation gradient. Global Ecology and Biogeography, 29(3), 491–502. https://doi.org/10.1111/geb.13047 Gregory, T., Carrasco-Rueda, F., Alonso, A., Kolowski, J., & Deichmann, J. L. (2017). Natural canopy bridges effectively mitigate tropical forest fragmentation for arboreal mammals. Scientific Reports, 7(1), 3892. Gupta, H., Tiwari, C., & Diwakar, S. (2019). Butterfly diversity and effect of temperature and humidity gradients on butterfly assemblages in a sub-tropical urban landscape. Tropical Ecology, 60(1), 150–158. Gyhrs, C., Macedo, T., Bastos, B., Salgado-Irazabal, X., Hammadi, M., Bouarakia, O., & Boratyński, Z. (2022). High level of daily heterothermy in desert gerbils. Journal of Tropical Ecology, 38(6), 451–453. Hermelin, M. (2016). The tatacoa desert. Landscapes and Landforms of Colombia, 127–137. Hernández-Camacho, J. I. (2003). Conservation priorities for Colombian primates. Primate Conservation, 19, 10–18. Hill, J. E., DeVault, T. L., Wang, G., & Belant, J. L. (2020). Anthropogenic mortality in mammals increases with the human footprint. Frontiers in Ecology and the Environment, 18(1), 13–18. Hoover, D. L., Bestelmeyer, B., Grimm, N. B., Huxman, T. E., Reed, S. C., Sala, O., Seastedt, T. R., Wilmer, H., & Ferrenberg, S. (2020). Traversing the wasteland: A framework for assessing ecological threats to drylands. BioScience, 70(1), 35–47. Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography (MPB-32) (Vol. 32). Princeton University Press. Hunter Jr, M. L., & Yonzon, P. (1993). Altitudinal distributions of birds, mammals, people, forests, and parks in Nepal. Conservation Biology, 7(2), 420–423. Jansen, P. A., Ahumada, J., Fegraus, E., & O’Brien, T. (2014). TEAM: a standardised camera trap survey to monitor terrestrial vertebrate communities in tropical forests. Camera Trapping: Wildlife Research and Management, 263–270. Jiménez-Alvarado, J. S., Moreno-Díaz, C., Olarte, G., Zárrate-Charry, D., Vela-Vargas, I. M., Pineda-Guerrero, A., & González-Maya, J. F. J. F. (2015). Inventory of flying, medium and large mammals from Parque Nacional Natural Tayrona, Magdalena, Colombia. Mammalogy Notes, 2(1), 36–39. Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J., Orme, C. D. L., Safi, K., Sechrest, W., Boakes, E. H., & Carbone, C. (2009). PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090‐184. Ecology, 90(9), 2648–2648. Kamenišťák, J., Baláž, I., Tulis, F., Jakab, I., Ševčík, M., Poláčiková, Z., Klimant, P., Ambros, M., & Rychlik, L. (2020). Changes of small mammal communities with the altitude gradient. Biologia, 75(5), 713–722. https://doi.org/10.2478/s11756-019-00339-3 Kaufman, D. M. (1995). Diversity of New World mammals: Universality of the latitudinal gradients of species and bauplans. Journal of Mammalogy, 76(2), 322–334. Kellner, K., Meredith, M., & Kellner, M. K. (2019). Package ‘jagsUI.’ CRAN Repos. Keuroghlian, A., Andrade Santos, M. do C., & Eaton, D. P. (2015). The effects of deforestation on white-lipped peccary (Tayassu pecari) home range in the southern Pantanal. Mammalia, 79(4), 491–497. Kessler, M., Abrahamczyk, S., Bos, M., Buchori, D., Putra, D. D., Gradstein, S. R., Höhn, P., Kluge, J., Orend, F., & Pitopang, R. (2009). Alpha and beta diversity of plants and animals along a tropical land‐use gradient. Ecological Applications, 19(8), 2142–2156. Kindt, R., & Kindt, M. R. (2019). Package ‘BiodiversityR.’ Package for Community Ecology and Suitability Analysis, 2, 11–12. Kitching, R. L., Ashton, L. A., Nakamura, A., Whitaker, T., & Khen, C. V. (2013). Distance‐driven species turnover in Bornean rainforests: Homogeneity and heterogeneity in primary and post‐logging forests. Ecography, 36(6), 675–682. Latimer, A. M., Banerjee, S., Sang Jr, H., Mosher, E. S., & Silander Jr, J. A. (2009). Hierarchical models facilitate spatial analysis of large data sets: A case study on invasive plant species in the northeastern United States. Ecology Letters, 12(2), 144–154. https://doi.org/10.1111/j.1461-0248.2008.01270.x Laso Bayas, J. C., See, L., Georgieva, I., Schepaschenko, D., Danylo, O., Dürauer, M., Bartl, H., Hofhansl, F., Zadorozhniuk, R., & Burianchuk, M. (2022). Drivers of tropical forest loss between 2008 and 2019. Scientific Data, 9(1), 146. Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution, 29(2), 107–116 Le Provost, G., Badenhausser, I., Le Bagousse-Pinguet, Y., Clough, Y., Henckel, L., Violle, C., Bretagnolle, V., Roncoroni, M., Manning, P., & Gross, N. (2020). Land-use history impacts functional diversity across multiple trophic groups. Proceedings of the National Academy of Sciences, 117(3), 1573–1579. Leung, B., Hargreaves, A. L., Greenberg, D. A., McGill, B., Dornelas, M., & Freeman, R. (2020). Clustered versus catastrophic global vertebrate declines. Nature, 588(7837), 267–271. LI, J., CONG, J., LIU, X., ZHOU, Y., WANG, X., LI, G., & LI, D.-Q. (2015). Effect of tourist roads on mammal activity in Shennongjia National Nature Reserve based on the trap technique of infrared cameras. Chinese Journal of Ecology, 34(8), 2195. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., & Schmid, B. (2001). Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294(5543), 804–808. MacArthur, R. H. (1984). Geographical ecology: Patterns in the distribution of species. Princeton University Press. MacKenzie, D. I., & Nichols, J. D. (2004). Occupancy as a surrogate for abundance estimation. Animal Biodiversity and Conservation, 27(1), 461–467. MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., & Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8), 2248–2255. MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., & Hines, J. E. (2017). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Elsevier. Magurran, A. E., & McGill, B. J. (2010). Biological diversity: Frontiers in measurement and assessment. OUP Oxford. Mammal Diversity Database. (2024). Mammal Diversity Database. Version(v1.12) Zenodo. https://doi.org/10.5281/zenodo.4139722 Marín Valencia, A. L., Álvarez Hincapié, C. F., Giraldo, C. E., & Uribe Soto, S. (2018). Análisis multitemporal del paisaje en el Magdalena Medio en el periodo 1985-2011: Una ventana de interpretación de cambios históricos e implicaciones en la conectividad estructural de los bosques. Cuadernos de Geografía: Revista Colombiana de Geografía, 27(1), 10–26. Marsh, C., Link, A., King-Bailey, G., & Donati, G. (2016). Effects of fragment and vegetation structure on the population abundance of Ateles hybridus, Alouatta seniculus and Cebus albifrons in Magdalena Valley, Colombia. Folia Primatologica, 87(1), 17–30. Martinez, A. P. (2020). pairwiseAdonis: Pairwise multilevel comparison using adonis (Version R package version 0.4) [Computer software]. Mason, N. W., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111(1), 112–118. Mayfield, M. M., Bonser, S. P., Morgan, J. W., Aubin, I., McNamara, S., & Vesk, P. A. (2010). What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land‐use change. Global Ecology and Biogeography, 19(4), 423–431. McCain, C. M. (2009). Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18(3), 346–360. McNab, B. K. (2010). Geographic and temporal correlations of mammalian size reconsidered: A resource rule. Oecologia, 164(1), 13–23. Melo, G. L., Sponchiado, J., Cáceres, N. C., & Fahrig, L. (2017). Testing the habitat amount hypothesis for South American small mammals. Biological Conservation, 209, 304–314. Ménard, N., Foulquier, A., Vallet, D., Qarro, M., Le Gouar, P., & Pierre, J.