Geochemical and sulfur isotopic investigation of black shales from the Paja Formation

The Paja Formation from the Lower Cretaceous period is exposed in the Eastern Cordillera of Colombia. Specifically on the region of Alto Ricaurte in the Department of Boyacá, near Villa de Leyva, in Vereda El Roble, a black shale profile has been sampled and analyzed. Sulfur isotope analysis reveale...

Full description

Autores:
Cuéllar Rondón, Katherine
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/76401
Acceso en línea:
https://hdl.handle.net/1992/76401
Palabra clave:
Geochemistry
Sulfur isotopes
Paja Formation
Black shales
Cretaceous
Organic carbon
Diagenesis
Oceanic anoxic events
Geociencias
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_027535d01ab314e1143db9e83e3a72e0
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/76401
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Geochemical and sulfur isotopic investigation of black shales from the Paja Formation
title Geochemical and sulfur isotopic investigation of black shales from the Paja Formation
spellingShingle Geochemical and sulfur isotopic investigation of black shales from the Paja Formation
Geochemistry
Sulfur isotopes
Paja Formation
Black shales
Cretaceous
Organic carbon
Diagenesis
Oceanic anoxic events
Geociencias
title_short Geochemical and sulfur isotopic investigation of black shales from the Paja Formation
title_full Geochemical and sulfur isotopic investigation of black shales from the Paja Formation
title_fullStr Geochemical and sulfur isotopic investigation of black shales from the Paja Formation
title_full_unstemmed Geochemical and sulfur isotopic investigation of black shales from the Paja Formation
title_sort Geochemical and sulfur isotopic investigation of black shales from the Paja Formation
dc.creator.fl_str_mv Cuéllar Rondón, Katherine
dc.contributor.advisor.none.fl_str_mv Eickmann, Benjamin
dc.contributor.author.none.fl_str_mv Cuéllar Rondón, Katherine
dc.contributor.jury.none.fl_str_mv Noè, Leslie Francis
dc.subject.keyword.none.fl_str_mv Geochemistry
Sulfur isotopes
Paja Formation
Black shales
Cretaceous
Organic carbon
Diagenesis
Oceanic anoxic events
topic Geochemistry
Sulfur isotopes
Paja Formation
Black shales
Cretaceous
Organic carbon
Diagenesis
Oceanic anoxic events
Geociencias
dc.subject.themes.none.fl_str_mv Geociencias
description The Paja Formation from the Lower Cretaceous period is exposed in the Eastern Cordillera of Colombia. Specifically on the region of Alto Ricaurte in the Department of Boyacá, near Villa de Leyva, in Vereda El Roble, a black shale profile has been sampled and analyzed. Sulfur isotope analysis revealed δ34SSulfate values ranging from -5‰ to -1‰, significantly lower than typical Cretaceous seawater values, and δ34S Sulfide values ranging from -5‰ to 8‰. These results indicate that the geochemical and isotopic composition of the black shale profile reflects an interplay between paleoenvironmental conditions, and secondary diagenetic processes. Mo/TOC, Fe/Al, TOC/TS, K2O/Al2O3 ratios and high concentrations of V, Cr, Ni, P and Al suggest the Paja Sea was a moderately restricted basin, characterized by intense chemical weathering, weakly to moderately sulfidic bottom waters, and enhanced primary productivity in oxygenated surface waters. Uranium concentrations, along with Th/U and Zr/Ti ratios indicate a dual sediment provenance: weathering from a felsic continental source and input from a mafic volcanic arc setting. The sulfur isotope anomalies are associated to local depositional conditions and post depositional alteration by hydrothermal fluids, evidenced by the presence of gypsum, pyrite, sulfide oxidation and correlations between TOC/ δ13Corg ratios.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-26T20:59:38Z
dc.date.available.none.fl_str_mv 2025-06-26T20:59:38Z
dc.date.issued.none.fl_str_mv 2025-06-26
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/76401
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/76401
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Algeo, T. J., & Lyons, T. W. (2006). Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21(1). https://doi.org/10.1029/2004PA001112
Bergström, J. (2015). Experimental Characterization Techniques. In Mechanics of Solid Polymers (pp. 19–114). Elsevier. https://doi.org/10.1016/b978-0-323-31150-2.00002-9
Berner, R. A., & Raiswel, R. (1983). Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. (Vol. 47, Issue 5, Pages 855-862, ISSN 0016 7073). https://doi.org/10.1016/0016-7037(83)90151-5.
