Avances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuro

El cáncer de mama es una enfermedad con gran prevalencia a nivel mundial y se caracteriza por el crecimiento anormal y descontrolado de las células epiteliales y mioepiteliales de la mama. Tradicionalmente, el tratamiento ha estado basado en quimioterapias convencionales, las cuales carecen de selec...

Full description

Autores:
Camargo Ortíz, Paula
Gamboa Rodríguez, Laura Juliana
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2025
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/14377
Acceso en línea:
https://hdl.handle.net/20.500.12495/14377
Palabra clave:
Cáncer de mama
Nanopartículas
Quimioterapia
Terapia dirigida
Liberación controlada
615.19
Breast cancer
Nanoparticles
Chemotherapy
Targeted therapy
Controlled release
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id UNBOSQUE2_f7b50d4d1f612459ff98988fa0bc6fd0
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/14377
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Avances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuro
dc.title.translated.none.fl_str_mv Recent advances in nanoparticles for the treatment of breast cancer: procurement methods, characterization methods and future perspectives
title Avances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuro
spellingShingle Avances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuro
Cáncer de mama
Nanopartículas
Quimioterapia
Terapia dirigida
Liberación controlada
615.19
Breast cancer
Nanoparticles
Chemotherapy
Targeted therapy
Controlled release
title_short Avances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuro
title_full Avances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuro
title_fullStr Avances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuro
title_full_unstemmed Avances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuro
title_sort Avances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuro
dc.creator.fl_str_mv Camargo Ortíz, Paula
Gamboa Rodríguez, Laura Juliana
dc.contributor.advisor.none.fl_str_mv Velandia París, María Angélica
dc.contributor.author.none.fl_str_mv Camargo Ortíz, Paula
Gamboa Rodríguez, Laura Juliana
dc.subject.none.fl_str_mv Cáncer de mama
Nanopartículas
Quimioterapia
Terapia dirigida
Liberación controlada
topic Cáncer de mama
Nanopartículas
Quimioterapia
Terapia dirigida
Liberación controlada
615.19
Breast cancer
Nanoparticles
Chemotherapy
Targeted therapy
Controlled release
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv Breast cancer
Nanoparticles
Chemotherapy
Targeted therapy
Controlled release
description El cáncer de mama es una enfermedad con gran prevalencia a nivel mundial y se caracteriza por el crecimiento anormal y descontrolado de las células epiteliales y mioepiteliales de la mama. Tradicionalmente, el tratamiento ha estado basado en quimioterapias convencionales, las cuales carecen de selectividad para las células cancerosas, afectando también a células sanas y generando efectos adversos. En los últimos años, la investigación ha avanzado en el desarrollo de sistemas basados en nanopartículas para la administración de fármacos antineoplásicos, con el propósito de mejorar la selectividad y eficacia del tratamiento. El presente trabajo revisa los avances en nanopartículas para el tratamiento del cáncer de mama en los últimos cinco años, incluyendo sus métodos de obtención y métodos de caracterización, con el fin de establecer sus ventajas frente a terapias convencionales y perspectivas a futuro en este campo de investigación.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-05-16T20:58:41Z
dc.date.available.none.fl_str_mv 2025-05-16T20:58:41Z
dc.date.issued.none.fl_str_mv 2025-05
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/14377
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/14377
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv 1. Choi, L. Cáncer de mama. MSD Manual. Recuperado el 19 de abril de 2024, de Cáncer de mama - Ginecología y obstetricia - Manual MSD versión para profesionales (msdmanuals.com)
2. Sanchez, Catherine. Conociendo y comprendiendo la célula cancerosa: Fisiopatología del cáncer. Revista Médica Clínica Las Condes. 24. 553-562. 10.1016/S0716-8640(13)70659-X.
3. Organización Mundial de la Salud (OMS). Cáncer de mama. Recuperado el 29 de febrero de 2024, de https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer
4. CAC & Gobierno de Colombia. Día mundial de la lucha contra el cáncer de mama 2023. Recuperado el 29 de febrero de 2024, de https://cuentadealtocosto.org/cancer/dia-mundial-de-la-lucha-contra-el-cancer-de-mama-2023/
