Exploration of large language models in education: automated question and answer generation system and gamified learning environment

This project focuses on the development of a personalized and gamified learning environment powered by the automatic generation of questions and answers (Q&A-AG) using Large Language Models (LLMs). The system utilizes the Retrieval-Augmented Generation (RAG) process to analyze and extract knowle...

Full description

Autores:
Duarte Mantilla, Ernesto José
Klopstock Triana, Nicolás
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75407
Acceso en línea:
https://hdl.handle.net/1992/75407
Palabra clave:
Large Language Models
Gamification
Learning Environment
Retrieval-Augmented Generation
Intelligent Agent
Multi-Agent System
Question & Answer Automatic Generation
Graph-orchestrated Agents
Ingeniería
Rights
embargoedAccess
License
Attribution-NoDerivatives 4.0 International
id UNIANDES2_032f35c58ca2c4fd50c28d34f70f7cab
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75407
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Exploration of large language models in education: automated question and answer generation system and gamified learning environment
title Exploration of large language models in education: automated question and answer generation system and gamified learning environment
spellingShingle Exploration of large language models in education: automated question and answer generation system and gamified learning environment
Large Language Models
Gamification
Learning Environment
Retrieval-Augmented Generation
Intelligent Agent
Multi-Agent System
Question & Answer Automatic Generation
Graph-orchestrated Agents
Ingeniería
title_short Exploration of large language models in education: automated question and answer generation system and gamified learning environment
title_full Exploration of large language models in education: automated question and answer generation system and gamified learning environment
title_fullStr Exploration of large language models in education: automated question and answer generation system and gamified learning environment
title_full_unstemmed Exploration of large language models in education: automated question and answer generation system and gamified learning environment
title_sort Exploration of large language models in education: automated question and answer generation system and gamified learning environment
dc.creator.fl_str_mv Duarte Mantilla, Ernesto José
Klopstock Triana, Nicolás
dc.contributor.advisor.none.fl_str_mv Manrique Piramanrique, Rubén Francisco
dc.contributor.author.none.fl_str_mv Duarte Mantilla, Ernesto José
Klopstock Triana, Nicolás
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ingeniería::TICSw: Tecnologías de Información y Construcción de Software
dc.subject.keyword.eng.fl_str_mv Large Language Models
Gamification
Learning Environment
Retrieval-Augmented Generation
Intelligent Agent
Multi-Agent System
Question & Answer Automatic Generation
Graph-orchestrated Agents
topic Large Language Models
Gamification
Learning Environment
Retrieval-Augmented Generation
Intelligent Agent
Multi-Agent System
Question & Answer Automatic Generation
Graph-orchestrated Agents
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description This project focuses on the development of a personalized and gamified learning environment powered by the automatic generation of questions and answers (Q&A-AG) using Large Language Models (LLMs). The system utilizes the Retrieval-Augmented Generation (RAG) process to analyze and extract knowledge from external documents, enabling the creation of contextually accurate and relevant Q&As. At the core of this system is an Artificially Intelligent Agent (AI-Agent) designed to evaluate students’ knowledge through gamified interactions. The agent incorporates elements such as points, streaks, and narrative-driven scenarios to enhance engagement and motivation. The system was tailored for Spanish-speaking contexts and tested to assess the accuracy, quality, and difficulty of the generated questions, as well as its impact on students’ learning experience. By combining cutting-edge AI techniques with gamification techniques, this project aims to validate its effectiveness as an innovative and scalable educational tool, offering new opportunities for personalized learning and evaluation.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-14T19:49:02Z
dc.date.available.none.fl_str_mv 2025-12-31
dc.date.issued.none.fl_str_mv 2025-01-13
dc.date.accepted.none.fl_str_mv 2025-01-14
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75407
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75407
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Hanyi Xu et al. Large Language Models for Education: A Survey. 2024.
O. Pastushenko, T. Hrûska, and J. Zendulka. “Increasing students’ motivation by using virtual learning environments based on gamification mechanics: Implementation and evaluation of gamified assignments for students”. In: Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality. 2018, pp. 755–760.
M. Jarnac de Freitas and M. Mira da Silva. “Systematic literature review about gamification in MOOCs”. In: vol. 38. 1. 2023, pp. 73–95.
S. Deterding et al. “From game design elements to gamefulness: defining ”gamification””. In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments. 2011.
A. Domínguez et al. “Gamifying learning experiences: Practical implications and outcomes”. In: Computers & Education 63 (2013), pp. 380–392.
T. B. Brown et al. “Language models are few-shot learners”. In: Advances in Neural Information Processing Systems. 2020.
J. Wei et al. “Chain of Thought Prompting Elicits Reasoning in Large Language Models”. In: arXiv preprint arXiv:2201.11903 (2022).