Brumsack, H. J. (2006). The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. In Palaeogeography, Palaeoclimatology, Palaeoecology (Vol. 232, Issues 2–4, pp. 344–361). https://doi.org/10.1016/j.palaeo.2005.05.011
Campos-Alvarez, N. O., & Roser, B. P. (2007). Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source weathering, provenance, and tectonic setting. Journal of South American Earth Sciences, 23(4), 271–289. https://doi.org/10.1016/j.jsames.2007.02.003
Chen, G., Chang, X., Gang, W., Wang, N., Zhang, P., Cao, Q., & Xu, J. (2020). Anomalous positive pyrite sulfur isotope in lacustrine black shale of the Yanchang Formation, Ordos Basin: Triggered by paleoredox chemistry changes. Marine and Petroleum Geology, 121. https://doi.org/10.1016/j.marpetgeo.2020.104587
Dang, Y., Li, C., Ye, J., Yang, Y., Wang, S., Zhao, Q., Li, B., Guan, Y., Fan, L., & Shi, X. (2024). Mineralogy and sulfur isotopic compositions of sulfides from Yunzang (25.3°S) hydrothermal field, South Mid-Atlantic Ridge: Implications for formation mechanism and maturation of sulfide chimneys. Ore Geology Reviews, 171. https://doi.org/10.1016/j.oregeorev.2024.106187
Gaona-Narvaez, T., Maurrasse, florentin J. M. R., & Etayo-Serna, F. (2013). Geochemistry, palaeoenvironments and timing of Aptian organic-rich: Beds of the Paja Formation (Curiti{dotless}́, Eastern Cordillera, Colombia). Geological Society Special Publication, 382(1), 31–48. https://doi.org/10.1144/SP382.6
Gomes, M. L., Hurtgen, M. T., & Sageman, B. B. (2016). Biogeochemical sulfur cycling during Cretaceous oceanic anoxic events: A comparison of OAE1a and OAE2. Paleoceanography, 31(2), 233–251. https://doi.org/10.1002/2015PA002869
Helz, G. R., & Vorlicek, T. P. (2019). Precipitation of molybdenum from euxinic waters and the role organic of matter. Chemical Geology, 509, 178–193. https://doi.org/10.1016/j.chemgeo.2019.02.001
Jenkyns, H. C. (2018). Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian). In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 376, Issue 2130). Royal Society Publishing. https://doi.org/10.1098/rsta.2017.0073
Kershaw, S. & Guo, L. 2016. Beef and cone–in–cone calcite fibrous ce ments associated with the end–Permian and end–Triassic mass extinctions: Reassessment of processes of formation. Journal of Palaeogeography, 5(1): 28–42. https://doi.org/10.1016/j.jop.2015.11.003
Kontinen, A., & Hanski, E. (2015). The Talvivaara Black Shale-Hosted Ni-Zn-Cu-Co Deposit in Eastern Finland. In Mineral Deposits of Finland (pp. 557–612). Elsevier Inc. https://doi.org/10.1016/B978-0-12-410438-9.00022-4
Lyons, T. W., & Severmann, S. (2006). A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70(23 SPEC. ISS.), 5698–5722. https://doi.org/10.1016/j.gca.2006.08.021
Malcolm, S. J. (1985). Early Diagenesis of Molybdenum in Estuarine Sediments, Marine Chemistry, (Vol.16, Issue 3, Pages 213-225, ISSN 0304-4203). https://doi.org/10.1016/0304-4203(85)90062-3.