5. American Cancer Society. Quimioterapia contra el cáncer de seno. Recuperado el 29 de febrero de 2024, de https://cancer.org/es/cancer/tipos/cancer-de-seno/tratamiento/quimioterapia-para-elcancer-de-seno.html#:~:text=Diarrea,a%20los%20nervios%20a%20continuaci%C3%B3n
6. Mirza, Z., & Karim, S. Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges. Seminars in Cancer Biology. doi:10.1016/j.semcancer.2019.10.020
7. Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., Ghalamfarsa, G., Yousefi, M., & Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters, 190, 64–83. doi:10.1016/j.imlet.2017.07.015
8. EMA. Abraxane, INN-paclitaxel. Ficha Técnica. Recuperado el 8 de marzo de 2024, de https://ec.europa.eu/health/documents/communityregister/2014/20141027130005/anx_130005_es.pdf
9. BC Cancer Drug Manual. Paclitaxel, nanoparticle, albumin-bound (NAB) monograph. Recuperado el 8 de marzo de 2024, de http://www.bccancer.bc.ca/drug-databasesite/Drug%20Index/Paclitaxel%20NAB_monograph.pdf
10. BC Cancer Agency. Doxorubicin pegylated liposomal. Bccancer.bc.ca. Recuperado el 8 de marzo de 2025, de http://www.bccancer.bc.ca/drug-database-site/Drug%20Index/Doxorubicin%20pegylated%20liposomal_monograph.pdf
11. Boix-Montesinos, P., Soriano-Teruel, P. M., Armiñán, A., Orzáez, M., & Vicent, M. J. The past, present, and future of breast cancer models for nanomedicine development. Advanced Drug Delivery Reviews, 173, 306–330. https://doi.org/10.1016/j.addr.2021.03.018
12. Oliveira, C., Gonçalves, C. S., Martins, E. P., Neves, N. M., Reis, R. L., Costa, B. M., Silva, T. H., & Martins, A. Fucoidan/chitosan nanoparticles functionalized with anti-ErbB-2 target breast cancer cells and impair tumor growth in vivo. International Journal of Pharmaceutics, 2021, 600(120548), 120548. https://doi.org/10.1016/j.ijpharm.2021.120548
13. Aljabali, A. A. A., Obeid, M. A., Bakshi, H. A., Alshaer, W., Ennab, R. M., Al-Trad, B., Al Khateeb, W., Al-Batayneh, K. M., Al-Kadash, A., Alsotari, S., Nsairat, H., & Tambuwala, M. M. Synthesis, characterization, and assessment of anti-cancer potential of ZnO nanoparticles in an in vitro model of breast cancer. Molecules (Basel, Swierland), 2022, 27(6), 1827. https://doi.org/10.3390/molecules27061827
14. Selvam Sathiyavimal, Esteban F Durán-Lara, Seerangaraj Vasantharaj, Mythili Saravanan, Amal Sabour, Maha Alshiekheid, Nguyen Thuy Lan Chi, Kathirvel Brindhadevi, Arivalagan Pugazhendhi. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells. Food and Chemical Toxicology, Volume 168, 2022, 113330, ISSN 0278-6915, https://doi.org/10.1016/j.fct.2022.113330
15. Roy, Arijit & Mitra, Sanchita & Sarkar, Sucheta & Sahu, Ranabir & Nandi, Gouranga & Karunakaran, Gauthaman & Dua, Tarun & Paul, Paramita. Biofabrication of ecofriendly copper oxide nanoparticles and their applications in breast cancer therapy. Inorganic Chemistry Communications. 2023, 160. 111917. 10.1016/j.inoche.2023.111917
16. Arif Nadaf, Nazeer Hasan, Fauziya, Shadaan Ahmad, Akash Gupta, Dhara Jain, Khalid Imtiyaz, M. Moshahid Alam Rizvi, Gaurav Kumar Jain, Prashant Kesharwani, Farhan J. Ahmad. Leucocyte membrane camouflaged poly-lactic-co-glycolic acid (PLGA) nanoparticles containing cannabidiol and paclitaxel against breast cancer therapy. Process Biochemistry, Volume 142, July 2024, Pages 88-103. https://doi.org/10.1016/j.procbio.2024.04.007
17. Naveen Rajana, Padakanti Sandeep Chary, Valamla Bhavana, Rajeshwari Deshmukh, Komalatha Dukka, Anamika Sharma, Neelesh Kumar Mehra. Targeted delivery and apoptosis induction of CDK-4/6 inhibitor loaded folic acid decorated lipid-polymer hybrid nanoparticles in breast cancer cells. Int J Pharm. 2024 Feb 15;651:123787. doi: 10.1016/j.ijpharm.2024.123787. Epub 2024 Jan 4. PMID: 38184023.
18. Sanchita Tripathy, Shagufta Haque, Swapnali Londhe, Sourav Das, Caroline Celine Norbert, Yogesh Chandra, Bojja Sreedhar, Chitta Ranjan Patra. ROS mediated Cu[Fe(CN)5NO] nanoparticles for triple negative breast cancer: A detailed study in preclinical mouse model. Biomaterials Advances, Volume 160, June 2024, 213832. https://doi.org/10.1016/j.bioadv.2024.213832
19. Niloofar Asadi, Mahmoud Gharbavi, Hamed Rezaeejam, Alireza Farajollahi, Behrooz Johari. Zinc nanoparticles coated with doxorubicin-conjugated alginate as a radiation sensitizer in triple-negative breast cancer cells. International Journal of Pharmaceutics, Volume 659, 25 June 2024, 124285. https://doi.org/10.1016/j.ijpharm.2024.124285
20. Pallavi C. Choudante, Jhansi Mamilla, Lalithya Kongari, Diana Díaz-García, Sanjiv Prashar, Santiago Gómez-Ruiz, Sunil Misra. Functionalized tin-loaded mesoporous silica nanoparticles for targeted therapy of triple-negative breast cancer: Evaluation of cytogenetic toxicity. Journal of Drug Delivery Science and Technology, Volume 94, April 2024, 105502. https://doi.org/10.1016/j.jddst.2024.105502