-S. (2014). How tourism and pastoralism influence population demographic changes in a threatened large mammal species. Animal Conservation, 17(2), 115–124. Meza-Joya, F. L., Ramos, E., & Cardona, D. (2019). Spatio-temporal patterns of mammal road mortality in Middle Magdalena Valley, Colombia. Oecologia Australis, 23(03), 575–588. Meza-Joya, F. L., Ramos, E., & Cardona, D. (2020). FOREST FRAGMENTATION ERODES MAMMALIAN SPECIES RICHNESS AND FUNCTIONAL DIVERSITY IN A HUMAN-DOMINATED LANDSCAPE IN COLOMBIA. Miller, J. (2010). Species Distribution Modeling. Geography Compass, 4(6), 490–509. https://doi.org/10.1111/j.1749-8198.2010.00351.x Mullu, D. (2016). A review on the effect of habitat fragmentation on ecosystem. Journal of Natural Sciences Research, 6(15), 1–15. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. National Museum of Natural History, & Smithsonian Institution. (2023). Integrated Taxonomic Information System (ITIS). https://www.itis.gov/ Negret, P. J., Maron, M., Fuller, R. A., Possingham, H. P., Watson, J. E., & Simmonds, J. S. (2021). Deforestation and bird habitat loss in Colombia. Biological Conservation, 109044. Nickel, B. A., Suraci, J. P., Allen, M. L., & Wilmers, C. C. (2020). Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biological Conservation, 241, 108383. Niedballa, J., Sollmann, R., Courtiol, A., & Wilting, A. (2016). camtrapR: An R package for efficient camera trap data management. Methods in Ecology and Evolution, 7(12), 1457–1462. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O’hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2010). Vegan: Community ecology package. R package version 1.17-4. Http://Cran. r-Project. Org>. Acesso Em, 23, 2010. Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., & Morrison, J. C. (2001). Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51(11), 933–938. Ovaskainen, O., Hottola, J., & Siitonen, J. (2010). Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 91(9), 2514–2521. https://doi.org/10.1890/10-0173.1 Pardo, L. E., de Oliveira Roque, F., Campbell, M. J., Younes, N., Edwards, W., & Laurance, W. F. (2018). Identifying critical limits in oil palm cover for the conservation of terrestrial mammals in Colombia. Biological Conservation, 227, 65–73. Peguero-Pina, J. J., Vilagrosa, A., Alonso-Forn, D., Ferrio, J. P., Sancho-Knapik, D., & Gil-Pelegrín, E. (2020). Living in drylands: Functional adaptations of trees and shrubs to cope with high temperatures and water scarcity. Forests, 11(10), 1028. Petchey, O. L., & Gaston, K. J. (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5(3), 402–411. Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9(6), 741–758. Pineda-Cendales, S., Hernández-Rolong, E., & Carvajal-Cogollo, J. E. (2020). Medium and large-sized mammals in dry forests of the Colombian Caribbean. Universitas Scientiarum, 25(3), 435–461. Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O’Hara, R. B., Parris, K. M., Vesk, P. A., & McCarthy, M. A. (2014). Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model ( JSDM ). Methods in Ecology and Evolution, 5(5), 397–406. https://doi.org/10.1111/2041-210X.12180 Pulgarín‐R, P. C., Gómez, J. P., Robinson, S., Ricklefs, R. E., & Cadena, C. D. (2018). Host species, and not environment, predicts variation in blood parasite prevalence, distribution, and diversity along a humidity gradient in northern South America. Ecology and Evolution, 8(8), 3800–3814. QGIS Development Team. (2020). QGIS Geographic Information System [Computer software]. http://qgis.osgeo.org R Core Team. (2022). R: A Language and Environment for Statistical Computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/ Ramos-Fernandez, G., Smith Aguilar, S. E., Schaffner, C. M., Vick, L. G., & Aureli, F. (2013). Site fidelity in space use by spider monkeys (Ateles geoffroyi) in the Yucatan Peninsula, Mexico. PLoS One, 8(5), e62813. Restrepo, J. C., Miranda, J., & Restrepo, J. D. (2005). El río Magdalena: Contexto global, suramericano y nacional. Los Sedimentos Del Río Magdalena. Reflejo de La Crisis Ambiental, 55–66. Restrepo, J. D., Cárdenas-Rozo, A., Paniagua-Arroyave, J. F., & Jiménez-Segura, L. (2020). Aspectos físicos de la cuenca del río Magdalena, Colombia: Geología, hidrología, sedimentos, conectividad, ecosistemas acuáticos e implicaciones para la biota. XIX. Peces de La Cuenca Del Río Magdalena, Colombia: Diversidad, Conservación y Uso Sostenible. Bogotá DC: Serie Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 41–84. Rich, L. N., Miller, D. A., Robinson, H. S., McNutt, J. W., & Kelly, M. J. (2016). Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. Journal of Applied Ecology, 53(4), 1225–1235. Rios, E., Benchimol, M., Dodonov, P., De Vleeschouwer, K., & Cazetta, E. (2021). Testing the habitat amount hypothesis and fragmentation effects for medium-and large-sized mammals in a biodiversity hotspot. Landscape Ecology, 36, 1311–1323. Rodríguez, N., & Armenteras, D. (2005). Ecosistemas naturales de la cuenca del rio Magdalena. Los Sedimentos Del Río Magdalena: Reflejo de La Crisis Ambiental, 79–98. Rodríguez, N. J. M., & García, O. R. (2008). Comercio de fauna silvestre en Colombia. Revista Facultad Nacional de Agronomía Medellín, 61(2), 4618–4645. Rohde, K. (1992). Latitudinal gradients in species diversity: The search for the primary cause. Oikos, 514–527. Rojas-Marín, C. A., Pérez-Gómez, U., & Fernández-Méndez, F. (2019). Dinámica espaciotemporal de los procesos de desertificación y revegetalización natural en el enclave seco de La Tatacoa, Colombia. Cuadernos de Geografía: Revista Colombiana de Geografía, 28(1), 134–151. Roncando-Duque, N. (2021). Effect of landscape modification on primate assemblages of the Magdalena River Valley, Colombia. Caldasia, 43(2), 261–273. Rosenberg, D. K., Noon, B. R., & Meslow, E. C. (1997). Biological corridors: Form, function, and efficacy. BioScience, 47(10), 677–687. Salvatori, M., Oberosler, V., Rinaldi, M., Franceschini, A., Truschi, S., Pedrini, P., & Rovero, F. (2023). Crowded mountains: Long-term effects of human outdoor recreation on a community of wild mammals monitored with systematic camera trapping. Ambio, 1–13. Sanchez-Cuervo, A. M., & Aide, T. M. (2013). Identifying hotspots of deforestation and reforestation in Colombia (2001–2010): Implications for protected areas. Ecosphere, 4(11), 1–21. Sanders, N. J., & Rahbek, C. (2012). The patterns and causes of elevational diversity gradients. Ecography, 35(1), 1. Sandoval-H, J., Gómez, J. P., & Cadena, C. D. (2017). Is the largest river valley west of the Andes a driver of diversification in Neotropical lowland birds? The Auk: Ornithological Advances, 134(1), 168–180. Sarmiento, G. (1975). The dry plant formations of South America and their floristic connections. Journal of Biogeography, 233–251. Sarmiento, G. (1976). Evolution of arid vegetation in tropical America. In Evolution of desert biota (pp. 65–100). University of Texas Press. Schiaffini, M. I. (2016). A test of the Resource’s and Bergmann’s rules in a widely distributed small carnivore from southern South America, Conepatus chinga (Molina, 1782)(Carnivora: Mephitidae). Mammalian Biology, 81(1), 73–81. Shachak, M., Gosz, J. R., Pickett, S. T., & Perevolotsky, A. (2005). Biodiversity in drylands: Toward a unified framework. Oxford University Press on Demand. Shamoon, H., Maor, R., Saltz, D., & Dayan, T. (2018). Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biological Conservation, 226, 32–41. Sharma, K., Acharya, B. K., Sharma, G., Valente, D., Pasimeni, M. R., Petrosillo, I., & Selvan, T. (2020). Land use effect on butterfly alpha and beta diversity in the Eastern Himalaya, India. Ecological Indicators, 110, 105605. Soriano, P. J., & Ruiz, A. (2006). A functional comparison between bat assemblages of Andean arid enclaves. Ecotropicos, 19(1), 1–12. Soto-Shoender, J. R., Gwinn, D. C., Sovie, A., & McCleery, R. A. (2020). Life-history traits moderate the susceptibility of native mammals to an invasive predator. Biological Invasions, 22, 2671–2684. Stevens, G. C. (1989). The latitudinal gradient in geographical range: How so many species coexist in the tropics. The American Naturalist, 133(2), 240–256. Stevens, R. D., Rowe, R. J., & Badgley, C. (2019). Gradients of mammalian biodiversity through space and time. Journal of Mammalogy, 100(3), 1069–1086. Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J. T., Burton, C., Townsend, S. E., Carbone, C., Rowcliffe, J. M., & Whittington, J. (2017). Scaling‐up camera traps: Monitoring the planet’s biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment, 15(1), 26–34. Suárez‐Castro, A. F., Raymundo, M., Bimler, M., & Mayfield, M. M. (2022). Using multi‐scale spatially explicit frameworks to understand the relationship between functional diversity and species richness. Ecography, 2022(6), e05844. Suraci, J. P., Gaynor, K. M., Allen, M. L., Alexander, P., Brashares, J. S., Cendejas‐Zarelli, S., Crooks, K., Elbroch, L. M., Forrester, T., & Green, A. M. (2021). Disturbance type and species life history predict mammal responses to humans. Global Change Biology, 27(16), 3718–3731. Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M. S., Rödig, E., Wiegand, T., & Huth, A. (2018). Global patterns of tropical forest fragmentation. Nature, 554(7693), 519–522. TEAM Network. (2011). Terrestrial vertebrate protocol implementation manual, v. 3.1. Tropical Ecology, Assessment and Monitoring Network, Center for Applied Biodiversity Science, Conservation International, Arlington, VA, USA. Thatte, P., Chandramouli, A., Tyagi, A., Patel, K., Baro, P., Chhattani, H., & Ramakrishnan, U. (2020). Human footprint differentially impacts genetic connectivity of four wide‐ranging mammals in a fragmented landscape. Diversity and Distributions, 26(3), 299–314. Tikhonov, G., Opedal, Ø. H., Abrego, N., Lehikoinen, A., de Jonge, M. M., Oksanen, J., & Ovaskainen, O. (2020). Joint species distribution modelling with the R‐package Hmsc. Methods in Ecology and Evolution, 11(3), 442–447. Tilman, D., Isbell, F., & Cowles, J. M. (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471–493. Toews, M. (2016). Managing human footprint with respect to its effects on large mammals: Implications of spatial scale, divergent responses and ecological thresholds. Toews, M., Juanes, F., & Burton, A. C. (2018). Mammal responses to the human footprint vary across species and stressors. Journal of Environmental Management, 217, 690–699. Torres, D. A., & Rojas, A. E. (2021). Species richness, geographical affinities and activity patterns of mammals in premontane Andean forests of the Magdalena River basin of Colombia. Neotropical Biology and Conservation, 16, 145. Torres, R., Gasparri, N. I., Blendinger, P. G., & Grau, H. R. (2014). Land-use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: A hierarchical integrative multi-taxa study. Regional Environmental Change, 14, 1549–1561. Tscharntke, T., Klein, A. M., Kruess, A., Steffan‐Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology Letters, 8(8), 857–874. Turnbull, L. A., Isbell, F., Purves, D. W., Loreau, M., & Hector, A. (2016). Understanding the value of plant diversity for ecosystem functioning through niche theory. Proceedings of the Royal Society B: Biological Sciences, 283(1844), 20160536. van’t Veen, H., Chalmandrier, L., Sandau, N., Nobis, M. P., Descombes, P., Psomas, A., Hautier, Y., & Pellissier, L. (2020). A landscape‐scale assessment of the relationship between grassland functioning, community diversity, and functional traits. Ecology and Evolution, 10(18), 9906–9919. Van Zyl, J. J. (2001). The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography. Acta Astronautica, 48(5–12), 559–565. Vellend, M. (2016). The theory of ecological communities (MPB-57). In The Theory of Ecological Communities (MPB-57). Princeton University Press. Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., & Fekete, B. M. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 7(1), 1–11. Verheyen, K., Honnay, O., Motzkin, G., Hermy, M., & Foster, D. R. (2003). Response of forest plant species to land-use change: A life-history trait-based approach. Journal of Ecology, 563–577. Vourlitis, G. L., de Almeida Lobo, F., Lawrence, S., Codolo de Lucena, I., Pinto Jr, O. B., Dalmagro, H. J., Carmen, E., Rodriguez, O., & de Souza Nogueira, J. (2013). Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (Cerrado) in southern Mato Grosso. Soil Science Society of America Journal, 77(4), 1370–1379. Watling, J. I., Arroyo-Rodríguez, V., Pfeifer, M., Baeten, L., Banks-Leite, C., Cisneros, L. M., Fang, R., Hamel-Leigue, A. C., Lachat, T., & Leal, I. R. (2020). Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecology Letters, 23(4), 674–681. Webb, J. K., Brook, B. W., & Shine, R. (2002). What makes a species vulnerable to extinction? Comparative life-history traits of two sympatric snakes. Ecological Research, 17, 59–67. Wearn, O. R., Carbone, C., Rowcliffe, J. M., Bernard, H., & Ewers, R. M. (2016). Grain‐dependent responses of mammalian diversity to land use and the implications for conservation set‐aside. Ecological Applications, 26(5), 1409–1420. Wearn, O. R., Carbone, C., Rowcliffe, J. M., Pfeifer, M., Bernard, H., & Ewers, R. M. (2019). Land‐use change alters the mechanisms assembling rainforest mammal communities in Borneo. Journal of Animal Ecology, 88(1), 125–137. Whittaker, R. H. (1967). Gradient analysis of vegetation. Biological Reviews, 42(2), 207–264. Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. (2014). EltonTraits 1.0: Species‐level foraging attributes of the world’s birds and mammals: Ecological Archives E095‐178. Ecology, 95(7), 2027–2027. Wickham, H. (2011). Ggplot2. WIREs Computational Statistics, 3(2), 180–185. https://doi.org/10.1002/wics.147 Wright, S. J. (2010). The future of tropical forests. Annals of the New York Academy of Sciences, 1195(1), 1–27. Zeller, K. A., Rabinowitz, A., Salom-Perez, R., & Quigley, H. (2013). The jaguar corridor initiative: A range-wide conservation strategy. Molecular Population Genetics, Evolutionary Biology and Biological Conservation of Neotropical Carnivores. New York (NY): Nova Science Publishers, 629–657. |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
106 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ciencias - Biología |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Ciencias Biológicas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/ae5edee1-526c-498a-94a3-9d033f5bcf1e/download https://repositorio.uniandes.edu.co/bitstreams/42e444fe-6b2d-4603-9e49-228e90d7f715/download https://repositorio.uniandes.edu.co/bitstreams/9d6e06d6-c807-4431-aba3-6f154130ffb6/download https://repositorio.uniandes.edu.co/bitstreams/8b9826e8-4c50-4b76-a397-bc8c2dc6ab66/download https://repositorio.uniandes.edu.co/bitstreams/accf9828-1a0d-4bc7-b968-eb2ab291a767/download https://repositorio.uniandes.edu.co/bitstreams/1e8f79c2-588b-45bb-83e0-35f6f0fec13c/download https://repositorio.uniandes.edu.co/bitstreams/55564e34-7f83-4936-9d8c-bab11e403f15/download https://repositorio.uniandes.edu.co/bitstreams/92dc4069-da65-485c-a7c0-9c468458d7d3/download |
bitstream.checksum.fl_str_mv |
7131b1fc460ac1cc8059335bcecd69dc a6229b6b903d8f5b9ad9cf967b541a9d 0175ea4a2d4caec4bbcc37e300941108 ae9e573a68e7f92501b6913cc846c39f 422e269cf4a97b0ce6729470cba75f03 754370e99f28fce9796bf740fd3413c9 2edd5c11b57a3380a84c45cd578a40bf c53efd93d5476421b874df3f8c1f2cb5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927683257204736 |
spelling |