Noè, L.F. & Gómez–Pérez, M. (2020). Plesiosaurs, palaeoenvironments, and the Paja Formation Lagerstätte of central Colombia: An overview. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, (Vol.2) Mesozoic. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.13
Robinson, P. T., Z, Mei-fu., Hu, Xu-Feng., Reynolds, P., Wenji, Bai., & Yang, Jingsui. (1999). Geochemical constraints on the origin of the Hegenshan ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences, 17(4), 453–472. https://doi.org/10.1016/S1367 9120(99)00016-4
Rudnick, R.L. and Gao, S. (2014) Composition of the Continental Crust. In: Holland, H.D. and Turekian, K.K., Eds., Treatise on Geochemistry, Elsevier, Oxford, 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
Schlanger, S.O. & Jenkyns, Hugh. (1976). Cretaceous Oceanic Anoxic Events: Causes and consequences. Geologie en Mijnbouw. 55. Sharp, Z.D. (2017). Principles of Stable Isotope Geochemistry, 2nd Edition. Chapter 7. Carbon in the Low-Temperature Environment. https://doi.org/10.25844/h9q1-0p82
Streli, C., Wobrauschek, P., & Kregsamer, P. (2017). X-ray fluorescence spectroscopy, applications. In Encyclopedia of Spectroscopy and Spectrometry (pp. 707–715). Elsevier. https://doi.org/10.1016/B978-0-12-803224-4.00315-0
Strauss, H., & Beukes, N. J. (1996). Carbon and Sulfur Isotopic Compositions of Organic Carbon and Pyrite in Sediments from the Transvaal Supergroup, South Africa. Precambrian Research, (Vol. 79, Issues 1–2, Pages 57-71, ISSN 0301-9268). https://doi.org/10.1016/0301-9268(95)00088-7.
Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1–2), 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012
Wedepohl, K.H., (1971). Environmental influences on the chemical composition of shales and clays. In: Ahrens, L.H., Press, F., Runcorn, S.K., Urey, H.C. (Eds.), Physics and Chemistry of the Earth, vol. 8. Pergamon, Oxford, pp. 305–333.
Wichern, N. M. A., Bialik, O. M., Nohl, T., Percival, L. M. E., Becker, R. T., Kaskes, P., Claeys, P., & de Vleeschouwer, D. (2024). Astronomically paced climate and carbon cycle feedbacks in the lead-up to the Late Devonian Kellwasser Crisis. Climate of the Past, 20(2), 415–448. https://doi.org/10.5194/cp-20-415-2024
Wu, S., Peng, B., Wu, N., Xie, S., Yang, X., Fang, X., & Song, Z. (2024). Mobility and environmental impact of cadmium (Cd) during weathering of carbonaceous black shales in western Hunan, China. Journal of Hazardous Materials, 470. https://doi.org/10.1016/j.jhazmat.2024.134267
Young, S. A., Loukola-Ruskeeniemi, K., & Pratt, L. M. (2013). Reactions of hydrothermal solutions with organic matter in Paleoproterozoic black shales at Talvivaara, Finland: Evidence from multiple sulfur isotopes. Earth and Planetary Science Letters, 367, 1-14. https://doi.org/10.1016/j.epsl.2013.02.004
dc.rights.none.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 38 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Geociencias
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Geociencias
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/4ad48dcc-64f6-4bf1-8810-b22bbaac8237/download
https://repositorio.uniandes.edu.co/bitstreams/d7be5803-7ad0-4a80-9cf7-b5bd0fd1906b/download
https://repositorio.uniandes.edu.co/bitstreams/d352c1e5-80de-4aec-8059-b30a7eb06c55/download
https://repositorio.uniandes.edu.co/bitstreams/fc57dddc-fae1-4082-8441-b22827765c5d/download
https://repositorio.uniandes.edu.co/bitstreams/61383a72-7d0f-44e2-acb7-74c4b8b906ae/download
https://repositorio.uniandes.edu.co/bitstreams/e934b554-e44e-45e1-a94c-7df91607821c/download
https://repositorio.uniandes.edu.co/bitstreams/44ffa823-1258-4089-946b-df6f18306c74/download