21. Yan Liu, Dan Zhang, Zongquan Zhang, Xiaoya Liang, Xi Yang, Nianhui Ding, Yu Nie, Chunhong Li. Multifunctional nanoparticles inhibit tumor and tumor-associated macrophages for triple-negative breast cancer therapy. Journal of Colloid and Interface Science, Volume 657, March 2024, Pages 598-610. https://doi.org/10.1016/j.jcis.2023.11.156
22. Andreia Granja, Rita Lima-Sousa, Cátia G. Alves, Duarte de Melo-Diogo, Cláudia Nunes, Célia T. Sousa, Ilídio J. Correia, Salette Reis. Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancer. Biomaterials Advances, Volume 151, August 2023, 213443. https://doi.org/10.1016/j.bioadv.2023.213443
23. Lina Sun , Cuiling Zuo, Baonan Ma, Xinxin Liu, Yifei Guo, Xiangtao Wang, Meihua Han. Intratumoral injection of two dosage forms of paclitaxel nanoparticles combined with photothermal therapy for breast cancer. Chinese Herbal Medicines, Available online 20 June 2024. https://doi.org/10.1016/j.chmed.2024.06.001
24. Ramkrishna Sen, Julekha Kazi, Alankar Mukherjee, Biswajit Mukherjee. Folic acid-tripeptide-conjugated synthetic biodegradable nanoparticle-loaded with Ormeloxifene potentially inhibited breast cancer xenograft tumor. Journal of Drug Delivery Science and Technology, Volume 97, August 2024, 105750. https://doi.org/10.1016/j.jddst.2024.105750
25. N. Shobhana, N. Raghavendra Naveen, Prakash Goudanavar. Magnetic precision: Unleashing the therapeutic potential of paclitaxel-loaded nanoparticles in breast cancer treatment. Oral Oncology Reports, Volume 10, June 2024, 100283. https://doi.org/10.1016/j.oor.2024.100283
26. Urrejola, Madelein C, Soto, Liliam V, Zumarán, Consuelo C, Peñaloza, Juan Pablo, Álvarez, Beatriz, Fuentevilla, Ignacio, & Haidar, Ziyad S. Sistemas de Nanopartículas Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly). International Journal of Morphology, 2016, 36(4), 1463-1471. https://dx.doi.org/10.4067/S0717-95022018000401463
27. Kaur I, Ellis LJ, Romer I, Tantra R, Carriere M, Allard S, Mayne-L'Hermite M, Minelli C, Unger W, Potthoff A, Rades S, Valsami-Jones E. Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization. J Vis Exp. 2017 Dec 25;(130):56074. doi: 10.3791/56074. PMID: 29364209; PMCID: PMC5908381.
28. Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016 Dec;8(4):409-427. doi: 10.1007/s12551-016-0218-6. Epub 2016 Oct 6. PMID: 28510011; PMCID: PMC5425802.
29. Thermo Fisher Scientific Inc. Microscopios electrónicos. [Online]. Recuperado el 3 de abril de 2024, de https://www.thermofisher.com/co/en/home/materials-science/learning-center/applications/sem-tem-difference.html
30. Betancur C., Bibiana, Jiménez G., David M., & Linares, Balmes g. Potencial zeta (zeta) como criterio de optimización de dosificación de coagulante en planta de tratamiento de agua potable. Dyna, 2022, 79(175), 166-172. Retrieved April 03, 2025, from http://www.scielo.org.co/scielo.php?script=sci_arext&pid=S0012-73532012000500020&lng=en&tlng=es.
31. Carissimi G, Montalbán MG, Víllora G, Barth A. Direct Quantification of Drug Loading Content in Polymeric Nanoparticles by Infrared Spectroscopy. Pharmaceutics. 2020 Sep 23;12(10):912. doi: 10.3390/pharmaceutics12100912. PMID: 32977658; PMCID: PMC7598274.
32. Neil P. Desai & Patrick Soon-Shiong. (2020). Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane. US10682420B2. Abraxis Bioscience LLC. https://patentimages.storage.googleapis.com/50/2a/c8/be534d8f401b76/US10682420.pdf
33. Gerald F. Swiss, Jesse vetomir, N. Markovic & Wendy K. Nevala. Methods of treating triple-negative breast cancer using compositions of antibodies and carrier proteins. US11872205B2. Research Mayo Foundation For Medical Education And Vavotar Life Sciences LLC Mayo Foundation for Medical Education and Research. https://patentimages.storage.googleapis.com/66/24/62/97d658d00b1c69/US11872205.pdf
34. Tagde, P., Najda, A., Nagpal, K., Kulkarni, G. T., Shah, M., Ullah, O., Balant, S., & Rahman, M. H. Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. International Journal of Molecular Sciences, 2022, 23(5), 2856. https://doi.org/10.3390/ijms23052856
35. V. Rahimkhoei, A.H. Alzaidy, M.J. Abed, S. Rashki, M. Salavati-Niasari, Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics, Adv. Colloid Interface Sci. 329 (2024) 103204.
36. N. Rajana, A. Mounika, P.S. Chary, V. Bhavana, A. Urati, D. Khatri, S.B. Singh, N. K. Mehra, Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer, J. Control. Release 352 (2022) 1024–1047.