Ying-Hong Chan and Yao-Chung Fan. “A Recurrent BERT-based Model for Question Generation”. In: Proceedings of the 2nd Workshop on Machine Reading for Question Answering. Hong Kong, China: Association for Computational Linguistics, 2019, pp. 154–162.
Yao Zhao et al. “Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks”. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for Computational Linguistics, 2018, pp. 3901–3910.
Jiatao Gu et al. “Incorporating Copying Mechanism in Sequence-to-Sequence Learning”. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics, 2016, pp. 1631–1640.
Kishore Papineni et al. “Bleu: a method for automatic evaluation of machine translation”. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2002, pp. 311–318.
Bernardo Leite and Henrique Lopes Cardoso. “Do Rules Still Rule? Comprehensive Evaluation of a Rule-Based Question Generation System”. In: Proceedings of the 15th International Conference on Computer Supported Education. 2023.
Yicheng Sun, Hejia Chen, and Jie Wang. “Multiple-choice Question Generation for the Chinese Language”. In: Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. 2022.
Y. Kido et al. “Automatic Question Generation for the Japanese National Nursing Examination Using Large Language Models”. In: Proceedings of the International Conference on Computer Supported Education. 2024.
T. Chugh et al. “Intelligent Agents driven Data Analytics using Large Language Models”. In: 2023 International Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics (ICoABCD). 2023.
M. Zhuge et al. “Language Agents as Optimizable Graphs”. In: arXiv.org (2024).
LangGraph. LangGraph Documentation. https://langchain- ai.github.io/langgraph/. Accessed: 2024-11-15.35
Andreas Holzinger et al. “A glass-box interactive machine learning approach for solving NP-hard problems with the human-in-the-loop”. In: Proceedings of the Arxiv Conference on Artificial Intelligence Research. 2017, pp. 1–12.
E. Mosqueira-Rey, E. Hernández-Pereira, and D. Alonso-Ríos. “Human-in-the-loop Machine Learning: A State of the Art”. In: Proceedings of the Artificial Intelligence Review. 2023.
Sigurd Schacht, Sudarshan Kamath Barkur, and Carsten Lanquillon. “Generative Agents to Support Students Learning Progress”. In: Libro de Actas. 2023.
Cheng-Han Chiang and Hung-yi Lee. Can Large Language Models Be an Alternative to Human Evaluations? 2023.
Aniket Deroy, Subhankar Maity, and Sudeshna Sarkar. MIRROR: A Novel Approach for the Automated Evaluation of Open-Ended Question Generation. 2024.
S.E. Huber, K. Kiili, S. Nebel, et al. “Leveraging the Potential of Large Language Models in Education Through Playful and Game-Based Learning”. In: Educational Psychology Review. 2024.
W. Du et al. “CareerSim: Gamification Design Leveraging LLMs For Career Development Reflection”. In: CHI Extended Abstracts. 2024.
Y.-A. Bachiri, H. Mouncif, and B. Bouikhalene. “Artificial Intelligence Empowers Gamification: Optimizing Student Engagement and Learning Outcomes in Elearning and MOOCs”. In: International Journal of Engineering Pedagogy (iJEP) (2023).
A. Hung. “A Critique and Defense of Gamification”. In: Proceedings of an unspecified conference or publication. 2017.
S. Hallifax et al. “Adaptive Gamification in Education: A Literature Review of Current Trends and Developments”. In: European Conference on Technology Enhanced Learning. 2019.