https://repositorio.uniandes.edu.co/bitstreams/4531e3c5-c761-4a03-89eb-871c5c513395/download
bitstream.checksum.fl_str_mv 5559752eab23fccecc836168d2a61639
cb50832049aead05a9f43467014ca7f5
0175ea4a2d4caec4bbcc37e300941108
ae9e573a68e7f92501b6913cc846c39f
e1c06d85ae7b8b032bef47e42e4c08f9
dfcc955f71d2fe5039cecd04a3155512
92429987b1aae8c2a063bf0df662495a
439520fa581aa52f890d5daace893cd4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1837005459606732800
spelling Eickmann, Benjaminvirtual::24371-1Cuéllar Rondón, KatherineNoè, Leslie Francis2025-06-26T20:59:38Z2025-06-26T20:59:38Z2025-06-26https://hdl.handle.net/1992/76401instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The Paja Formation from the Lower Cretaceous period is exposed in the Eastern Cordillera of Colombia. Specifically on the region of Alto Ricaurte in the Department of Boyacá, near Villa de Leyva, in Vereda El Roble, a black shale profile has been sampled and analyzed. Sulfur isotope analysis revealed δ34SSulfate values ranging from -5‰ to -1‰, significantly lower than typical Cretaceous seawater values, and δ34S Sulfide values ranging from -5‰ to 8‰. These results indicate that the geochemical and isotopic composition of the black shale profile reflects an interplay between paleoenvironmental conditions, and secondary diagenetic processes. Mo/TOC, Fe/Al, TOC/TS, K2O/Al2O3 ratios and high concentrations of V, Cr, Ni, P and Al suggest the Paja Sea was a moderately restricted basin, characterized by intense chemical weathering, weakly to moderately sulfidic bottom waters, and enhanced primary productivity in oxygenated surface waters. Uranium concentrations, along with Th/U and Zr/Ti ratios indicate a dual sediment provenance: weathering from a felsic continental source and input from a mafic volcanic arc setting. The sulfur isotope anomalies are associated to local depositional conditions and post depositional alteration by hydrothermal fluids, evidenced by the presence of gypsum, pyrite, sulfide oxidation and correlations between TOC/ δ13Corg ratios.Pregrado38 páginasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geochemical and sulfur isotopic investigation of black shales from the Paja FormationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPGeochemistrySulfur isotopesPaja FormationBlack shalesCretaceousOrganic carbonDiagenesisOceanic anoxic eventsGeocienciasAlgeo, T. J., & Lyons, T. W. (2006). Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21(1). https://doi.org/10.1029/2004PA001112Bergström, J. (2015). Experimental Characterization Techniques. In Mechanics of Solid Polymers (pp. 19–114). Elsevier. https://doi.org/10.1016/b978-0-323-31150-2.00002-9Berner, R. A., & Raiswel, R. (1983). Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. (Vol. 47, Issue 5, Pages 855-862, ISSN 0016 7073). https://doi.org/10.1016/0016-7037(83)90151-5.Brumsack, H. J. (2006). The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. In Palaeogeography, Palaeoclimatology, Palaeoecology (Vol. 232, Issues 2–4, pp. 344–361). https://doi.org/10.1016/j.palaeo.2005.05.011Campos-Alvarez, N. O., & Roser, B. P. (2007). Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source weathering, provenance, and tectonic setting. Journal of South American Earth Sciences, 23(4), 271–289. https://doi.org/10.1016/j.jsames.2007.02.003Chen, G., Chang, X., Gang, W., Wang, N., Zhang, P., Cao, Q., & Xu, J. (2020). Anomalous positive pyrite sulfur isotope in lacustrine black shale of the Yanchang Formation, Ordos Basin: Triggered by paleoredox chemistry changes. Marine and Petroleum Geology, 121. https://doi.org/10.1016/j.marpetgeo.2020.104587Dang, Y., Li, C., Ye, J., Yang, Y., Wang, S., Zhao, Q., Li, B., Guan, Y., Fan, L., & Shi, X. (2024). Mineralogy and sulfur isotopic compositions of sulfides from Yunzang (25.3°S) hydrothermal field, South Mid-Atlantic Ridge: Implications for formation mechanism and maturation of sulfide chimneys. Ore Geology Reviews, 171. https://doi.org/10.1016/j.oregeorev.2024.106187Gaona-Narvaez, T., Maurrasse, florentin J. M. R., & Etayo-Serna, F. (2013). Geochemistry, palaeoenvironments and timing of Aptian organic-rich: Beds of the Paja Formation (Curiti{dotless}́, Eastern Cordillera, Colombia). Geological Society Special Publication, 382(1), 31–48. https://doi.org/10.1144/SP382.6Gomes, M. L., Hurtgen, M. T., & Sageman, B. B. (2016). Biogeochemical sulfur cycling during Cretaceous oceanic anoxic events: A comparison of OAE1a and OAE2. Paleoceanography, 31(2), 233–251. https://doi.org/10.1002/2015PA002869Helz, G. R., & Vorlicek, T. P. (2019). Precipitation of molybdenum from euxinic waters and the role organic of matter. Chemical Geology, 509, 178–193. https://doi.org/10.1016/j.chemgeo.2019.02.001Jenkyns, H. C. (2018). Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian). In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 376, Issue 2130). Royal Society Publishing. https://doi.org/10.1098/rsta.2017.0073Kershaw, S. & Guo, L. 2016. Beef and cone–in–cone calcite fibrous ce ments associated with the end–Permian and end–Triassic mass extinctions: Reassessment of processes of formation. Journal of Palaeogeography, 5(1): 28–42. https://doi.org/10.1016/j.jop.2015.11.003Kontinen, A., & Hanski, E. (2015). The Talvivaara Black Shale-Hosted Ni-Zn-Cu-Co Deposit in Eastern Finland. In Mineral Deposits of Finland (pp. 557–612). Elsevier Inc. https://doi.org/10.1016/B978-0-12-410438-9.00022-4Lyons, T. W., & Severmann, S. (2006). A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70(23 SPEC. ISS.), 5698–5722. https://doi.org/10.1016/j.gca.2006.08.021Malcolm, S. J. (1985). Early Diagenesis of Molybdenum in Estuarine Sediments, Marine Chemistry, (Vol.16, Issue 3, Pages 213-225, ISSN 0304-4203). https://doi.org/10.1016/0304-4203(85)90062-3.Noè, L.F. & Gómez–Pérez, M. (2020). Plesiosaurs, palaeoenvironments, and the Paja Formation Lagerstätte of central Colombia: An overview. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, (Vol.2) Mesozoic. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.13Robinson, P. T., Z, Mei-fu., Hu, Xu-Feng., Reynolds, P., Wenji, Bai., & Yang, Jingsui. (1999). Geochemical constraints on the origin of the Hegenshan ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences, 17(4), 453–472. https://doi.org/10.1016/S1367 9120(99)00016-4Rudnick, R.L. and Gao, S. (2014) Composition of the Continental Crust. In: Holland, H.D. and Turekian, K.K., Eds., Treatise on Geochemistry, Elsevier, Oxford, 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6Schlanger, S.O. & Jenkyns, Hugh. (1976). Cretaceous Oceanic Anoxic Events: Causes and consequences. Geologie en Mijnbouw. 55. Sharp, Z.D. (2017). Principles of Stable Isotope Geochemistry, 2nd Edition. Chapter 7. Carbon in the Low-Temperature Environment. https://doi.org/10.25844/h9q1-0p82Streli, C., Wobrauschek, P., & Kregsamer, P. (2017). X-ray fluorescence spectroscopy, applications. In Encyclopedia of Spectroscopy and Spectrometry (pp. 707–715). Elsevier. https://doi.org/10.1016/B978-0-12-803224-4.00315-0Strauss, H., & Beukes, N. J. (1996). Carbon and Sulfur Isotopic Compositions of Organic Carbon and Pyrite in Sediments from the Transvaal Supergroup, South Africa. Precambrian Research, (Vol. 79, Issues 1–2, Pages 57-71, ISSN 0301-9268). https://doi.org/10.1016/0301-9268(95)00088-7.Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1–2), 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012Wedepohl, K.H., (1971). Environmental influences on the chemical composition of shales and clays. In: Ahrens, L.H., Press, F., Runcorn, S.K., Urey, H.C. (Eds.), Physics and Chemistry of the Earth, vol. 8. Pergamon, Oxford, pp. 305–333.Wichern, N. M. A., Bialik, O. M., Nohl, T., Percival, L. M. E., Becker, R. T., Kaskes, P., Claeys, P., & de Vleeschouwer, D. (2024). Astronomically paced climate and carbon cycle feedbacks in the lead-up to the Late Devonian Kellwasser Crisis. Climate of the Past, 20(2), 415–448. https://doi.org/10.5194/cp-20-415-2024Wu, S., Peng, B., Wu, N., Xie, S., Yang, X., Fang, X., & Song, Z. (2024). Mobility and environmental impact of cadmium (Cd) during weathering of carbonaceous black shales in western Hunan, China. Journal of Hazardous Materials, 470. https://doi.org/10.1016/j.jhazmat.2024.134267Young, S. A., Loukola-Ruskeeniemi, K., & Pratt, L. M. (2013). Reactions of hydrothermal solutions with organic matter in Paleoproterozoic black shales at Talvivaara, Finland: Evidence from multiple sulfur isotopes. Earth and Planetary Science Letters, 367, 1-14. https://doi.org/10.1016/j.epsl.2013.02.004202122276Publication0000-0002-6535-3750virtual::24371-1cf07a914-b4d9-4b5a-95f7-940947126780virtual::24371-1cf07a914-b4d9-4b5a-95f7-940947126780virtual::24371-1ORIGINALFormato Autorización - Katherine Cuellar.pdfFormato Autorización - Katherine Cuellar.pdfHIDEapplication/pdf454251https://repositorio.uniandes.edu.co/bitstreams/4ad48dcc-64f6-4bf1-8810-b22bbaac8237/download5559752eab23fccecc836168d2a61639MD51Geochemical and sulfur isotopic investigation of black shales from the Paja Formation.pdfGeochemical and sulfur isotopic investigation of black shales from the Paja Formation.pdfapplication/pdf1745473https://repositorio.uniandes.edu.co/bitstreams/d7be5803-7ad0-4a80-9cf7-b5bd0fd1906b/downloadcb50832049aead05a9f43467014ca7f5MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/d352c1e5-80de-4aec-8059-b30a7eb06c55/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/fc57dddc-fae1-4082-8441-b22827765c5d/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTFormato Autorización - Katherine Cuellar.pdf.txtFormato Autorización - Katherine Cuellar.pdf.txtExtracted texttext/plain2https://repositorio.uniandes.edu.co/bitstreams/61383a72-7d0f-44e2-acb7-74c4b8b906ae/downloade1c06d85ae7b8b032bef47e42e4c08f9MD55Geochemical and sulfur isotopic investigation of black shales from the Paja Formation.pdf.txtGeochemical and sulfur isotopic investigation of black shales from the Paja Formation.pdf.txtExtracted texttext/plain70952https://repositorio.uniandes.edu.co/bitstreams/e934b554-e44e-45e1-a94c-7df91607821c/downloaddfcc955f71d2fe5039cecd04a3155512MD57THUMBNAILFormato Autorización - Katherine Cuellar.pdf.jpgFormato Autorización - Katherine Cuellar.pdf.jpgIM Thumbnailimage/jpeg26941https://repositorio.uniandes.edu.co/bitstreams/44ffa823-1258-4089-946b-df6f18306c74/download92429987b1aae8c2a063bf0df662495aMD56Geochemical and sulfur isotopic investigation of black shales from the Paja Formation.pdf.jpgGeochemical and sulfur isotopic investigation of black shales from the Paja Formation.pdf.jpgIM Thumbnailimage/jpeg6623https://repositorio.uniandes.edu.co/bitstreams/4531e3c5-c761-4a03-89eb-871c5c513395/download439520fa581aa52f890d5daace893cd4MD581992/76401oai:repositorio.uniandes.edu.co:1992/764012025-06-27 04:09:51.188http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K