37. Arijit Prosad Roy, Sanchita Mitra, Sucheta Sarkar, Ranabir Sahu, Gouranga Nandi, Gauthaman Karunakaran, Tarun Kumar Dua, Paramita Paul. Biofabrication of ecofriendly copper oxide nanoparticles and their applications in breast cancer therapy, Inorganic Chemistry Communications, Volume 160, 2024, 111917, ISSN 1387-7003, https://doi.org/10.1016/j.inoche.2023.111917
38. Suvadeep Mal, Subhasis Chakraborty, Monalisa Mahapatra, Kakarla Pakeeraiah, Suvadra Das,Sudhir Kumar Paidesetty and Partha Roy. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. Nanoscale Advances Volume 6, Issue 11, 29 May 2024, Pages 2766-2812. https://doi.org/10.1039/d3na00988b
39. Yun Lu, Lan Chen, Zhouxue Wu, Ping Zhou, Jie Dai, Jianmei Li, Qian Wen, Yu Fan, Fancai Zeng, Yue Chen, Shaozhi Fu. Self-driven bioactive hybrids co-deliver doxorubicin and indocyanine green nanoparticles for chemo/photothermal therapy of breast cancer. Biomedicine & Pharmacotherapy, Volume 169, 31 December 2023, 115846. https://doi.org/10.1016/j.biopha.2023.115846
40. S.S. Kunde, S. Wairkar, Targeted delivery of albumin nanoparticles for breast cancer: a review, Colloids Surf. B Biointerfaces 213 (2022), 112422.
41. Yeruva Sri Pooja, Naveen Rajana, Rati Yadav, Lakshmi Tulasi Naraharisetti, Chandraiah Godugu, Neelesh Kumar Mehra. Design, development, and evaluation of CDK-4/6 inhibitor loaded 4-carboxy phenyl boronic acid conjugated pH-sensitive chitosan lecithin nanoparticles in the management of breast cancer. International Journal of Biological Macromolecules, Volume 258, Part 1, February 2024, 128821. https://doi.org/10.1016/j.ijbiomac.2023.128821
42. Weiwei Ma, Qiufeng Zhao, Shilong Zhu, Xinyue Wang, Chuangchuang Zhang, Daming Ma, Na Li and Yanyan Yin. Construction of glutathione-responsive paclitaxel prodrug nanoparticles for image-guided targeted delivery and breast cancer therapy. RSC Advances, Volume 14, Issue 18, 16 April 2024, Pages 12796-12806. https://doi.org/10.1039/d4ra00610k
43. Mariscal Suphalak Khamruang, Pavimol Angsantikul, Pang Zhiqing Nasongkla, Rusnah Syahila Duali Hussen, Soracha D. Thamphiwatana. Biomimetic Targeted Theranostic Nanoparticles for Breast Cancer Treatment. Molecules, volumen 27 número 19 (2022) págs: 6473. https://doi.org/10.3390/molecules27196473
44. M. Mehta, T.A. Bui, A. Care, W. Deng, Targeted polymer lipid hybrid nanoparticles for in-vitro siRNA therapy in triple-negative breast cancer, Journal of Drug Delivery, Science and Technology, 2024, https://doi.org/10.1016/j.jddst.2024.105911.
45. ATCC. MCF7-HTB-22. [Online]. Recuperado el 10 de marzo de 2025 de https://www.atcc.org/products/htb-22#detailed-product-information
46. Sadremomtaz, A., & Dalili, N. Investigating the effects of gold and titania nanoparticles in the treatment of breast cancer using a compressed breast phantom in the presence of high intensity low mono-energetic x-ray radiation. Biomedical Physics & Engineering Express, 9(4). https://doi.org/10.1088/2057-1976/acd386
47. Moin, A., Wani, S. U. D., Osmani, R. A., Abu Lila, A. S., Khafagy, E.-S., Arab, H. H., Gangadharappa, H. V., & Allam, A. N. Formulation, characterization, and cellular toxicity assessment of tamoxifen-loaded silk fibroin nanoparticles in breast cancer. Drug Delivery, 2021, 28(1), 1626–1636. https://doi.org/10.1080/10717544.2021.1958106
48. Passos, J. S., Lopes, L. B., & Panitch, A. Collagen-binding nanoparticles for paclitaxel encapsulation and breast cancer treatment. ACS Biomaterials Science & Engineering, 2023, 9(12), 6805–6820. https://doi.org/10.1021/acsbiomaterials.3c01332
49. Escareño, N., Hassan, N., Kogan, M. J., Juárez, J., Topete, A., & Daneri-Navarro, A. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells. Journal of Colloid and Interface Science, 2021, 591, 440–450. https://doi.org/10.1016/j.jcis.2021.02.031
50. Song, Y., Bugada, L., Li, R., Hu, H., Zhang, L., Li, C., Yuan, H., Rajanayake, K. K., Truchan, N. A., Wen, F., Gao, W., & Sun, D. Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice. Science Translational Medicine, 2022, 14(643), eabl3649. https://doi.org/10.1126/scitranslmed.abl3649
51. V. Rahimkhoei, A.H. Alzaidy, M.J. Abed, S. Rashki, M. Salavati-Niasari, Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics, Adv. Colloid Interface Sci. 329 (2024) 103204.
