Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts

RGB-D sensors can collect postural data in an automatized way. However, the application of these devices in real work environments requires overcoming problems such as lack of accuracy or body parts' occlusion. This work presents the use of RGB-D sensors and genetic algorithms for the optimizat...

Full description

Autores:
Diego-Mas, Jose Antonio
Poveda-Bautista, Rocío
Garzón Leal, Diana Carolina
Tipo de recurso:
https://purl.org/coar/resource_type/c_6501
Fecha de publicación:
2017
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
eng
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/3509
Acceso en línea:
https://hdl.handle.net/20.500.12495/3509
https://doi.org/10.1016/j.apergo.2017.01.012
https://repositorio.unbosque.edu.co
Palabra clave:
Grupos profesionales
Ergonomía
Lugar de trabajo
RGB-D sensors
Workstation layout
Genetic algorithms
Rights
License
Acceso abierto
id UNBOSQUE2_ffe44e77929fb37e749e562db06fc92f
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/3509
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.spa.fl_str_mv Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts
dc.title.translated.spa.fl_str_mv Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts
title Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts
spellingShingle Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts
Grupos profesionales
Ergonomía
Lugar de trabajo
RGB-D sensors
Workstation layout
Genetic algorithms
title_short Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts
title_full Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts
title_fullStr Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts
title_full_unstemmed Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts
title_sort Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts
dc.creator.fl_str_mv Diego-Mas, Jose Antonio
Poveda-Bautista, Rocío
Garzón Leal, Diana Carolina
dc.contributor.author.none.fl_str_mv Diego-Mas, Jose Antonio
Poveda-Bautista, Rocío
Garzón Leal, Diana Carolina
dc.contributor.orcid.none.fl_str_mv Garzón Leal, Diana Carolina [0000-0002-9428-423X]
dc.subject.decs.spa.fl_str_mv Grupos profesionales
Ergonomía
Lugar de trabajo
topic Grupos profesionales
Ergonomía
Lugar de trabajo
RGB-D sensors
Workstation layout
Genetic algorithms
dc.subject.keywords.spa.fl_str_mv RGB-D sensors
Workstation layout
Genetic algorithms
description RGB-D sensors can collect postural data in an automatized way. However, the application of these devices in real work environments requires overcoming problems such as lack of accuracy or body parts' occlusion. This work presents the use of RGB-D sensors and genetic algorithms for the optimization of workstation layouts. RGB-D sensors are used to capture workers' movements when they reach objects on workbenches. Collected data are then used to optimize workstation layout by means of genetic algorithms considering multiple ergonomic criteria. Results show that typical drawbacks of using RGB-D sensors for body tracking are not a problem for this application, and that the combination with intelligent algorithms can automatize the layout design process. The procedure described can be used to automatically suggest new layouts when workers or processes of production change, to adapt layouts to specific workers based on their ways to do the tasks, or to obtain layouts simultaneously optimized for several production processes.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-07-15T22:02:06Z
dc.date.available.none.fl_str_mv 2020-07-15T22:02:06Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.local.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_6501
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format https://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1872-9126
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/3509
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.apergo.2017.01.012
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv https://repositorio.unbosque.edu.co
identifier_str_mv 1872-9126
instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
url https://hdl.handle.net/20.500.12495/3509
https://doi.org/10.1016/j.apergo.2017.01.012
https://repositorio.unbosque.edu.co
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv Applied ergonomics, 1872-9126, Vol. 65, 2017, p. 530-540
dc.relation.uri.none.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0003687017300200?via%3Dihub
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
Acceso abierto
dc.rights.creativecommons.none.fl_str_mv 2017-11
rights_invalid_str_mv Acceso abierto
https://purl.org/coar/access_right/c_abf2
2017-11