dc.rights.en.fl_str_mv Attribution-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Attribution-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 46 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería de Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/b7098576-2361-4a6f-ae81-e7100424b238/download
https://repositorio.uniandes.edu.co/bitstreams/e2a3078c-9eb6-4c4b-9859-622395947b5a/download
https://repositorio.uniandes.edu.co/bitstreams/65670c7f-ff7a-4e12-a50c-05936a0d173b/download
https://repositorio.uniandes.edu.co/bitstreams/ed69dc3d-30a2-4920-a4b2-beb3971df79a/download
https://repositorio.uniandes.edu.co/bitstreams/f4790981-9f43-4d16-9f63-39fdcd5154a1/download
https://repositorio.uniandes.edu.co/bitstreams/3821f9af-a436-4cf1-b2f7-580dec1335ff/download
https://repositorio.uniandes.edu.co/bitstreams/a81d2626-8162-4db9-98e8-2365ad142ffe/download
https://repositorio.uniandes.edu.co/bitstreams/832d3718-8a40-4415-a270-809427d2fd01/download
bitstream.checksum.fl_str_mv 44298423e5dcb6bf89732251582fe74b
8097cae6bea6caeabcd629c056f9fe9f
f7d494f61e544413a13e6ba1da2089cd
ae9e573a68e7f92501b6913cc846c39f
530d320eb9a3b695b3582e4fc981c68e
a06b1b9b78b06373d710100e2240a0e7
be7c3b2ba795e6a749571d43b924b692
78f99eb8dd2c6a13e4f8ef58d25e06e5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927762428887040
spelling Manrique Piramanrique, Rubén Franciscovirtual::22037-1Duarte Mantilla, Ernesto JoséKlopstock Triana, NicolásFacultad de Ingeniería::TICSw: Tecnologías de Información y Construcción de Software2025-01-14T19:49:02Z2025-12-312025-01-132025-01-14https://hdl.handle.net/1992/75407instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This project focuses on the development of a personalized and gamified learning environment powered by the automatic generation of questions and answers (Q&A-AG) using Large Language Models (LLMs). The system utilizes the Retrieval-Augmented Generation (RAG) process to analyze and extract knowledge from external documents, enabling the creation of contextually accurate and relevant Q&As. At the core of this system is an Artificially Intelligent Agent (AI-Agent) designed to evaluate students’ knowledge through gamified interactions. The agent incorporates elements such as points, streaks, and narrative-driven scenarios to enhance engagement and motivation. The system was tailored for Spanish-speaking contexts and tested to assess the accuracy, quality, and difficulty of the generated questions, as well as its impact on students’ learning experience. By combining cutting-edge AI techniques with gamification techniques, this project aims to validate its effectiveness as an innovative and scalable educational tool, offering new opportunities for personalized learning and evaluation.Pregrado46 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónAttribution-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfExploration of large language models in education: automated question and answer generation system and gamified learning environmentTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPLarge Language ModelsGamificationLearning EnvironmentRetrieval-Augmented GenerationIntelligent AgentMulti-Agent SystemQuestion & Answer Automatic GenerationGraph-orchestrated AgentsIngenieríaHanyi Xu et al. Large Language Models for Education: A Survey. 2024.O. Pastushenko, T. Hrûska, and J. Zendulka. “Increasing students’ motivation by using virtual learning environments based on gamification mechanics: Implementation and evaluation of gamified assignments for students”. In: Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality. 2018, pp. 755–760.M. Jarnac de Freitas and M. Mira da Silva. “Systematic literature review about gamification in MOOCs”. In: vol. 38. 1. 2023, pp. 73–95.S. Deterding et al. “From game design elements to gamefulness: defining ”gamification””. In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments. 2011.A. Domínguez et al. “Gamifying learning experiences: Practical implications and outcomes”. In: Computers & Education 63 (2013), pp. 380–392.T. B. Brown et al. “Language models are few-shot learners”. In: Advances in Neural Information Processing Systems. 2020.J. Wei et al. “Chain of Thought Prompting Elicits Reasoning in Large Language Models”. In: arXiv preprint arXiv:2201.11903 (2022).Ying-Hong Chan and Yao-Chung Fan. “A Recurrent BERT-based Model for Question Generation”. In: Proceedings of the 2nd Workshop on Machine Reading for Question Answering. Hong Kong, China: Association for Computational Linguistics, 2019, pp. 154–162.Yao Zhao et al. “Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks”. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for Computational Linguistics, 2018, pp. 3901–3910.Jiatao Gu et al. “Incorporating Copying Mechanism in Sequence-to-Sequence Learning”. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics, 2016, pp. 1631–1640.Kishore Papineni et al. “Bleu: a method for automatic evaluation of machine translation”. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2002, pp. 311–318.Bernardo Leite and Henrique Lopes Cardoso. “Do Rules Still Rule? Comprehensive Evaluation of a Rule-Based Question Generation System”. In: Proceedings of the 15th International Conference on Computer Supported Education. 