dc.rights.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/8305a1b4-5bdd-4456-8c62-324798d92173/download
https://repositorio.unbosque.edu.co/bitstreams/1011cb80-973b-4ec3-a72c-1fc7be2f1bdc/download
https://repositorio.unbosque.edu.co/bitstreams/26f82f16-649e-435b-8d18-14748cbaa9a8/download
https://repositorio.unbosque.edu.co/bitstreams/c71026d6-d0ef-4d2c-bfcd-f0c6d5e0cba5/download
https://repositorio.unbosque.edu.co/bitstreams/99d55e00-f45e-46bd-aedd-6454e2bd4fcc/download
https://repositorio.unbosque.edu.co/bitstreams/5fd9d7a3-28b8-47b2-9576-135ea180b204/download
https://repositorio.unbosque.edu.co/bitstreams/0f22b4c4-0839-4b44-89f5-fd3c24ac64a5/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
497a214fd79750d548c77924100c6cad
bc7f62764408b4fa56fcfc22196bb11d
9c1968f347b4f8eb38894ed50efb0e8b
5643bfd9bcf29d560eeec56d584edaa9
c4677039cca90f46b828ae512d9b52bf
38e2c57fba06b5110a928da2469c58db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1834107973502238720
spelling Velandia París, María AngélicaCamargo Ortíz, PaulaGamboa Rodríguez, Laura Juliana2025-05-16T20:58:41Z2025-05-16T20:58:41Z2025-05https://hdl.handle.net/20.500.12495/14377Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl cáncer de mama es una enfermedad con gran prevalencia a nivel mundial y se caracteriza por el crecimiento anormal y descontrolado de las células epiteliales y mioepiteliales de la mama. Tradicionalmente, el tratamiento ha estado basado en quimioterapias convencionales, las cuales carecen de selectividad para las células cancerosas, afectando también a células sanas y generando efectos adversos. En los últimos años, la investigación ha avanzado en el desarrollo de sistemas basados en nanopartículas para la administración de fármacos antineoplásicos, con el propósito de mejorar la selectividad y eficacia del tratamiento. El presente trabajo revisa los avances en nanopartículas para el tratamiento del cáncer de mama en los últimos cinco años, incluyendo sus métodos de obtención y métodos de caracterización, con el fin de establecer sus ventajas frente a terapias convencionales y perspectivas a futuro en este campo de investigación.PregradoQuímico FarmacéuticoBreast cancer is a disease with a high prevalence worldwide and is characterized by the abnormal and uncontrolled growth of epithelial cells and myoepithelial cells of the breast. Traditionally, treatment has been based on conventional chemotherapies, which lack selectivity for cancerous cells, affecting also healthy cells and generating adverse effects. In the last years, research has advanced in the development of systems based on nanoparticles for the administration of antineoplastic drugs, with the aim of improving the selectivity and efficacy of the treatment. This paper reviews the advances in nanoparticles for the treatment of breast cancer in the last five years, including their methods of obtaining and characterization methods, in order to establish their advantages over conventional therapies and future prospects in this field of researchapplication/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Cáncer de mamaNanopartículasQuimioterapiaTerapia dirigidaLiberación controlada615.19Breast cancerNanoparticlesChemotherapyTargeted therapyControlled releaseAvances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuroRecent advances in nanoparticles for the treatment of breast cancer: procurement methods, characterization methods and future perspectivesQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. Choi, L. Cáncer de mama. MSD Manual. Recuperado el 19 de abril de 2024, de Cáncer de mama - Ginecología y obstetricia - Manual MSD versión para profesionales (msdmanuals.com)2. Sanchez, Catherine. Conociendo y comprendiendo la célula cancerosa: Fisiopatología del cáncer. Revista Médica Clínica Las Condes. 24. 553-562. 10.1016/S0716-8640(13)70659-X.3. Organización Mundial de la Salud (OMS). Cáncer de mama. Recuperado el 29 de febrero de 2024, de https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer4. CAC & Gobierno de Colombia. Día mundial de la lucha contra el cáncer de mama 2023. Recuperado el 29 de febrero de 2024, de https://cuentadealtocosto.org/cancer/dia-mundial-de-la-lucha-contra-el-cancer-de-mama-2023/5. American Cancer Society. Quimioterapia contra el cáncer de seno. Recuperado el 29 de febrero de 2024, de https://cancer.org/es/cancer/tipos/cancer-de-seno/tratamiento/quimioterapia-para-elcancer-de-seno.html#:~:text=Diarrea,a%20los%20nervios%20a%20continuaci%C3%B3n6. Mirza, Z., & Karim, S. Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges. Seminars in Cancer Biology. doi:10.1016/j.semcancer.2019.10.0207. Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., Ghalamfarsa, G., Yousefi, M., & Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters, 190, 64–83. doi:10.1016/j.imlet.2017.07.0158. EMA. Abraxane, INN-paclitaxel. Ficha Técnica. Recuperado el 8 de marzo de 2024, de https://ec.europa.eu/health/documents/communityregister/2014/20141027130005/anx_130005_es.pdf9. BC Cancer Drug Manual. Paclitaxel, nanoparticle, albumin-bound (NAB) monograph. Recuperado el 8 de marzo de 2024, de http://www.bccancer.bc.ca/drug-databasesite/Drug%20Index/Paclitaxel%20NAB_monograph.pdf10. BC Cancer Agency. Doxorubicin pegylated liposomal. Bccancer.bc.ca. Recuperado el 8 de marzo de 2025, de http://www.bccancer.bc.ca/drug-database-site/Drug%20Index/Doxorubicin%20pegylated%20liposomal_monograph.pdf11. Boix-Montesinos, P., Soriano-Teruel, P. M., Armiñán, A., Orzáez, M., & Vicent, M. J. The past, present, and future of breast cancer models for nanomedicine development. Advanced Drug Delivery Reviews, 173, 306–330. https://doi.org/10.1016/j.addr.2021.03.01812. Oliveira, C., Gonçalves, C. S., Martins, E. P., Neves, N. M., Reis, R. L., Costa, B. M., Silva, T. H., & Martins, A. Fucoidan/chitosan nanoparticles functionalized with anti-ErbB-2 target breast cancer cells and impair tumor growth in vivo. International Journal of Pharmaceutics, 2021, 600(120548), 120548. https://doi.org/10.1016/j.ijpharm.2021.12054813. Aljabali, A. A. A., Obeid, M. A., Bakshi, H. A., Alshaer, W., Ennab, R. M., Al-Trad, B., Al Khateeb, W., Al-Batayneh, K. M., Al-Kadash, A., Alsotari, S., Nsairat, H., & Tambuwala, M. M. Synthesis, characterization, and assessment of anti-cancer potential of ZnO nanoparticles in an in vitro model of breast cancer. Molecules (Basel, Swierland), 2022, 27(6), 1827. https://doi.org/10.3390/molecules2706182714. Selvam Sathiyavimal, Esteban F Durán-Lara, Seerangaraj Vasantharaj, Mythili Saravanan, Amal Sabour, Maha Alshiekheid, Nguyen Thuy Lan Chi, Kathirvel Brindhadevi, Arivalagan Pugazhendhi. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells. Food and Chemical Toxicology, Volume 168, 2022, 113330, ISSN 0278-6915, https://doi.org/10.1016/j.fct.2022.11333015. Roy, Arijit & Mitra, Sanchita & Sarkar, Sucheta & Sahu, Ranabir & Nandi, Gouranga & Karunakaran, Gauthaman & Dua, Tarun & Paul, Paramita. Biofabrication of ecofriendly copper oxide nanoparticles and their applications in breast cancer therapy. Inorganic Chemistry Communications. 2023, 160. 111917. 10.1016/j.inoche.2023.11191716. Arif Nadaf, Nazeer Hasan, Fauziya, Shadaan Ahmad, Akash Gupta, Dhara Jain, Khalid Imtiyaz, M. Moshahid Alam Rizvi, Gaurav Kumar Jain, Prashant Kesharwani, Farhan J. Ahmad. Leucocyte membrane camouflaged poly-lactic-co-glycolic acid (PLGA) nanoparticles containing cannabidiol and paclitaxel against breast cancer therapy. Process Biochemistry, Volume 142, July 2024, Pages 88-103. https://doi.org/10.1016/j.procbio.2024.04.00717. Naveen Rajana, Padakanti Sandeep Chary, Valamla Bhavana, Rajeshwari Deshmukh, Komalatha Dukka, Anamika Sharma, Neelesh Kumar Mehra. Targeted delivery and apoptosis induction of CDK-4/6 inhibitor loaded folic acid decorated lipid-polymer hybrid nanoparticles in breast cancer cells. Int J Pharm. 2024 Feb 15;651:123787. doi: 10.1016/j.ijpharm.2024.123787. Epub 2024 Jan 4. PMID: 38184023.18. Sanchita Tripathy, Shagufta Haque, Swapnali Londhe, Sourav Das, Caroline Celine Norbert, Yogesh Chandra, Bojja Sreedhar, Chitta Ranjan Patra. ROS mediated Cu[Fe(CN)5NO] nanoparticles for triple negative breast cancer: A detailed study in preclinical mouse model. Biomaterials Advances, Volume 160, June 2024, 213832. https://doi.org/10.1016/j.bioadv.2024.21383219. Niloofar Asadi, Mahmoud Gharbavi, Hamed Rezaeejam, Alireza Farajollahi, Behrooz Johari. Zinc nanoparticles coated with doxorubicin-conjugated alginate as a radiation sensitizer in triple-negative breast cancer cells. International Journal of Pharmaceutics, Volume 659, 25 June 2024, 124285. https://doi.org/10.1016/j.ijpharm.2024.12428520. Pallavi C. Choudante, Jhansi Mamilla, Lalithya Kongari, Diana Díaz-García, Sanjiv Prashar, Santiago Gómez-Ruiz, Sunil Misra. Functionalized tin-loaded mesoporous silica nanoparticles for targeted therapy of triple-negative breast cancer: Evaluation of cytogenetic toxicity. Journal of Drug Delivery Science and Technology, Volume 94, April 2024, 105502. https://doi.org/10.1016/j.jddst.2024.10550221. Yan Liu, Dan Zhang, Zongquan Zhang, Xiaoya Liang, Xi Yang, Nianhui Ding, Yu Nie, Chunhong Li. Multifunctional nanoparticles inhibit tumor and tumor-associated macrophages for triple-negative breast cancer therapy. Journal of Colloid and Interface Science, Volume 657, March 2024, Pages 598-610. https://doi.org/10.1016/j.jcis.2023.11.15622. Andreia Granja, Rita Lima-Sousa, Cátia G. Alves, Duarte de Melo-Diogo, Cláudia Nunes, Célia T. Sousa, Ilídio J. Correia, Salette Reis. Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancer. Biomaterials Advances, Volume 151, August 2023, 213443. https://doi.org/10.1016/j.bioadv.2023.21344323. Lina Sun , Cuiling Zuo, Baonan Ma, Xinxin Liu, Yifei Guo, Xiangtao Wang, Meihua Han. Intratumoral injection of two dosage forms of paclitaxel nanoparticles combined with photothermal therapy for breast cancer. Chinese Herbal Medicines, Available online 20 June 2024. https://doi.org/10.1016/j.chmed.2024.06.00124. Ramkrishna Sen, Julekha Kazi, Alankar Mukherjee, Biswajit Mukherjee. Folic acid-tripeptide-conjugated synthetic biodegradable nanoparticle-loaded with Ormeloxifene potentially inhibited breast cancer xenograft tumor. Journal of Drug Delivery Science and Technology, Volume 97, August 2024, 105750. https://doi.org/10.1016/j.jddst.2024.10575025. N. Shobhana, N. Raghavendra Naveen, Prakash Goudanavar. Magnetic precision: Unleashing the therapeutic potential of paclitaxel-loaded nanoparticles in breast cancer treatment. Oral Oncology Reports, Volume 10, June 2024, 100283. https://doi.org/10.1016/j.oor.2024.10028326. Urrejola, Madelein C, Soto, Liliam V, Zumarán, Consuelo C, Peñaloza, Juan Pablo, Álvarez, Beatriz, Fuentevilla, Ignacio, & Haidar, Ziyad S. Sistemas de Nanopartículas Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly). International Journal of Morphology, 2016, 36(4), 1463-1471. https://dx.doi.org/10.4067/S0717-9502201800040146327. Kaur I, Ellis LJ, Romer I, Tantra R, Carriere M, Allard S, Mayne-L'Hermite M, Minelli C, Unger W, Potthoff A, Rades S, Valsami-Jones E. Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization. J Vis Exp. 2017 Dec 25;(130):56074. doi: 10.3791/56074. PMID: 29364209; PMCID: PMC5908381.28. Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016 Dec;8(4):409-427. doi: 10.1007/s12551-016-0218-6. Epub 2016 Oct 6. PMID: 28510011; PMCID: PMC5425802.29. Thermo Fisher Scientific Inc. Microscopios electrónicos. [Online]. Recuperado el 3 de abril de 2024, de https://www.thermofisher.com/co/en/home/materials-science/learning-center/applications/sem-tem-difference.html30. Betancur C., Bibiana, Jiménez G., David M., & Linares, Balmes g. Potencial zeta (zeta) como criterio de optimización de dosificación de coagulante en planta de tratamiento de agua potable. Dyna, 2022, 79(175), 166-172. Retrieved April 03, 2025, from http://www.scielo.org.co/scielo.php?script=sci_arext&pid=S0012-73532012000500020&lng=en&tlng=es.31. Carissimi G, Montalbán MG, Víllora G, Barth A. Direct Quantification of Drug Loading Content in Polymeric Nanoparticles by Infrared Spectroscopy. Pharmaceutics. 2020 Sep 23;12(10):912. doi: 10.3390/pharmaceutics12100912. PMID: 32977658; PMCID: PMC7598274.32. Neil P. Desai & Patrick Soon-Shiong. (2020). Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane. US10682420B2. Abraxis Bioscience LLC. https://patentimages.storage.googleapis.com/50/2a/c8/be534d8f401b76/US10682420.pdf33. Gerald F. Swiss, Jesse vetomir, N. Markovic & Wendy K. Nevala. Methods of treating triple-negative breast cancer using compositions of antibodies and carrier proteins. US11872205B2. Research Mayo Foundation For Medical Education And Vavotar Life Sciences LLC Mayo Foundation for Medical Education and Research. https://patentimages.storage.googleapis.com/66/24/62/97d658d00b1c69/US11872205.pdf34. Tagde, P., Najda, A., Nagpal, K., Kulkarni, G. T., Shah, M., Ullah, O., Balant, S., & Rahman, M. H. Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. International Journal of Molecular Sciences, 2022, 23(5), 2856. https://doi.org/10.3390/ijms2305285635. V. Rahimkhoei, A.H. Alzaidy, M.J. Abed, S. Rashki, M. Salavati-Niasari, Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics, Adv. Colloid Interface Sci. 329 (2024) 103204.36. N. Rajana, A. Mounika, P.S. Chary, V. Bhavana, A. Urati, D. Khatri, S.B. Singh, N. K. Mehra, Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer, J. Control. Release 352 (2022) 1024–1047.37. Arijit Prosad Roy, Sanchita Mitra, Sucheta Sarkar, Ranabir Sahu, Gouranga Nandi, Gauthaman Karunakaran, Tarun Kumar Dua, Paramita Paul. Biofabrication of ecofriendly copper oxide nanoparticles and their applications in breast cancer therapy, Inorganic Chemistry Communications, Volume 160, 2024, 111917, ISSN 1387-7003, https://doi.org/10.1016/j.inoche.2023.11191738. Suvadeep Mal, Subhasis Chakraborty, Monalisa Mahapatra, Kakarla Pakeeraiah, Suvadra Das,Sudhir Kumar Paidesetty and Partha Roy. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. Nanoscale Advances Volume 6, Issue 11, 29 May 2024, Pages 2766-2812. https://doi.org/10.1039/d3na00988b39. Yun Lu, Lan Chen, Zhouxue Wu, Ping Zhou, Jie Dai, Jianmei Li, Qian Wen, Yu Fan, Fancai Zeng, Yue Chen, Shaozhi Fu. Self-driven bioactive hybrids co-deliver doxorubicin and indocyanine green nanoparticles for chemo/photothermal therapy of breast cancer. Biomedicine & Pharmacotherapy, Volume 169, 31 December 2023, 115846. https://doi.org/10.1016/j.biopha.2023.11584640. S.S. Kunde, S. Wairkar, Targeted delivery of albumin nanoparticles for breast cancer: a review, Colloids Surf. B Biointerfaces 213 (2022), 112422.41. Yeruva Sri Pooja, Naveen Rajana, Rati Yadav, Lakshmi Tulasi Naraharisetti, Chandraiah Godugu, Neelesh Kumar Mehra. Design, development, and evaluation of CDK-4/6 inhibitor loaded 4-carboxy phenyl boronic acid conjugated pH-sensitive chitosan lecithin nanoparticles in the management of breast cancer. International Journal of Biological Macromolecules, Volume 258, Part 1, February 2024, 128821. https://doi.org/10.1016/j.ijbiomac.2023.12882142. Weiwei Ma, Qiufeng Zhao, Shilong Zhu, Xinyue Wang, Chuangchuang Zhang, Daming Ma, Na Li and Yanyan Yin. Construction of glutathione-responsive paclitaxel prodrug nanoparticles for image-guided targeted delivery and breast cancer therapy. RSC Advances, Volume 14, Issue 18, 16 April 2024, Pages 12796-12806. https://doi.org/10.1039/d4ra00610k43. Mariscal Suphalak Khamruang, Pavimol Angsantikul, Pang Zhiqing Nasongkla, Rusnah Syahila Duali Hussen, Soracha D. Thamphiwatana. Biomimetic Targeted Theranostic Nanoparticles for Breast Cancer Treatment. Molecules, volumen 27 número 19 (2022) págs: 6473. https://doi.org/10.3390/molecules2719647344. M. Mehta, T.A. Bui, A. Care, W. Deng, Targeted polymer lipid hybrid nanoparticles for in-vitro siRNA therapy in triple-negative breast cancer, Journal of Drug Delivery, Science and Technology, 2024, https://doi.org/10.1016/j.jddst.2024.105911.45. ATCC. MCF7-HTB-22. [Online]. Recuperado el 10 de marzo de 2025 de https://www.atcc.org/products/htb-22#detailed-product-information46. Sadremomtaz, A., & Dalili, N. Investigating the effects of gold and titania nanoparticles in the treatment of breast cancer using a compressed breast phantom in the presence of high intensity low mono-energetic x-ray radiation. Biomedical Physics & Engineering Express, 9(4). https://doi.org/10.1088/2057-1976/acd38647. Moin, A., Wani, S. U. D., Osmani, R. A., Abu Lila, A. S., Khafagy, E.-S., Arab, H. H., Gangadharappa, H. V., & Allam, A. N. Formulation, characterization, and cellular toxicity assessment of tamoxifen-loaded silk fibroin nanoparticles in breast cancer. Drug Delivery, 2021, 28(1), 1626–1636. https://doi.org/10.1080/10717544.2021.195810648. Passos, J. S., Lopes, L. B., & Panitch, A. Collagen-binding nanoparticles for paclitaxel encapsulation and breast cancer treatment. ACS Biomaterials Science & Engineering, 2023, 9(12), 6805–6820. https://doi.org/10.1021/acsbiomaterials.3c0133249. Escareño, N., Hassan, N., Kogan, M. J., Juárez, J., Topete, A., & Daneri-Navarro, A. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells. Journal of Colloid and Interface Science, 2021, 591, 440–450. https://doi.org/10.1016/j.jcis.2021.02.03150. Song, Y., Bugada, L., Li, R., Hu, H., Zhang, L., Li, C., Yuan, H., Rajanayake, K. K., Truchan, N. A., Wen, F., Gao, W., & Sun, D. Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice. Science Translational Medicine, 2022, 14(643), eabl3649. https://doi.org/10.1126/scitranslmed.abl364951. V. Rahimkhoei, A.H. Alzaidy, M.J. Abed, S. Rashki, M. Salavati-Niasari, Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics, Adv. Colloid Interface Sci. 329 (2024) 103204.spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/8305a1b4-5bdd-4456-8c62-324798d92173/download17cc15b951e7cc6b3728a574117320f9MD52Carta de autorizacion.pdfapplication/pdf201357https://repositorio.unbosque.edu.co/bitstreams/1011cb80-973b-4ec3-a72c-1fc7be2f1bdc/download497a214fd79750d548c77924100c6cadMD55Anexo 1 acta de aprobacion.pdfapplication/pdf1363057https://repositorio.unbosque.edu.co/bitstreams/26f82f16-649e-435b-8d18-14748cbaa9a8/downloadbc7f62764408b4fa56fcfc22196bb11dMD56ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf4190243https://repositorio.unbosque.edu.co/bitstreams/c71026d6-d0ef-4d2c-bfcd-f0c6d5e0cba5/download9c1968f347b4f8eb38894ed50efb0e8bMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repositorio.unbosque.edu.co/bitstreams/99d55e00-f45e-46bd-aedd-6454e2bd4fcc/download5643bfd9bcf29d560eeec56d584edaa9MD54TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain86660https://repositorio.unbosque.edu.co/bitstreams/5fd9d7a3-28b8-47b2-9576-135ea180b204/downloadc4677039cca90f46b828ae512d9b52bfMD57THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5361https://repositorio.unbosque.edu.co/bitstreams/0f22b4c4-0839-4b44-89f5-fd3c24ac64a5/download38e2c57fba06b5110a928da2469c58dbMD5820.500.12495/14377oai:repositorio.unbosque.edu.co:20.500.12495/143772025-05-17 05:06:31.196http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=