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.journal.spa.fl_str_mv Applied ergonomics
institution Universidad El Bosque
bitstream.url.fl_str_mv https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/89cfefd7-3864-4a33-8d50-f705792a6448/download
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/4f7a8a3b-d420-4c47-9ff5-adb660d4dd26/download
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/6b7caa7b-1722-4b72-8d4c-78abb78ddb2d/download
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/e770922a-be1b-4b45-b284-1d29b60b3dc5/download
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/cde369c3-6b41-4784-8794-47e0eb501c0b/download
bitstream.checksum.fl_str_mv 1f22e0a754885db92c9a69b0ac25031c
8a4605be74aa9ea9d79846c1fba20a33
7210a811635d1799e7c05fee5d259be7
1a069d5f0ceb47c0521a1a5880988687
fa76ac77c609edf9987515dfb6cb095c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1849967104267124736
spelling Diego-Mas, Jose AntonioPoveda-Bautista, RocíoGarzón Leal, Diana CarolinaGarzón Leal, Diana Carolina [0000-0002-9428-423X]2020-07-15T22:02:06Z2020-07-15T22:02:06Z20171872-9126https://hdl.handle.net/20.500.12495/3509https://doi.org/10.1016/j.apergo.2017.01.012instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coapplication/pdfengElsevierApplied ergonomicsApplied ergonomics, 1872-9126, Vol. 65, 2017, p. 530-540https://www.sciencedirect.com/science/article/abs/pii/S0003687017300200?via%3DihubUsing RGB-D sensors and evolutionary algorithms for the optimization of workstation layoutsUsing RGB-D sensors and evolutionary algorithms for the optimization of workstation layoutsArtículo de revistahttps://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Grupos profesionalesErgonomíaLugar de trabajoRGB-D sensorsWorkstation layoutGenetic algorithmsRGB-D sensors can collect postural data in an automatized way. However, the application of these devices in real work environments requires overcoming problems such as lack of accuracy or body parts' occlusion. This work presents the use of RGB-D sensors and genetic algorithms for the optimization of workstation layouts. RGB-D sensors are used to capture workers' movements when they reach objects on workbenches. Collected data are then used to optimize workstation layout by means of genetic algorithms considering multiple ergonomic criteria. Results show that typical drawbacks of using RGB-D sensors for body tracking are not a problem for this application, and that the combination with intelligent algorithms can automatize the layout design process. The procedure described can be used to automatically suggest new layouts when workers or processes of production change, to adapt layouts to specific workers based on their ways to do the tasks, or to obtain layouts simultaneously optimized for several production processes.Acceso abiertohttps://purl.org/coar/access_right/c_abf2Acceso abierto2017-11http://purl.org/coar/access_right/c_abf2ORIGINALJosé Antonio, Diego-Mas Rocío, Poveda-Bautista. Diana Garzón-Leal_2017.pdfJosé Antonio, Diego-Mas Rocío, Poveda-Bautista. Diana Garzón-Leal_2017.pdfapplication/pdf1826917https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/89cfefd7-3864-4a33-8d50-f705792a6448/download1f22e0a754885db92c9a69b0ac25031cMD51trueBiblioteca - (Publicadores)READLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/4f7a8a3b-d420-4c47-9ff5-adb660d4dd26/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTHUMBNAILAntonio, Diego-Mas Rocío, Poveda-Bautista. Diana Garzón-Leal_2017.pdf.jpgAntonio, Diego-Mas Rocío, Poveda-Bautista. Diana Garzón-Leal_2017.pdf.jpgimage/jpeg5775https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/6b7caa7b-1722-4b72-8d4c-78abb78ddb2d/download7210a811635d1799e7c05fee5d259be7MD53falseAnonymousREADJosé Antonio, Diego-Mas Rocío, Poveda-Bautista. Diana Garzón-Leal_2017.pdf.jpgJosé Antonio, Diego-Mas Rocío, Poveda-Bautista. Diana Garzón-Leal_2017.pdf.jpgIM Thumbnailimage/jpeg10266https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/e770922a-be1b-4b45-b284-1d29b60b3dc5/download1a069d5f0ceb47c0521a1a5880988687MD54falseAnonymousREADTEXTJosé Antonio, Diego-Mas Rocío, Poveda-Bautista. Diana Garzón-Leal_2017.pdf.txtJosé Antonio, Diego-Mas Rocío, Poveda-Bautista. Diana Garzón-Leal_2017.pdf.txtExtracted texttext/plain71106https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/cde369c3-6b41-4784-8794-47e0eb501c0b/downloadfa76ac77c609edf9987515dfb6cb095cMD55falseBiblioteca - (Publicadores)READ20.500.12495/3509oai:pruebas-update-repositorio-unbosque.cloudbiteca.com:20.500.12495/35092024-02-07T03:05:42.290Zrestrictedhttps://pruebas-update-repositorio-unbosque.cloudbiteca.comRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=