2023.Yicheng Sun, Hejia Chen, and Jie Wang. “Multiple-choice Question Generation for the Chinese Language”. In: Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. 2022.Y. Kido et al. “Automatic Question Generation for the Japanese National Nursing Examination Using Large Language Models”. In: Proceedings of the International Conference on Computer Supported Education. 2024.T. Chugh et al. “Intelligent Agents driven Data Analytics using Large Language Models”. In: 2023 International Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics (ICoABCD). 2023.M. Zhuge et al. “Language Agents as Optimizable Graphs”. In: arXiv.org (2024).LangGraph. LangGraph Documentation. https://langchain- ai.github.io/langgraph/. Accessed: 2024-11-15.35Andreas Holzinger et al. “A glass-box interactive machine learning approach for solving NP-hard problems with the human-in-the-loop”. In: Proceedings of the Arxiv Conference on Artificial Intelligence Research. 2017, pp. 1–12.E. Mosqueira-Rey, E. Hernández-Pereira, and D. Alonso-Ríos. “Human-in-the-loop Machine Learning: A State of the Art”. In: Proceedings of the Artificial Intelligence Review. 2023.Sigurd Schacht, Sudarshan Kamath Barkur, and Carsten Lanquillon. “Generative Agents to Support Students Learning Progress”. In: Libro de Actas. 2023.Cheng-Han Chiang and Hung-yi Lee. Can Large Language Models Be an Alternative to Human Evaluations? 2023.Aniket Deroy, Subhankar Maity, and Sudeshna Sarkar. MIRROR: A Novel Approach for the Automated Evaluation of Open-Ended Question Generation. 2024.S.E. Huber, K. Kiili, S. Nebel, et al. “Leveraging the Potential of Large Language Models in Education Through Playful and Game-Based Learning”. In: Educational Psychology Review. 2024.W. Du et al. “CareerSim: Gamification Design Leveraging LLMs For Career Development Reflection”. In: CHI Extended Abstracts. 2024.Y.-A. Bachiri, H. Mouncif, and B. Bouikhalene. “Artificial Intelligence Empowers Gamification: Optimizing Student Engagement and Learning Outcomes in Elearning and MOOCs”. In: International Journal of Engineering Pedagogy (iJEP) (2023).A. Hung. “A Critique and Defense of Gamification”. In: Proceedings of an unspecified conference or publication. 2017.S. Hallifax et al. “Adaptive Gamification in Education: A Literature Review of Current Trends and Developments”. In: European Conference on Technology Enhanced Learning. 2019.202014279202021352Publication9f6e12e0-098e-4548-ab81-75552e8385e7virtual::22037-19f6e12e0-098e-4548-ab81-75552e8385e7virtual::22037-1ORIGINALautorizacion tesis 1_signed.pdfautorizacion tesis 1_signed.pdfHIDEapplication/pdf221467https://repositorio.uniandes.edu.co/bitstreams/b7098576-2361-4a6f-ae81-e7100424b238/download44298423e5dcb6bf89732251582fe74bMD51Exploration of Large Language Models in Education Automated Question and Answer Generation System and Gamified Learning Environment.pdfExploration of Large Language Models in Education Automated Question and Answer Generation System and Gamified Learning Environment.pdfRestricción de acceso hasta el año 2026. Documento cuenta con información confidencial.application/pdf1904851https://repositorio.uniandes.edu.co/bitstreams/e2a3078c-9eb6-4c4b-9859-622395947b5a/download8097cae6bea6caeabcd629c056f9fe9fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/65670c7f-ff7a-4e12-a50c-05936a0d173b/downloadf7d494f61e544413a13e6ba1da2089cdMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/ed69dc3d-30a2-4920-a4b2-beb3971df79a/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesis 1_signed.pdf.txtautorizacion tesis 1_signed.pdf.txtExtracted texttext/plain1176https://repositorio.uniandes.edu.co/bitstreams/f4790981-9f43-4d16-9f63-39fdcd5154a1/download530d320eb9a3b695b3582e4fc981c68eMD55Exploration of Large Language Models in Education Automated Question and Answer Generation System and Gamified Learning Environment.pdf.txtExploration of Large Language Models in Education Automated Question and Answer Generation System and Gamified Learning Environment.pdf.txtExtracted texttext/plain100776https://repositorio.uniandes.edu.co/bitstreams/3821f9af-a436-4cf1-b2f7-580dec1335ff/downloada06b1b9b78b06373d710100e2240a0e7MD57THUMBNAILautorizacion tesis 1_signed.pdf.jpgautorizacion tesis 1_signed.pdf.jpgGenerated Thumbnailimage/jpeg10645https://repositorio.uniandes.edu.co/bitstreams/a81d2626-8162-4db9-98e8-2365ad142ffe/downloadbe7c3b2ba795e6a749571d43b924b692MD56Exploration of Large Language Models in Education Automated Question and Answer Generation System and Gamified Learning Environment.pdf.jpgExploration of Large Language Models in Education Automated Question and Answer Generation System and Gamified Learning Environment.pdf.jpgGenerated Thumbnailimage/jpeg8588https://repositorio.uniandes.edu.co/bitstreams/832d3718-8a40-4415-a270-809427d2fd01/download78f99eb8dd2c6a13e4f8ef58d25e06e5MD581992/75407oai:repositorio.uniandes.edu.co:1992/754072025-01-15 03:11:26.868http://creativecommons.org/licenses/by-nd/4.0/Attribution-NoDerivatives 4.0 Internationalrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K