Link Ospina, Andrésvirtual::22093-1Montes Rojas, Andrés FernandoPardo Vargas, Lain E.Cadena Ordóñez, Carlos DanielFacultad de Ciencias::Centro de Investigaciones Ecológicas la Macarena2025-01-15T13:40:59Z2026-05-312024-12-112025-01-15https://hdl.handle.net/1992/75421instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The lowland ecosystems of the Magdalena River Valley exhibit a marked gradient, from tropical dry forests in the south of the valley to tropical rainforests and swamps in the north. These ecosystems have a composition of fauna and flora characterized not only by a high level of diversity but also by a high level of vulnerability due to the productive processes there. Activities such as cattle ranching, agriculture, mining, and urban expansion have led to an enormous transformation of the forests, threatening the species that live there. Under these conditions, forest-dwelling animals, such as medium and large mammals and some birds, are exposed to pressures that compromise their long-term persistence in the landscape. This project focused on the effects of environmental and anthropogenic factors on the diversity and occupancy patterns of mammals and ground-dwelling birds along the lowland forests of the Magdalena River Valley. It uses camera trap data from eight study sites (30 to 35 camera traps per site) located along the gradient. The study is divided into three chapters, in the first I used a multispecies occupancy model to assess the response of mammals and birds to the extreme conditions of an arid ecosystem and human activity, and how this response may vary with two species' traits, body mass and percentage of carnivory. In the second chapter, I focused on the effects of environmental and anthropogenic disturbance gradients on the community structure and occupancy patterns of mammals and ground-dwelling birds along the Magdalena River valley. Finally, in the third chapter, I evaluated the effectiveness of a conservation strategy based on restoration corridors to improve landscape connectivity for ground-dwelling fauna.Universidad de los AndesFundación Proyecto PrimatesThe Mohamed bin Zayed Species Conservation Fund (project number 202524725)DoctoradoEcologíaMastozoologíaConservaciónModelos de ocupación106 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - BiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfLife in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in ColombiaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDLife-history traitsOccupancy modelingCamera trapsDrylandHuman-made disturbanceExtreme environmentGradientImperfect detectionSpatial autocorrelationMultispecies occupancyEcological restorationCorridorsFunctional diversityConservation strategiesBiologíaAcharya, B. K., Sanders, N. J., Vijayan, L., & Chettri, B. (2011). Elevational gradients in bird diversity in the Eastern Himalaya: An evaluation of distribution patterns and their underlying mechanisms. PloS One, 6(12), e29097.Acosta-Galvis, A. R. (2012). Anfibios de los enclaves secos en la ecorregión de La Tatacoa y su área de influencia, alto Magdalena, Colombia. Biota Colombiana, 13(2).Ahumada, J. A., Hurtado, J., & Lizcano, D. (2013). Monitoring the status and trends of tropical forest terrestrial vertebrate communities from camera trap data: A tool for conservation. PloS One, 8(9), e73707.Ahumada, J. A., Silva, C. E., Gajapersad, K., Hallam, C., Hurtado, J., Martin, E., McWilliam, A., Mugerwa, B., O’Brien, T., & Rovero, F. (2011). Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1578), 2703–2711.Allen, R. B., Forsyth, D. M., Allen, R. K., Affeld, K., & MacKenzie, D. I. (2015). Solar radiation determines site occupancy of coexisting tropical and temperate deer species introduced to New Zealand forests. PLoS One, 10(6), e0128924.Almond, R. E. A., Grooten, M., & Peterson, T. (2020). Living Planet Report 2020-Bending the curve of biodiversity loss. World Wildlife Fund.Andronache, I., Marin, M., Fischer, R., Ahammer, H., Radulovic, M., Ciobotaru, A.-M., Jelinek, H. F., Di Ieva, A., Pintilii, R.-D., & Drăghici, C.-C. (2019). Dynamics of forest fragmentation and connectivity using particle and fractal analysis. Scientific Reports, 9(1), 12228.Arroyave, M. del P., Gómez, C., Gutiérrez, M. E., Múnera, D. P., Zapata, P. A., Vergara, I. C., Andrade, L. M., & Ramos, K. C. (2006). Impactos de las carreteras sobre la fauna silvestre y sus principales medidas de manejo. Revista Eia, 5, 45–57.Asensio, N., José-Domínguez, J. M., & Dunn, J. C. (2018). Socioecological factors affecting range defensibility among howler monkeys. International Journal of Primatology, 39, 90–104.Ayram, C. A. C., Etter, A., Díaz-Timoté, J., Buriticá, S. R., Ramírez, W., & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117, 106630.Bauer, B., Berti, E., Ryser, R., Gauzens, B., Hirt, M. R., Rosenbaum, B., Digel, C., Ott, D., Scheu, S., & Brose, U. (2022). Biotic filtering by species’ interactions constrains food‐web variability across spatial and abiotic gradients. Ecology Letters, 25(5), 1225–1236. https://doi.org/10.1111/ele.13995Barcelos, D., Vieira, E. M., Pinheiro, M. S., & Ferreira, G. B. (2022). A before− after assessment of the response of mammals to tourism in a Brazilian national park. Oryx, 56(6), 854–863.Bastos, B., Pradhan, N., Tarroso, P., Brito, J. C., & Boratyński, Z. (2021). Environmental determinants of minimum body temperature in mammals. Journal of Vertebrate Biology, 70(2), 21004.1.Beier, P., & Noss, R. F. (1998). Do habitat corridors provide connectivity? Conservation Biology, 12(6), 1241–1252.Benitez-Lopez, A., Alkemade, R., Schipper, A. M., Ingram, D. J., Verweij, P. A., Eikelboom, J. A. J., & Huijbregts, M. A. J. (2017). The impact of hunting on tropical mammal and bird populations. Science, 356(6334), 180–183.Bergmann, C. (1848). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse.Betts, M. G., Wolf, C., Ripple, W. J., Phalan, B., Millers, K. A., Duarte, A., Butchart, S. H., & Levi, T. (2017). Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature, 547(7664), 441–444.Birdlife International. (2024). BirdLife Data Zone. https://datazone.birdlife.org/site/dnlrequestBirds of the World—Comprehensive life histories for all bird species and families. (2024). https://birdsoftheworld.org/bow/homeBogoni, J. A., Ferraz, K. M., & Peres, C. A. (2022). Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biological Conservation, 272, 109635.Boron, V., Deere, N. J., Xofis, P., Link, A., Quiñones-Guerrero, A., Payan, E., & Tzanopoulos, J. (2019). Richness, diversity, and factors influencing occupancy of mammal communities across human-modified landscapes in Colombia. Biological Conservation, 232, 108–116.Boron, V., Xofis, P., Link, A., Payan, E., & Tzanopoulos, J. (2020). Conserving predators across agricultural landscapes in Colombia: Habitat use and space partitioning by jaguars, pumas, ocelots and jaguarundis. Oryx, 54(4), 554–563.Brito, J. C., Godinho, R., Martínez‐Freiría, F., Pleguezuelos, J. M., Rebelo, H., Santos, X., Vale, C. G., Velo‐Antón, G., Boratyński, Z., & Carvalho, S. B. (2014). Unravelling biodiversity, evolution and threats to conservation in the Sahara‐Sahel. Biological Reviews, 89(1), 215–231.Brito, J. C., Sow, A. S., Vale, C. G., Pizzigalli, C., Hamidou, D., Gonçalves, D. V., Martínez-Freiría, F., Santarém, F., Rebelo, H., & Campos, J. C. (2022). Diversity, distribution and conservation of land mammals in Mauritania, North-West Africa. Plos One, 17(8), e0269870.Brito, J. C., Tarroso, P., Vale, C. G., Martínez‐Freiría, F., Boratyński, Z., Campos, J. C., Ferreira, S., Godinho, R., Gonçalves, D. V., & Leite, J. V. (2016). Conservation biogeography of the Sahara‐Sahel: Additional protected areas are needed to secure unique biodiversity. Diversity and Distributions, 22(4), 371–384.Brodie, J. F., Williams, S., & Garner, B. (2021). The decline of mammal functional and evolutionary diversity worldwide. Proceedings of the National Academy of Sciences, 118(3), e1921849118.Brooks, S. P., & Gelman, A. (1998). General Methods for Monitoring Convergence of Iterative Simulations. Journal of Computational and Graphical Statistics, 7(4), 434–455. https://doi.org/10.1080/10618600.1998.10474787Cardinale, B. J., Palmer, M. A., & Collins, S. L. (2002). Species diversity enhances ecosystem functioning through interspecific facilitation. Nature, 415(6870), 426–429.Cazalis, V. (2022). Species richness response to human pressure hides important assemblage transformations. Proceedings of the National Academy of Sciences, 119(19), e2107361119. https://doi.org/10.1073/pnas.2107361119Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 1(5), e1400253.Chaparro-Herrera, S., Echeverry-Galvis, M. Á., Córdoba-Córdoba, S., & Sua-Becerra, A. (2013). Listado actualizado de las aves endémicas y casi-endémicas de Colombia. Biota Colombiana, 14(2).Chen, C., Brodie, J. F., Kays, R., Davies, T. J., Liu, R., Fisher, J. T., Ahumada, J., McShea, W., Sheil, D., & Agwanda, B. (2022). Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. Conservation Letters, 15(2), e12865.Chetkiewicz, C.-L. B., St. Clair, C. C., & Boyce, M. S. (2006). Corridors for conservation: Integrating pattern and process. Annu. Rev. Ecol. Evol. Syst., 37, 317–342.Congedo, L. (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172.Cormont, A., Vos, C. C., van Turnhout, C. A., Foppen, R. P., & ter Braak, C. J. (2011). Using life-history traits to explain bird population responses to changing weather variability. Climate Research, 49(1), 59–71.Correa Ayram, C. A., Mendoza, M. E., Etter, A., & Salicrup, D. R. P. (2016). Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Progress in Physical Geography, 40(1), 7–37.Cushman, S. A., McRae, B., Adriaensen, F., Beier, P., Shirley, M., & Zeller, K. (2013). Biological corridors and connectivity. Key Topics in Conservation Biology 2, 384–404.de Gabriel Hernando, M., Fernández‐Gil, J., Roa, I., Juan, J., Ortega, F., de la Calzada, F., & Revilla, E. (2021). Warming threatens habitat suitability and breeding occupancy of rear‐edge alpine bird specialists. Ecography, 44(8), 1191–1204.de Luna Uribe, A. G. (2017). Ecología, densidades poblacionales y estado de conservación de los Primates del Magdalena medio colombiano con énfasis en uno de los primates más amenazados con la extinción en el mundo, el mono araña café (Ateles hybridus) [PhD Thesis]. Universidad Complutense de Madrid.de Luna, A. G., & Link, A. (2018). Distribution, population density and conservation of the critically endangered brown spider monkey (Ateles hybridus) and other primates of the inter-Andean forests of Colombia. Biodiversity and Conservation, 27(13), 3469–3511.de Thoisy, B., Richard-Hansen, C., Goguillon, B., Joubert, P., Obstancias, J., Winterton, P., & Brosse, S. (2010). Rapid evaluation of threats to biodiversity: Human footprint score and large vertebrate species responses in French Guiana. Biodiversity and Conservation, 19(6), 1567–1584. https://doi.org/10.1007/s10531-010-9787-zDegen, A. A. (2012). Ecophysiology of small desert mammals. Springer Science & Business Media.Di Bitetti, M. S., Paviolo, A., Ferrari, C. A., De Angelo, C., & Di Blanco, Y. (2008). Differential responses to hunting in two sympatric species of brocket deer (Mazama americana and M. nana). Biotropica, 40(5), 636–645.Di Fiore, A., Link, A., Schmitt, C., & Spehar, S. (2009). Dispersal patterns in sympatric woolly and spider monkeys: Integrating molecular and observational data. Behaviour, 146(4–5), 437–470.Dorazio, R. M., & Royle, J. A. (2005). Estimating size and composition of biological communities by modeling the occurrence of species. Journal of the American Statistical Association, 100(470), 389–398.Dosen, J., Fortin, M.-J., & Raboy, B. E. (2017). Restoration strategies to improve connectivity for golden-headed lion tamarins (Leontopithecus chrysomelas) in the Bahian Atlantic Forest, Brazil. International Journal of Primatology, 38, 962–983.Doser, J. W., Finley, A. O., & Banerjee, S. (2023). Joint species distribution models with imperfect detection for high‐dimensional spatial data. Ecology, 104(9), e4137. https://doi.org/10.1002/ecy.4137Doser, J. W., Finley, A. O., Kéry, M., & Zipkin, E. F. (2022). spOccupancy: An R package for single‐species, multi‐species, and integrated spatial occupancy models. Methods in Ecology and Evolution, 13(8), 1670–1678. https://doi.org/10.1111/2041-210X.13897Drouilly, M., Clark, A., & O’Riain, M. J. (2018). Multi-species occupancy modelling of mammal and ground bird communities in rangeland in the Karoo: A case for dryland systems globally. Biological Conservation, 224, 16–25.Dybzinski, R., Fargione, J. E., Zak, D. R., Fornara, D., & Tilman, D. (2008). Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia, 158(1), 85–93.Fahrig, L. (2013). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40(9), 1649–1663. https://doi.org/10.1111/jbi.12130Fegraus, E. H., Lin, K., Ahumada, J. A., Baru, C., Chandra, S., & Youn, C. (2011). Data acquisition and management software for camera trap data: A case study from the TEAM Network. Ecological Informatics, 6(6), 345–353.Fegraus, E. H., & MacCarthy, J. (2016). Camera Trap Data Management and Interoperability. Camera Trapping for Wildlife Research. FR a. F. Zimmerman. Exeter UK, Pelagic Publishing, 33, 42.Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086Finley, A. O. (2013). Using JAGS in R with the rjags package.Flynn, D. F., Gogol‐Prokurat, M., Nogeire, T., Molinari, N., Richers, B. T., Lin, B. B., Simpson, N., Mayfield, M. M., & DeClerck, F. (2009). Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters, 12(1), 22–33.Gagic, V., Bartomeus, I., Jonsson, T., Taylor, A., Winqvist, C., Fischer, C., Slade, E. M., Steffan-Dewenter, I., Emmerson, M., & Potts, S. G. (2015). Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences, 282(1801), 20142620.Galvis, G., & Iván Mojica, J. (2007). The Magdalena River fresh water fishes and fisheries. Aquatic Ecosystem Health & Management, 10(2), 127–139.Gálvez, N., Hernández, F., Laker, J., Gilabert, H., Petitpas, R., Bonacic, C., Gimona, A., Hester, A., & Macdonald, D. W. (2013). Forest cover outside protected areas plays an important role in the conservation of the Vulnerable guiña Leopardus guigna. Oryx, 47(2), 251–258.Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC press.Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., Bradshaw, C. J., Laurance, W. F., & Lovejoy, T. E. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378–381.Gibson, L. A., Wilson, B. A., & Aberton, J. G. (2004). Landscape characteristics associated with species richness and occurrence of small native mammals inhabiting a coastal heathland: A spatial modelling approach. Biological Conservation, 120(1), 75–89.Gittleman, J. L., & Kot, M. (1990). Adaptation: Statistics and a null model for estimating phylogenetic effects. Systematic Zoology, 39(3), 227–241.Gomez, J. P., Ponciano, J. M., Londoño, G. A., & Robinson, S. K. (2020). The biotic interactions hypothesis partially explains bird species turnover along a lowland Neotropical precipitation gradient. Global Ecology and Biogeography, 29(3), 491–502. https://doi.org/10.1111/geb.13047Gregory, T., Carrasco-Rueda, F., Alonso, A., Kolowski, J., & Deichmann, J. L. (2017). Natural canopy bridges effectively mitigate tropical forest fragmentation for arboreal mammals. Scientific Reports, 7(1), 3892.Gupta, H., Tiwari, C., & Diwakar, S. (2019). Butterfly diversity and effect of temperature and humidity gradients on butterfly assemblages in a sub-tropical urban landscape. Tropical Ecology, 60(1), 150–158.Gyhrs, C., Macedo, T., Bastos, B., Salgado-Irazabal, X., Hammadi, M., Bouarakia, O., & Boratyński, Z. (2022). High level of daily heterothermy in desert gerbils. Journal of Tropical Ecology, 38(6), 451–453.Hermelin, M. (2016). The tatacoa desert. Landscapes and Landforms of Colombia, 127–137.Hernández-Camacho, J. I. (2003). Conservation priorities for Colombian primates. Primate Conservation, 19, 10–18.Hill, J. E., DeVault, T. L., Wang, G., & Belant, J. L. (2020). Anthropogenic mortality in mammals increases with the human footprint. Frontiers in Ecology and the Environment, 18(1), 13–18.Hoover, D. L., Bestelmeyer, B., Grimm, N. B., Huxman, T. E., Reed, S. C., Sala, O., Seastedt, T. R., Wilmer, H., & Ferrenberg, S. (2020). Traversing the wasteland: A framework for assessing ecological threats to drylands. BioScience, 70(1), 35–47.Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography (MPB-32) (Vol. 32). Princeton University Press.Hunter Jr, M. L., & Yonzon, P. (1993). Altitudinal distributions of birds, mammals, people, forests, and parks in Nepal. Conservation Biology, 7(2), 420–423.Jansen, P. A., Ahumada, J., Fegraus, E., & O’Brien, T. (2014). TEAM: a standardised camera trap survey to monitor terrestrial vertebrate communities in tropical forests. Camera Trapping: Wildlife Research and Management, 263–270.Jiménez-Alvarado, J. S., Moreno-Díaz, C., Olarte, G., Zárrate-Charry, D., Vela-Vargas, I. M., Pineda-Guerrero, A., & González-Maya, J. F. J. F. (2015). Inventory of flying, medium and large mammals from Parque Nacional Natural Tayrona, Magdalena, Colombia. Mammalogy Notes, 2(1), 36–39.Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J., Orme, C. D. L., Safi, K., Sechrest, W., Boakes, E. H., & Carbone, C. (2009). PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090‐184. Ecology, 90(9), 2648–2648.Kamenišťák, J., Baláž, I., Tulis, F., Jakab, I., Ševčík, M., Poláčiková, Z., Klimant, P., Ambros, M., & Rychlik, L. (2020). Changes of small mammal communities with the altitude gradient. Biologia, 75(5), 713–722. https://doi.org/10.2478/s11756-019-00339-3Kaufman, D. M. (1995). Diversity of New World mammals: Universality of the latitudinal gradients of species and bauplans. Journal of Mammalogy, 76(2), 322–334.Kellner, K., Meredith, M., & Kellner, M. K. (2019). Package ‘jagsUI.’ CRAN Repos.Keuroghlian, A., Andrade Santos, M. do C., & Eaton, D. P. (2015). The effects of deforestation on white-lipped peccary (Tayassu pecari) home range in the southern Pantanal. Mammalia, 79(4), 491–497.Kessler, M., Abrahamczyk, S., Bos, M., Buchori, D., Putra, D. D., Gradstein, S. R., Höhn, P., Kluge, J., Orend, F., & Pitopang, R. (2009). Alpha and beta diversity of plants and animals along a tropical land‐use gradient. Ecological Applications, 19(8), 2142–2156.Kindt, R., & Kindt, M. R. (2019). Package ‘BiodiversityR.’ Package for Community Ecology and Suitability Analysis, 2, 11–12.Kitching, R. L., Ashton, L. A., Nakamura, A., Whitaker, T., & Khen, C. V. (2013). Distance‐driven species turnover in Bornean rainforests: Homogeneity and heterogeneity in primary and post‐logging forests. Ecography, 36(6), 675–682.Latimer, A. M., Banerjee, S., Sang Jr, H., Mosher, E. S., & Silander Jr, J. A. (2009). Hierarchical models facilitate spatial analysis of large data sets: A case study on invasive plant species in the northeastern United States. Ecology Letters, 12(2), 144–154. https://doi.org/10.1111/j.1461-0248.2008.01270.xLaso Bayas, J. C., See, L., Georgieva, I., Schepaschenko, D., Danylo, O., Dürauer, M., Bartl, H., Hofhansl, F., Zadorozhniuk, R., & Burianchuk, M. (2022). Drivers of tropical forest loss between 2008 and 2019. Scientific Data, 9(1), 146.Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution, 29(2), 107–116Le Provost, G., Badenhausser, I., Le Bagousse-Pinguet, Y., Clough, Y., Henckel, L., Violle, C., Bretagnolle, V., Roncoroni, M., Manning, P., & Gross, N. (2020). Land-use history impacts functional diversity across multiple trophic groups. Proceedings of the National Academy of Sciences, 117(3), 1573–1579.Leung, B., Hargreaves, A. L., Greenberg, D. A., McGill, B., Dornelas, M., & Freeman, R. (2020). Clustered versus catastrophic global vertebrate declines. Nature, 588(7837), 267–271.LI, J., CONG, J., LIU, X., ZHOU, Y., WANG, X., LI, G., & LI, D.-Q. (2015). Effect of tourist roads on mammal activity in Shennongjia National Nature Reserve based on the trap technique of infrared cameras. Chinese Journal of Ecology, 34(8), 2195.Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., & Schmid, B. (2001). Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294(5543), 804–808.MacArthur, R. H. (1984). Geographical ecology: Patterns in the distribution of species. Princeton University Press.MacKenzie, D. I., & Nichols, J. D. (2004). Occupancy as a surrogate for abundance estimation. Animal Biodiversity and Conservation, 27(1), 461–467.MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., & Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8), 2248–2255.MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., & Hines, J. E. (2017). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Elsevier.Magurran, A. E., & McGill, B. J. (2010). Biological diversity: Frontiers in measurement and assessment. OUP Oxford.Mammal Diversity Database. (2024). Mammal Diversity Database. Version(v1.12) Zenodo. https://doi.org/10.5281/zenodo.4139722Marín Valencia, A. L., Álvarez Hincapié, C. F., Giraldo, C. E., & Uribe Soto, S. (2018). Análisis multitemporal del paisaje en el Magdalena Medio en el periodo 1985-2011: Una ventana de interpretación de cambios históricos e implicaciones en la conectividad estructural de los bosques. Cuadernos de Geografía: Revista Colombiana de Geografía, 27(1), 10–26.Marsh, C., Link, A., King-Bailey, G., & Donati, G. (2016). Effects of fragment and vegetation structure on the population abundance of Ateles hybridus, Alouatta seniculus and Cebus albifrons in Magdalena Valley, Colombia. Folia Primatologica, 87(1), 17–30.Martinez, A. P. (2020). pairwiseAdonis: Pairwise multilevel comparison using adonis (Version R package version 0.4) [Computer software].Mason, N. W., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111(1), 112–118.Mayfield, M. M., Bonser, S. P., Morgan, J. W., Aubin, I., McNamara, S., & Vesk, P. A. (2010). What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land‐use change. Global Ecology and Biogeography, 19(4), 423–431.McCain, C. M. (2009). Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18(3), 346–360.McNab, B. K. (2010). Geographic and temporal correlations of mammalian size reconsidered: A resource rule. Oecologia, 164(1), 13–23.Melo, G. L., Sponchiado, J., Cáceres, N. C., & Fahrig, L. (2017). Testing the habitat amount hypothesis for South American small mammals. Biological Conservation, 209, 304–314.Ménard, N., Foulquier, A., Vallet, D., Qarro, M., Le Gouar, P., & Pierre, J.-S. (2014). How tourism and pastoralism influence population demographic changes in a threatened large mammal species. Animal Conservation, 17(2), 115–124.Meza-Joya, F. L., Ramos, E., & Cardona, D. (2019). Spatio-temporal patterns of mammal road mortality in Middle Magdalena Valley, Colombia. Oecologia Australis, 23(03), 575–588.Meza-Joya, F. L., Ramos, E., & Cardona, D. (2020). FOREST FRAGMENTATION ERODES MAMMALIAN SPECIES RICHNESS AND FUNCTIONAL DIVERSITY IN A HUMAN-DOMINATED LANDSCAPE IN COLOMBIA.Miller, J. (2010). Species Distribution Modeling. Geography Compass, 4(6), 490–509. https://doi.org/10.1111/j.1749-8198.2010.00351.xMullu, D. (2016). A review on the effect of habitat fragmentation on ecosystem. Journal of Natural Sciences Research, 6(15), 1–15.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858.National Museum of Natural History, & Smithsonian Institution. (2023). Integrated Taxonomic Information System (ITIS). https://www.itis.gov/Negret, P. J., Maron, M., Fuller, R. A., Possingham, H. P., Watson, J. E., & Simmonds, J. S. (2021). Deforestation and bird habitat loss in Colombia. Biological Conservation, 109044.Nickel, B. A., Suraci, J. P., Allen, M. L., & Wilmers, C. C. (2020). Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biological Conservation, 241, 108383.Niedballa, J., Sollmann, R., Courtiol, A., & Wilting, A. (2016). camtrapR: An R package for efficient camera trap data management. Methods in Ecology and Evolution, 7(12), 1457–1462.Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O’hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2010). Vegan: Community ecology package. R package version 1.17-4. Http://Cran. r-Project. Org>. Acesso Em, 23, 2010.Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., & Morrison, J. C. (2001). Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51(11), 933–938.Ovaskainen, O., Hottola, J., & Siitonen, J. (2010). Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 91(9), 2514–2521. https://doi.org/10.1890/10-0173.1Pardo, L. E., de Oliveira Roque, F., Campbell, M. J., Younes, N., Edwards, W., & Laurance, W. F. (2018). Identifying critical limits in oil palm cover for the conservation of terrestrial mammals in Colombia. Biological Conservation, 227, 65–73.Peguero-Pina, J. J., Vilagrosa, A., Alonso-Forn, D., Ferrio, J. P., Sancho-Knapik, D., & Gil-Pelegrín, E. (2020). Living in drylands: Functional adaptations of trees and shrubs to cope with high temperatures and water scarcity. Forests, 11(10), 1028.Petchey, O. L., & Gaston, K. J. (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5(3), 402–411.Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9(6), 741–758.Pineda-Cendales, S., Hernández-Rolong, E., & Carvajal-Cogollo, J. E. (2020). Medium and large-sized mammals in dry forests of the Colombian Caribbean. Universitas Scientiarum, 25(3), 435–461.Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O’Hara, R. B., Parris, K. M., Vesk, P. A., & McCarthy, M. A. (2014). Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model ( JSDM ). Methods in Ecology and Evolution, 5(5), 397–406. https://doi.org/10.1111/2041-210X.12180Pulgarín‐R, P. C., Gómez, J. P., Robinson, S., Ricklefs, R. E., & Cadena, C. D. (2018). Host species, and not environment, predicts variation in blood parasite prevalence, distribution, and diversity along a humidity gradient in northern South America. Ecology and Evolution, 8(8), 3800–3814.QGIS Development Team. (2020). QGIS Geographic Information System [Computer software]. http://qgis.osgeo.orgR Core Team. (2022). R: A Language and Environment for Statistical Computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/Ramos-Fernandez, G., Smith Aguilar, S. E., Schaffner, C. M., Vick, L. G., & Aureli, F. (2013). Site fidelity in space use by spider monkeys (Ateles geoffroyi) in the Yucatan Peninsula, Mexico. PLoS One, 8(5), e62813.Restrepo, J. C., Miranda, J., & Restrepo, J. D. (2005). El río Magdalena: Contexto global, suramericano y nacional. Los Sedimentos Del Río Magdalena. Reflejo de La Crisis Ambiental, 55–66.Restrepo, J. D., Cárdenas-Rozo, A., Paniagua-Arroyave, J. F., & Jiménez-Segura, L. (2020). Aspectos físicos de la cuenca del río Magdalena, Colombia: Geología, hidrología, sedimentos, conectividad, ecosistemas acuáticos e implicaciones para la biota. XIX. Peces de La Cuenca Del Río Magdalena, Colombia: Diversidad, Conservación y Uso Sostenible. Bogotá DC: Serie Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 41–84.Rich, L. N., Miller, D. A., Robinson, H. S., McNutt, J. W., & Kelly, M. J. (2016). Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. Journal of Applied Ecology, 53(4), 1225–1235.Rios, E., Benchimol, M., Dodonov, P., De Vleeschouwer, K., & Cazetta, E. (2021). Testing the habitat amount hypothesis and fragmentation effects for medium-and large-sized mammals in a biodiversity hotspot. Landscape Ecology, 36, 1311–1323.Rodríguez, N., & Armenteras, D. (2005). Ecosistemas naturales de la cuenca del rio Magdalena. Los Sedimentos Del Río Magdalena: Reflejo de La Crisis Ambiental, 79–98.Rodríguez, N. J. M., & García, O. R. (2008). Comercio de fauna silvestre en Colombia. Revista Facultad Nacional de Agronomía Medellín, 61(2), 4618–4645.Rohde, K. (1992). Latitudinal gradients in species diversity: The search for the primary cause. Oikos, 514–527.Rojas-Marín, C. A., Pérez-Gómez, U., & Fernández-Méndez, F. (2019). Dinámica espaciotemporal de los procesos de desertificación y revegetalización natural en el enclave seco de La Tatacoa, Colombia. Cuadernos de Geografía: Revista Colombiana de Geografía, 28(1), 134–151.Roncando-Duque, N. (2021). Effect of landscape modification on primate assemblages of the Magdalena River Valley, Colombia. Caldasia, 43(2), 261–273.Rosenberg, D. K., Noon, B. R., & Meslow, E. C. (1997). Biological corridors: Form, function, and efficacy. BioScience, 47(10), 677–687.Salvatori, M., Oberosler, V., Rinaldi, M., Franceschini, A., Truschi, S., Pedrini, P., & Rovero, F. (2023). Crowded mountains: Long-term effects of human outdoor recreation on a community of wild mammals monitored with systematic camera trapping. Ambio, 1–13.Sanchez-Cuervo, A. M., & Aide, T. M. (2013). Identifying hotspots of deforestation and reforestation in Colombia (2001–2010): Implications for protected areas. Ecosphere, 4(11), 1–21.Sanders, N. J., & Rahbek, C. (2012). The patterns and causes of elevational diversity gradients. Ecography, 35(1), 1.Sandoval-H, J., Gómez, J. P., & Cadena, C. D. (2017). Is the largest river valley west of the Andes a driver of diversification in Neotropical lowland birds? The Auk: Ornithological Advances, 134(1), 168–180.Sarmiento, G. (1975). The dry plant formations of South America and their floristic connections. Journal of Biogeography, 233–251.Sarmiento, G. (1976). Evolution of arid vegetation in tropical America. In Evolution of desert biota (pp. 65–100). University of Texas Press.Schiaffini, M. I. (2016). A test of the Resource’s and Bergmann’s rules in a widely distributed small carnivore from southern South America, Conepatus chinga (Molina, 1782)(Carnivora: Mephitidae). Mammalian Biology, 81(1), 73–81.Shachak, M., Gosz, J. R., Pickett, S. T., & Perevolotsky, A. (2005). Biodiversity in drylands: Toward a unified framework. Oxford University Press on Demand.Shamoon, H., Maor, R., Saltz, D., & Dayan, T. (2018). Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biological Conservation, 226, 32–41.Sharma, K., Acharya, B. K., Sharma, G., Valente, D., Pasimeni, M. R., Petrosillo, I., & Selvan, T. (2020). Land use effect on butterfly alpha and beta diversity in the Eastern Himalaya, India. Ecological Indicators, 110, 105605.Soriano, P. J., & Ruiz, A. (2006). A functional comparison between bat assemblages of Andean arid enclaves. Ecotropicos, 19(1), 1–12.Soto-Shoender, J. R., Gwinn, D. C., Sovie, A., & McCleery, R. A. (2020). Life-history traits moderate the susceptibility of native mammals to an invasive predator. Biological Invasions, 22, 2671–2684.Stevens, G. C. (1989). The latitudinal gradient in geographical range: How so many species coexist in the tropics. The American Naturalist, 133(2), 240–256.Stevens, R. D., Rowe, R. J., & Badgley, C. (2019). Gradients of mammalian biodiversity through space and time. Journal of Mammalogy, 100(3), 1069–1086.Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J. T., Burton, C., Townsend, S. E., Carbone, C., Rowcliffe, J. M., & Whittington, J. (2017). Scaling‐up camera traps: Monitoring the planet’s biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment, 15(1), 26–34.Suárez‐Castro, A. F., Raymundo, M., Bimler, M., & Mayfield, M. M. (2022). Using multi‐scale spatially explicit frameworks to understand the relationship between functional diversity and species richness. Ecography, 2022(6), e05844.Suraci, J. P., Gaynor, K. M., Allen, M. L., Alexander, P., Brashares, J. S., Cendejas‐Zarelli, S., Crooks, K., Elbroch, L. M., Forrester, T., & Green, A. M. (2021). Disturbance type and species life history predict mammal responses to humans. Global Change Biology, 27(16), 3718–3731.Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M. S., Rödig, E., Wiegand, T., & Huth, A. (2018). Global patterns of tropical forest fragmentation. Nature, 554(7693), 519–522.TEAM Network. (2011). Terrestrial vertebrate protocol implementation manual, v. 3.1. Tropical Ecology, Assessment and Monitoring Network, Center for Applied Biodiversity Science, Conservation International, Arlington, VA, USA.Thatte, P., Chandramouli, A., Tyagi, A., Patel, K., Baro, P., Chhattani, H., & Ramakrishnan, U. (2020). Human footprint differentially impacts genetic connectivity of four wide‐ranging mammals in a fragmented landscape. Diversity and Distributions, 26(3), 299–314.Tikhonov, G., Opedal, Ø. H., Abrego, N., Lehikoinen, A., de Jonge, M. M., Oksanen, J., & Ovaskainen, O. (2020). Joint species distribution modelling with the R‐package Hmsc. Methods in Ecology and Evolution, 11(3), 442–447.Tilman, D., Isbell, F., & Cowles, J. M. (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471–493.Toews, M. (2016). Managing human footprint with respect to its effects on large mammals: Implications of spatial scale, divergent responses and ecological thresholds.Toews, M., Juanes, F., & Burton, A. C. (2018). Mammal responses to the human footprint vary across species and stressors. Journal of Environmental Management, 217, 690–699.Torres, D. A., & Rojas, A. E. (2021). Species richness, geographical affinities and activity patterns of mammals in premontane Andean forests of the Magdalena River basin of Colombia. Neotropical Biology and Conservation, 16, 145.Torres, R., Gasparri, N. I., Blendinger, P. G., & Grau, H. R. (2014). Land-use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: A hierarchical integrative multi-taxa study. Regional Environmental Change, 14, 1549–1561.Tscharntke, T., Klein, A. M., Kruess, A., Steffan‐Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology Letters, 8(8), 857–874.Turnbull, L. A., Isbell, F., Purves, D. W., Loreau, M., & Hector, A. (2016). Understanding the value of plant diversity for ecosystem functioning through niche theory. Proceedings of the Royal Society B: Biological Sciences, 283(1844), 20160536.van’t Veen, H., Chalmandrier, L., Sandau, N., Nobis, M. P., Descombes, P., Psomas, A., Hautier, Y., & Pellissier, L. (2020). A landscape‐scale assessment of the relationship between grassland functioning, community diversity, and functional traits. Ecology and Evolution, 10(18), 9906–9919.Van Zyl, J. J. (2001). The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography. Acta Astronautica, 48(5–12), 559–565.Vellend, M. (2016). The theory of ecological communities (MPB-57). In The Theory of Ecological Communities (MPB-57). Princeton University Press.Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., & Fekete, B. M. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 7(1), 1–11.Verheyen, K., Honnay, O., Motzkin, G., Hermy, M., & Foster, D. R. (2003). Response of forest plant species to land-use change: A life-history trait-based approach. Journal of Ecology, 563–577.Vourlitis, G. L., de Almeida Lobo, F., Lawrence, S., Codolo de Lucena, I., Pinto Jr, O. B., Dalmagro, H. J., Carmen, E., Rodriguez, O., & de Souza Nogueira, J. (2013). Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (Cerrado) in southern Mato Grosso. Soil Science Society of America Journal, 77(4), 1370–1379.Watling, J. I., Arroyo-Rodríguez, V., Pfeifer, M., Baeten, L., Banks-Leite, C., Cisneros, L. M., Fang, R., Hamel-Leigue, A. C., Lachat, T., & Leal, I. R. (2020). Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecology Letters, 23(4), 674–681.Webb, J. K., Brook, B. W., & Shine, R. (2002). What makes a species vulnerable to extinction? Comparative life-history traits of two sympatric snakes. Ecological Research, 17, 59–67.Wearn, O. R., Carbone, C., Rowcliffe, J. M., Bernard, H., & Ewers, R. M. (2016). Grain‐dependent responses of mammalian diversity to land use and the implications for conservation set‐aside. Ecological Applications, 26(5), 1409–1420.Wearn, O. R., Carbone, C., Rowcliffe, J. M., Pfeifer, M., Bernard, H., & Ewers, R. M. (2019). Land‐use change alters the mechanisms assembling rainforest mammal communities in Borneo. Journal of Animal Ecology, 88(1), 125–137.Whittaker, R. H. (1967). Gradient analysis of vegetation. Biological Reviews, 42(2), 207–264.Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. (2014). EltonTraits 1.0: Species‐level foraging attributes of the world’s birds and mammals: Ecological Archives E095‐178. Ecology, 95(7), 2027–2027.Wickham, H. (2011). Ggplot2. WIREs Computational Statistics, 3(2), 180–185. https://doi.org/10.1002/wics.147Wright, S. J. (2010). The future of tropical forests. Annals of the New York Academy of Sciences, 1195(1), 1–27.Zeller, K. A., Rabinowitz, A., Salom-Perez, R., & Quigley, H. (2013). The jaguar corridor initiative: A range-wide conservation strategy. Molecular Population Genetics, Evolutionary Biology and Biological Conservation of Neotropical Carnivores. New York (NY): Nova Science Publishers, 629–657.201525112Publicationhttps://scholar.google.es/citations?user=BkuODsEAAAAJvirtual::22093-1https://scholar.google.es/citations?user=BkuODsEAAAAJhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000476153virtual::22093-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000476153b2ad55c8-37e9-4751-8415-e875762b16davirtual::22093-1b2ad55c8-37e9-4751-8415-e875762b16dab2ad55c8-37e9-4751-8415-e875762b16davirtual::22093-1ORIGINALLife in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia.pdfLife in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia.pdfRestricción de acceso hasta el año 2026, uno de los capítulos de la tesis esta en proceso de publicación y contiene información que no queremos que sea publica antes de que se publique el artículo científico.application/pdf9654698https://repositorio.uniandes.edu.co/bitstreams/ae5edee1-526c-498a-94a3-9d033f5bcf1e/download7131b1fc460ac1cc8059335bcecd69dcMD55201525112_ForAutEntTesis_TraGraSisBib_202420.pdf201525112_ForAutEntTesis_TraGraSisBib_202420.pdfHIDEapplication/pdf245678https://repositorio.uniandes.edu.co/bitstreams/42e444fe-6b2d-4603-9e49-228e90d7f715/downloada6229b6b903d8f5b9ad9cf967b541a9dMD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/9d6e06d6-c807-4431-aba3-6f154130ffb6/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/8b9826e8-4c50-4b76-a397-bc8c2dc6ab66/downloadae9e573a68e7f92501b6913cc846c39fMD56TEXTLife in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia.pdf.txtLife in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia.pdf.txtExtracted texttext/plain100887https://repositorio.uniandes.edu.co/bitstreams/accf9828-1a0d-4bc7-b968-eb2ab291a767/download422e269cf4a97b0ce6729470cba75f03MD58201525112_ForAutEntTesis_TraGraSisBib_202420.pdf.txt201525112_ForAutEntTesis_TraGraSisBib_202420.pdf.txtExtracted texttext/plain2148https://repositorio.uniandes.edu.co/bitstreams/1e8f79c2-588b-45bb-83e0-35f6f0fec13c/download754370e99f28fce9796bf740fd3413c9MD510THUMBNAILLife in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia.pdf.jpgLife in a hot valley: effects of environmental and anthropogenic factors on the spatial dynamics of mammal and ground-dwelling bird communities in the Magdalena River Valley in Colombia.pdf.jpgGenerated Thumbnailimage/jpeg8701https://repositorio.uniandes.edu.co/bitstreams/55564e34-7f83-4936-9d8c-bab11e403f15/download2edd5c11b57a3380a84c45cd578a40bfMD59201525112_ForAutEntTesis_TraGraSisBib_202420.pdf.jpg201525112_ForAutEntTesis_TraGraSisBib_202420.pdf.jpgGenerated Thumbnailimage/jpeg10927https://repositorio.uniandes.edu.co/bitstreams/92dc4069-da65-485c-a7c0-9c468458d7d3/downloadc53efd93d5476421b874df3f8c1f2cb5MD5111992/75421oai:repositorio.uniandes.edu.co:1992/754212025-03-05 09:38:37.585http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalembargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |