Actividad antitumoral de fitoquímicos derivados de plantas colombianas: una aproximación para entender sus mecanismos de acción

La investigación de nuevos fármacos anticancerígenos es un campo en constante evolución, impulsado por la complejidad del cáncer y los desafíos asociados a su aparición, progresión y la falta de respuesta a las terapias convencionales. Frente a este panorama, se han desarrollado diversas estrategias...

Full description

Autores:
Pulido Cuevas, Maria Camila
Rodríguez López, Laura Daniela
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2025
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/14386
Acceso en línea:
https://hdl.handle.net/20.500.12495/14386
Palabra clave:
Antineoplásicos
Bioprospección
Fitoquímicos
Línea celular tumoral
615.19
Antineoplastic
Bioprospecting
Phytochemicals
Cell line tumor
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNBOSQUE2_f053cd27b810937f2da956045a339a47
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/14386
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Actividad antitumoral de fitoquímicos derivados de plantas colombianas: una aproximación para entender sus mecanismos de acción
dc.title.translated.none.fl_str_mv Antitumor activity of phytochemicals derived from Colombian plants: an approach to understand their mechanisms of action
title Actividad antitumoral de fitoquímicos derivados de plantas colombianas: una aproximación para entender sus mecanismos de acción
spellingShingle Actividad antitumoral de fitoquímicos derivados de plantas colombianas: una aproximación para entender sus mecanismos de acción
Antineoplásicos
Bioprospección
Fitoquímicos
Línea celular tumoral
615.19
Antineoplastic
Bioprospecting
Phytochemicals
Cell line tumor
title_short Actividad antitumoral de fitoquímicos derivados de plantas colombianas: una aproximación para entender sus mecanismos de acción
title_full Actividad antitumoral de fitoquímicos derivados de plantas colombianas: una aproximación para entender sus mecanismos de acción
title_fullStr Actividad antitumoral de fitoquímicos derivados de plantas colombianas: una aproximación para entender sus mecanismos de acción
title_full_unstemmed Actividad antitumoral de fitoquímicos derivados de plantas colombianas: una aproximación para entender sus mecanismos de acción
title_sort Actividad antitumoral de fitoquímicos derivados de plantas colombianas: una aproximación para entender sus mecanismos de acción
dc.creator.fl_str_mv Pulido Cuevas, Maria Camila
Rodríguez López, Laura Daniela
dc.contributor.advisor.none.fl_str_mv Morantes Medina, Sandra Johanna
Delgado Tiria, Félix Giovanni
dc.contributor.author.none.fl_str_mv Pulido Cuevas, Maria Camila
Rodríguez López, Laura Daniela
dc.subject.none.fl_str_mv Antineoplásicos
Bioprospección
Fitoquímicos
Línea celular tumoral
topic Antineoplásicos
Bioprospección
Fitoquímicos
Línea celular tumoral
615.19
Antineoplastic
Bioprospecting
Phytochemicals
Cell line tumor
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv Antineoplastic
Bioprospecting
Phytochemicals
Cell line tumor
description La investigación de nuevos fármacos anticancerígenos es un campo en constante evolución, impulsado por la complejidad del cáncer y los desafíos asociados a su aparición, progresión y la falta de respuesta a las terapias convencionales. Frente a este panorama, se han desarrollado diversas estrategias para el diseño de medicamentos más eficaces y selectivos, entre las que se destaca el aprovechamiento de productos naturales. Fitoquímicos provenientes de plantas colombianas han demostrado potencial antitumoral, convirtiéndolos en una importante fuente de nuevas moléculas. La información se encuentra dispersa, lo que limita avances en este campo. Esta revisión busca recopilar evidencia científica publicada entre el 2000-2023 de la actividad antitumoral de fitoquímicos derivados de plantas colombianas y aproximarse en la identificación de mecanismos de acción. Siguiendo la metodología PRISMA-ScR, se recuperaron 760 artículos, que tras un riguroso proceso de selección resultaron 72 artículos. Se identificaron 130 plantas, siendo las especies Cannabis sativa L. e Iochroma arborescens (L.) las de mayor potencial antitumoral. El 56,2% evalúan extractos, las hojas son la parte de la planta más estudiada. Los tumores de mama, cérvix e hígado son más empleados. La apoptosis es el mecanismo más reportado, sin embargo, se reconoce la necesidad de mayor caracterización de los mecanismos de acción.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-05-19T16:36:40Z
dc.date.available.none.fl_str_mv 2025-05-19T16:36:40Z
dc.date.issued.none.fl_str_mv 2025-04
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/14386
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/14386
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv 1. SiB Colombia. Biodiversidad en Cifras, Sistema de Información sobre Biodiversidad de Colombia. 2022.
2. Bernal HMC. Plantas medicinales endémicas de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Royal Botanic Gardens Kew. Conjunto de datos/Lista de especies. 2022.
3. Cos P, Vlietinck AJ, Berghe D Vanden, Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro «proof-of-concept». J Ethnopharmacol. 19 de julio de 2006;106(3):290-302.
4. Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, et al. International Agency for Research on Cancer. 2024. Global Cancer Observatory: Cancer Today (version 1.1).
5. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 1 de febrero de 2002;53:615-27.
6. Munn Z, Pollock D, Khalil H, Alexander L, Mclnerney P, Godfrey CM, et al. What are scoping reviews? Providing a formal definition of scoping reviews as a type of evidence synthesis. JBI Evid Synth. 2022;20(4):950-2.
7. PRISMA. PRISMA flow diagram. 2020.
8 Mazzio EA, Soliman KFA, Karam D, Soliman FA. IN VITRO SCREENING OF MEDICINAL HERBS 385 In Vitro Screening for the Tumoricidal Properties of International Medicinal Herbs. Phytother Res. 2009;23:385-98.
9. Badisa RB, Darling-Reed SF, Joseph P, Cooperwood JS, Latinwo LM, Goodman CB. Selective Cytotoxic Activities of Two Novel Synthetic Drugs on Human Breast Carcinoma MCF-7 Cells. Anticancer Res. 2009;29(8):2993-6.
10. Gil Carrillo M, Mendez Callejas GM, Celis Zambrano CA, Vera Bravo R. Antiproliferative activity of total extracts from annona squamosa, petiveria alliacea and punica granatum on cancer cell lines. Pharmacologyonline. 30 de diciembre de 2020;3:7-18.
11. Sandoval TA, Urueña CP, Llano M, Gómez-Cadena A, Hernández JF, Sequeda LG, et al. Standardized Extract from Caesalpinia spinosa is Cytotoxic Over Cancer Stem Cells and Enhance Anticancer Activity of Doxorubicin. Am J Chin Med (Gard City N Y). 1 de enero de 2016;44(8):1693-717.
12. Jiménez-Gonzalez F, Vélez-Gómez J, Melchor-Moncada J, Veloza L, Sepúlveda-Arias J. Antioxidant, anti-inflammatory, and antiproliferative activity of extracts obtained from Tabebuia Rosea (Bertol.) DC. Pharmacogn Mag. 1 de abril de 2018;14(55):S25-31.
13. Velandia S, Quintero E, Stashenko E, Ocazionez R. Actividad antiproliferativa de aceites esenciales de plantas cultivadas en colombia. Acta Biolo Colomb. 31 de agosto de 2017;23(2):189-98.
14. Morantes SJ, Páez A, Cordero CP, Rincón J, Aristizábal FA. Actividad Citotóxica y Análisis Fitoquímico de Fracciones Aisladas del Extracto Etanólico total de Acnistus arborescens. Acta farmacéutica bonaerense. 30 de abril de 2006;25(4):491-6.
15. Cordero CP, Morantes SJ, Páez A, Rincón J, Aristizábal FA. Cytotoxicity of withanolides isolated from Acnistus arborescens. Fitoterapia. septiembre de 2009;80(6):364-8.
16. Muñoz D, Brucoli M, Zecchini S, Sandoval-Hernandez A, Arboleda G, Lopez-Vallejo F, et al. XIAP as a target of new small organic natural molecules inducing human cancer cell death. Cancers (Basel). 9 de septiembre de 2019;11(9):1336.
17. Villota H, Santa-González GA, Uribe D, Henao IC, Arroyave-Ospina JC, Barrera-Causil CJ, et al. Modulatory Effect of Chlorogenic Acid and Coffee Extracts on Wnt/β-Catenin Pathway in Colorectal Cancer Cells. Nutrients. 1 de noviembre de 2022;14(22):4880.
18. Ballesteros-Vivas D, Álvarez-Rivera G, Morantes SJ, Sánchez-Camargo A del P, Ibáñez E, Parada-Alfonso F, et al. An integrated approach for the valorization of mango seed kernel: Efficient extraction solvent selection, phytochemical profiling and antiproliferative activity assessment. Food Research International. 1 de diciembre de 2019;126(2019):108616.
19. Ballesteros-Vivas D, Alvarez-Rivera G, León C, Morantes SJ, Ibánez E, Parada-Alfonso F, et al. Foodomics evaluation of the anti-proliferative potential of Passiflora mollissima seeds. Food Research International. 1 de abril de 2020;130.
20. Alvarez F, Tello E, Bauer K, E. Diaz L, Rodriguez J, Jimenez C. Cytotoxic and Antimicrobial Diterpenes Isolated from Hyptis dilatata. Curr Bioact Compd. 3 de octubre de 2015;11(3):189-97.
21. Franco MS, Cordero CP, Morantes SJ, Aristizabal F, Osorio C. Cytotoxic labdane diterpenoids isolated from the hexane fraction of the croton stipuliformis stem bark. Vitae. 2011;18(2).
22. Barrios J, Cordero CP, Aristizabal F, Heredia FJ, Morales AL, Osorio C. Chemical analysis and screening as anticancer agent of anthocyanin-rich extract from Uva caimarona (pourouma cecropiifolia mart.) fruit. J Agric Food Chem. 2010;58(4).
23. González Camargo FD, Santamaria-Torres M, Cala MP, Guevara-Suarez M, Restrepo SR, Sánchez-Camargo A, et al. Genome-Scale Metabolic Reconstruction, Non-Targeted LC-QTOF-MS Based Metabolomics Data, and Evaluation of Anticancer Activity of Cannabis sativa Leaf Extracts. Metabolites. 1 de julio de 2023;13(7):1-29.
24. Muñoz-Acevedo A, González MC, Rodríguez JD, De Moya YS. New chemovariety of lippia alba from Colombia: Compositional analysis of the volatile secondary metabolites and some in vitro biological activities of the essential oil from plant leaves. Nat Prod Commun. 2019;14(7).
25. Muñoz-Acevedo A, González MC, De Moya YS, Rodríguez JD. Volatile Metabolites of Piper eriopodon (Miq.) C.DC. from Northern Region of Colombia and Assessment of In Vitro Bioactivities of the Leaf Essential Oil. Molecules. 2023;28(6).
26. Diaz LE, Munoz DR, Prieto RE, Cuervo SA, Gonzalez DL, Guzman JD, et al. Antioxidant, antitubercular and cytotoxic activities of Piper imperiale. Molecules. 2012;17(4).
27. Torrenegra-Guerrero RD, Rodriguez-Mayusa J, Mendez-Callejas GM, Canter R, Whitted C, Palau VE. Antiproliferative activity of extracts of Gnaphalium Gracile H.B.K. against cancer cell lines. Pharmacologyonline. 2018;2.
28. Urueña C, Cifuentes C, Castañeda D, Arango A, Kaur P, Asea A, et al. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells. BMC Complement Altern Med. 2008;8.
29. Díaz L, Cely-Veloza W, Coy-Barrera E. Identification of Anti-Proliferative Compounds from Genista monspessulana Seeds through Covariate Based Integration of Chemical Fingerprints and Bioactivity Datasets. Molecules. 2022;27(13).
30. Delgado C, Mendez-Callejas G, Celis C. Caryophyllene oxide, the active compound isolated from leaves of hymenaea courbaril l. (fabaceae) with antiproliferative and apoptotic effects on pc-3 androgen-independent prostate cancer cell line. Molecules. 1 de octubre de 2021;26(20):6142.
31. Corzo Parada L, Urueña C, Leal-García E, Barreto A, Ballesteros-Ramírez R, Rodríguez-Pardo V, et al. Doxorubicin Activity Is Modulated by Traditional Herbal Extracts in a 2D and 3D Multicellular Sphere Model of Leukemia. Pharmaceutics. 2023;15(6).
32. Ballesteros-Ramírez R, Aldana E, Herrera MV, Urueña C, Rojas LY, Echeverri LF, et al. Preferential Activity of Petiveria alliacea Extract on Primary Myeloid Leukemic Blast. Evidence-based Complementary and Alternative Medicine. 2020;2020.
33. Castañeda DM, Pombo LM, Urueña CP, Hernandez JF, Fiorentino S. A gallotannin-rich fraction from Caesalpinia spinosa (Molina) Kuntze displays cytotoxic activity and raises sensitivity to doxorubicin in a leukemia cell line. BMC Complement Altern Med. 10 de abril de 2012;12(38):110.
34. Jimenez-Usuga N del S, Malafronte N, Cotugno R, De Leo M, Osorio E, De Tommasi N. New sesquiterpene lactones from Ambrosia cumanensis Kunth. Fitoterapia. 1 de septiembre de 2016;113:170-4.
35. Lasso P, Rojas L, Arévalo C, Urueña C, Murillo N, Nossa P, et al. Piper nigrum extract suppresses tumor growth and enhances the antitumor immune response in murine models of breast cancer and melanoma. Cancer Immunology, Immunotherapy. 1 de octubre de 2023;72(10):3279-92.
36. Lasso P, Rojas L, Arévalo C, Urueña C, Murillo N, Barreto A, et al. Tillandsia usneoides Extract Decreases the Primary Tumor in a Murine Breast Cancer Model but Not in Melanoma. Cancers (Basel). 2022;14(21).
37. Lizcano LJ, Siles M, Trepiana J, Luisa Hernández M, Navarro R, Ruiz-Larrea MB, et al. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of Hepatocarcinoma cells. Nutrients. 2015;7(1).
38. Hernández JF, Urueña CP, Sandoval TA, Cifuentes MC, Formentini L, Cuezva JM, et al. A cytotoxic Petiveria alliacea dry extract induces ATP depletion and decreases β-F1-ATPase expression in breast cancer cells and promotes survival in tumor-bearing mice. Revista Brasileira de Farmacognosia. 2017;27(3).
39. Lasso P, Rojas L, Arévalo C, Urueña C, Murillo N, Fiorentino S. Natural Products Induce Different Anti-Tumor Immune Responses in Murine Models of 4T1 Mammary Carcinoma and B16-F10 Melanoma. Int J Mol Sci. 1 de diciembre de 2023;24(23):16698.
40. Zheng XS, Chan TF, Zhou HH. Review Genetic and Genomic Approaches to Identify and Study the Targets of Bioactive Small Molecules human diseases. FK506 and cyclosporin A (CsA) are BSMs that are used in the clinic to inhibit graft rejection in kidney transplant patients. Not surprisingly, these molecules are potent inhibitors of T cell proliferation. The modulatory effects of BSMs have also been har. Chem Biol. 2004;11:609-18.
41. Mans DRA, Rocha AB, Schwartsmann G. Anti-Cancer Drug Discovery and Development in Brazil: Targeted Plant Collection as a Rational Strategy to Acquire Candidate Anti-Cancer Compounds. Oncologist. 1 de junio de 2000;5(3):185-98.
42. Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. Vol. 65, Nucleus (India).Springer; 2022. p. 399-411.
43. Demirci F. Natural Products Isolation. 2.a ed. Vol. 70, Journal of Natural Products - J NAT PROD. 2007. 712 p.
44. Sazonova E V., Chesnokov MS, Zhivotovsky B, Kopeina GS. Drug toxicity assessment: cell proliferation versus cell death. Cell Death Discov. 1 de diciembre de 2022;8(1).
45. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Vol. 25, Cell Death and Differentiation. Nature Publishing Group; 2018. p. 486-541.
46. Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Vol. 7, Signal Transduction and Targeted Therapy. Springer Nature; 2022.
47. Nagata S. Apoptosis and Clearance of Apoptotic Cells. Annual Reviews. 2018;39:15.
48. Lasso P, Rojas L, Arévalo C, Urueña C, Murillo N, Nossa P, et al. Piper nigrum extract suppresses tumor growth and enhances the antitumor immune response in murine models of breast cancer and melanoma. Cancer Immunology, Immunotherapy. 1 de octubre de 2023;72(10):3279-92.
49. Bonilla-Porras AR, Salazar-Ospina A, Jimenez-Del-Rio M, Pereañez-Jimenez A, Velez-Pardo C. Pro-apoptotic effect of Persea americana var. Hass(avocado) on Jurkat lymphoblastic leukemia cells. Pharm Biol. 1 de abril de 2014;52(4):458-65.
50. Gomez-Cadena A, Uruenã C, Prieto K, Martinez-Usatorre A, Donda A, Barreto A, et al. Immune-system-dependent anti-tumor activity of a plant derived polyphenol rich fraction in a melanoma mouse model. Cell Death Dis. 2 de junio de 2016;7(6).
51. Urueña C, Mancipe J, Hernandez J, Castañeda D, Pombo L, Gomez A, et al. Gallotannin-rich Caesalpinia spinosa fraction decreases the primary tumor and factors associated with poor prognosis in a murine breast cancer model. 2013.
52. LeJeune TM, Tsui HY, Parsons LB, Miller GE, Whitted C, Lynch KE, et al. Mechanism of Action of Two Flavone Isomers Targeting Cancer Cells with Varying Cell Differentiation Status. PLoS One. 1 de noviembre de 2015;10(11).
53. Tait S, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621-32.
54. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 2007;35(4):495.
55. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of Procaspase-9 by Apaf-1-Mediated Oligomerization. Vol. 1, Molecular Cell. 1998.
56. Mendez-Callejas G, Piñeros-Avila M, Yosa-Reyes J, Pestana-Nobles R, Torrenegra R, Camargo-Ubate MF, et al. A Novel Tri-Hydroxy-Methylated Chalcone Isolated from Chromolaena tacotana with Anti-Cancer Potential Targeting Pro-Survival Proteins. Int J Mol Sci. 1 de octubre de 2023;24(20).
57. Lohrum M, Vousden KH. Regulation and activation of p53 and its family members. Cell Death Differ. 1999;6:1162-8.
58. Mihara M, Erster S, Zaika A, Petrenko O. p53 Has a Direct Apoptogenic Role at the Mitochondria shows that the type, strength, and kinetics of the target gene profiles depend on p53 levels, stress type. Vol. 11, Molecular Cell. 2003.
59. Raman V, Lorenzo JLF, Stashenko EE, Levy M, Levy MM, Camarillo IG. Lippia origanoides extract induces cell cycle arrest and apoptosis and suppresses NF-κB signaling in triple-negative breast cancer cells. Int J Oncol. 2017;51(6).
60. Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. En: Advances in Protein Chemistry and Structural Biology. 2021.
61. Nair P, Lu M, Petersen S, Ashkenazi A. Apoptosis initiation through the cell-extrinsic pathway. En: Methods in Enzymology. 2014.
62. Kominami K, Nakabayashi J, Nagai T, Tsujimura Y, Chiba K, Kimura H, et al. The molecular mechanism of apoptosis upon caspase-8 activation: Quantitative experimental validation of a mathematical model. Biochim Biophys Acta Mol Cell Res. 2012;1823(10).
63. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Vol. 18, Cell Death and Differentiation. 2011.
64. Mendez-Callejas G, Piñeros-Avila M, Yosa-Reyes J, Pestana-Nobles R, Torrenegra R, Camargo-Ubate MF, et al. A Novel Tri-Hydroxy-Methylated Chalcone Isolated from Chromolaena tacotana with Anti-Cancer Potential Targeting Pro-Survival Proteins. Int J Mol Sci. 2023;24(20).
65. Nugteren S, Samsom JN. Cytokines and Growth Factor Reviews. Secretory Leukocyte Protease Inhibitor (SLPI) in mucosal tissues: Protects against inflammation, but promotes cancer. 2021;59(February).
66. Prieto K, Lozano MP, Urueña C, Alméciga-Díaz CJ, Fiorentino S, Barreto A. The delay in cell death caused by the induction of autophagy by P2Et extract is essential for the generation of immunogenic signals in melanoma cells. Apoptosis. 2020;25(11-12).
67. Gomez-Cadena A, Uruenã C, Prieto K, Martinez-Usatorre A, Donda A, Barreto A, et al. Immune-system-dependent anti-tumor activity of a plant derived polyphenol rich fraction in a melanoma mouse model. Cell Death Dis. 2016;7(6).
68. Bonilla-Porras AR, Salazar-Ospina A, Jimenez-Del-Rio M, Pereañez-Jimenez A, Velez-Pardo C. Pro-apoptotic effect of Persea americana var. Hass (avocado) on Jurkat lymphoblastic leukemia cells. Pharm Biol. 2014;52(4).
69. Muñoz D, Brucoli M, Zecchini S, Sandoval-Hernandez A, Arboleda G, Lopez-Vallejo F, et al. XIAP as a target of new small organic natural molecules inducing human cancer cell death. Cancers (Basel). 2019;11(9).
70. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. marzo de 2013;31:51-72.
71. Kepp O, Tartour E, Vitale I, Vacchelli E, Adjemian S, Agostinis P, et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 1 de octubre de 2014;3(9).
72. Arimoto KI, Miyauchi S, Liu M, Zhang DE. Emerging role of immunogenic cell death in cancer immunotherapy. Vol. 15, Frontiers in Immunology. Frontiers Media SA; 2024.
73. Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer. Vol. 14, Molecular Oncology. John Wiley and Sons Ltd; 2020. p. 2994-3006.
74. Gomez-Cadena A, Uruenã C, Prieto K, Martinez-Usatorre A, Donda A, Barreto A, et al. Immune-system-dependent anti-tumor activity of a plant derived polyphenol rich fraction in a melanoma mouse model. Cell Death Dis. 2 de junio de 2016;7(6).
75. Urueña C, Gomez A, Sandoval T, Hernandez J, Li S, Barreto A, et al. Multifunctional T Lymphocytes Generated after Therapy with an Antitumor Gallotanin-Rich Normalized Fraction Are Related to Primary Tumor Size Reduction in a Breast Cancer Model. Integr Cancer Ther. 18 de septiembre de 2015;14(5):468-83.
76. Mier-Giraldo H, Díaz-Barrera LE, Delgado-Murcia LG, Valero-Valdivieso MF, Cáez-Ramírez G. Cytotoxic and Immunomodulatory Potential Activity of Physalis peruviana Fruit Extracts on Cervical Cancer (HeLa) and Fibroblast (L929) Cells. J Evid Based Complementary Altern Med. 1 de octubre de 2017;22(4):777-87.
77. Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, et al. Molecular characteristics of immunogenic cancer cell death. Vol. 15, Cell Death and Differentiation. 2008. p. 3-12.
78. Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. enero de 2014;21(1):79-91.
79. Lian W, Wang Y, Zhang J, Yan Y, Xia C, Gan H, et al. The genus Datura L. (Solanaceae): A systematic review of botany, traditional use, phytochemistry, pharmacology, and toxicology. Vol. 204, Phytochemistry. Elsevier Ltd; 2022.
80. Jayaprakasam B, Nair MG. Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. 2002.
81. Ichikawa H, Takada Y, Shishodia S, Jayaprakasam B, Nair MG, Aggarwal BB. Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-ΚB (NF-ΚB) activation and NF-ΚB-regulated gene expression. Mol Cancer Ther. junio de 2006;5(6):1434-45.
82. Patti R, Gumired K, Reddanna P, Sutton LN, Phillips PC, Reddy CD. Overexpression of cyclooxygenase-2 (COX-2) in human primitive neuroectodermal tumors: effect of celecoxib and rofecoxib. Cancer Lett. 6 de junio de 2002;180(1):13-21.
83. Senthil V, Ramadevi S, Venkatakrishnan V, Giridharan P, Lakshmi BS, Vishwakarma RA, et al. Withanolide induces apoptosis in HL-60 leukemia cells via mitochondria mediated cytochrome c release and caspase activation. Chem Biol Interact. 5 de abril de 2007;167(1):19-30.
84. Kornitzer D, Ciechanover A. Proteasome/Ubiquitination Protein Degradation and the Ubiquitin/Proteasome System. 2003.
85. Schwartz GK, Shah MA. Targeting the cell cycle: A new approach to cancer therapy. Journal of Clinical Oncology. 2005;23(36):9408-21.
86. Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula S V. An overview on the role of dietary phenolics for the treatment of cancers. Vol. 15, Nutrition Journal. 2016.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/1fc3f3d7-e2b1-4dc8-a12d-53ea28b8b25d/download
https://repositorio.unbosque.edu.co/bitstreams/677a9bb1-7247-4310-83c0-82799298c2db/download
https://repositorio.unbosque.edu.co/bitstreams/7f4c1ed0-b2f0-4618-aa07-b136ee9089fe/download
https://repositorio.unbosque.edu.co/bitstreams/313c6b4f-ba19-4e8f-9d36-8915f4e23f35/download
https://repositorio.unbosque.edu.co/bitstreams/7f015a2a-8795-4bbd-b744-1a1a8324c61e/download
https://repositorio.unbosque.edu.co/bitstreams/aabec841-b5bb-483b-b22f-2f89ee025acd/download
https://repositorio.unbosque.edu.co/bitstreams/73f3024a-eccc-45c0-a231-375cbf7f2fc0/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
abf933b0f364dd40ee5693833ca7bdc6
877d23f440882a72f62f3228ece479b6
08494e996f94a7a38bffa2d6810e63a2
3b6ce8e9e36c89875e8cf39962fe8920
6af0ee72a52f12da89b152cab63f19e4
7fa5e702811d43e7f22502ffceca2ea8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1834107881751838720
spelling Morantes Medina, Sandra JohannaDelgado Tiria, Félix GiovanniPulido Cuevas, Maria CamilaRodríguez López, Laura Daniela2025-05-19T16:36:40Z2025-05-19T16:36:40Z2025-04https://hdl.handle.net/20.500.12495/14386Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLa investigación de nuevos fármacos anticancerígenos es un campo en constante evolución, impulsado por la complejidad del cáncer y los desafíos asociados a su aparición, progresión y la falta de respuesta a las terapias convencionales. Frente a este panorama, se han desarrollado diversas estrategias para el diseño de medicamentos más eficaces y selectivos, entre las que se destaca el aprovechamiento de productos naturales. Fitoquímicos provenientes de plantas colombianas han demostrado potencial antitumoral, convirtiéndolos en una importante fuente de nuevas moléculas. La información se encuentra dispersa, lo que limita avances en este campo. Esta revisión busca recopilar evidencia científica publicada entre el 2000-2023 de la actividad antitumoral de fitoquímicos derivados de plantas colombianas y aproximarse en la identificación de mecanismos de acción. Siguiendo la metodología PRISMA-ScR, se recuperaron 760 artículos, que tras un riguroso proceso de selección resultaron 72 artículos. Se identificaron 130 plantas, siendo las especies Cannabis sativa L. e Iochroma arborescens (L.) las de mayor potencial antitumoral. El 56,2% evalúan extractos, las hojas son la parte de la planta más estudiada. Los tumores de mama, cérvix e hígado son más empleados. La apoptosis es el mecanismo más reportado, sin embargo, se reconoce la necesidad de mayor caracterización de los mecanismos de acción.PregradoQuímico FarmacéuticoResearch into new anticancer drugs is a constantly evolving field, driven by the complexity of cancer and the challenges associated with its appearance, progression and lack of response to conventional therapies. Faced with this panorama, several strategies have been developed for the design of more effective and selective drugs, among which the use of natural products stands out. Phytochemicals from Colombian plants have demonstrated antitumor potential, making them an important source of new molecules. Information is scattered, which limits progress in this field. This review seeks to compile scientific evidence published between 2000-2023 on the antitumor activity of phytochemicals derived from Colombian plants and to approach the identification of mechanisms of action. Following the PRISMA-ScR methodology, 760 articles were retrieved, which after a rigorous selection process resulted in 72 articles. A total of 130 plants were identified, being the Cannabis sativa L. and Iochroma arborescens (L.) species the ones with the highest antitumor potential. The 56.2% evaluated extracts, the leaves being the most studied part of the plant. Breast, cervix and liver tumors are the most used. Apoptosis is the most reported mechanism, however, the need for further characterization of the mechanisms of action is recognized.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2AntineoplásicosBioprospecciónFitoquímicosLínea celular tumoral615.19AntineoplasticBioprospectingPhytochemicalsCell line tumorActividad antitumoral de fitoquímicos derivados de plantas colombianas: una aproximación para entender sus mecanismos de acciónAntitumor activity of phytochemicals derived from Colombian plants: an approach to understand their mechanisms of actionQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. SiB Colombia. Biodiversidad en Cifras, Sistema de Información sobre Biodiversidad de Colombia. 2022.2. Bernal HMC. Plantas medicinales endémicas de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Royal Botanic Gardens Kew. Conjunto de datos/Lista de especies. 2022.3. Cos P, Vlietinck AJ, Berghe D Vanden, Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro «proof-of-concept». J Ethnopharmacol. 19 de julio de 2006;106(3):290-302.4. Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, et al. International Agency for Research on Cancer. 2024. Global Cancer Observatory: Cancer Today (version 1.1).5. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 1 de febrero de 2002;53:615-27.6. Munn Z, Pollock D, Khalil H, Alexander L, Mclnerney P, Godfrey CM, et al. What are scoping reviews? Providing a formal definition of scoping reviews as a type of evidence synthesis. JBI Evid Synth. 2022;20(4):950-2.7. PRISMA. PRISMA flow diagram. 2020.8 Mazzio EA, Soliman KFA, Karam D, Soliman FA. IN VITRO SCREENING OF MEDICINAL HERBS 385 In Vitro Screening for the Tumoricidal Properties of International Medicinal Herbs. Phytother Res. 2009;23:385-98.9. Badisa RB, Darling-Reed SF, Joseph P, Cooperwood JS, Latinwo LM, Goodman CB. Selective Cytotoxic Activities of Two Novel Synthetic Drugs on Human Breast Carcinoma MCF-7 Cells. Anticancer Res. 2009;29(8):2993-6.10. Gil Carrillo M, Mendez Callejas GM, Celis Zambrano CA, Vera Bravo R. Antiproliferative activity of total extracts from annona squamosa, petiveria alliacea and punica granatum on cancer cell lines. Pharmacologyonline. 30 de diciembre de 2020;3:7-18.11. Sandoval TA, Urueña CP, Llano M, Gómez-Cadena A, Hernández JF, Sequeda LG, et al. Standardized Extract from Caesalpinia spinosa is Cytotoxic Over Cancer Stem Cells and Enhance Anticancer Activity of Doxorubicin. Am J Chin Med (Gard City N Y). 1 de enero de 2016;44(8):1693-717.12. Jiménez-Gonzalez F, Vélez-Gómez J, Melchor-Moncada J, Veloza L, Sepúlveda-Arias J. Antioxidant, anti-inflammatory, and antiproliferative activity of extracts obtained from Tabebuia Rosea (Bertol.) DC. Pharmacogn Mag. 1 de abril de 2018;14(55):S25-31.13. Velandia S, Quintero E, Stashenko E, Ocazionez R. Actividad antiproliferativa de aceites esenciales de plantas cultivadas en colombia. Acta Biolo Colomb. 31 de agosto de 2017;23(2):189-98.14. Morantes SJ, Páez A, Cordero CP, Rincón J, Aristizábal FA. Actividad Citotóxica y Análisis Fitoquímico de Fracciones Aisladas del Extracto Etanólico total de Acnistus arborescens. Acta farmacéutica bonaerense. 30 de abril de 2006;25(4):491-6.15. Cordero CP, Morantes SJ, Páez A, Rincón J, Aristizábal FA. Cytotoxicity of withanolides isolated from Acnistus arborescens. Fitoterapia. septiembre de 2009;80(6):364-8.16. Muñoz D, Brucoli M, Zecchini S, Sandoval-Hernandez A, Arboleda G, Lopez-Vallejo F, et al. XIAP as a target of new small organic natural molecules inducing human cancer cell death. Cancers (Basel). 9 de septiembre de 2019;11(9):1336.17. Villota H, Santa-González GA, Uribe D, Henao IC, Arroyave-Ospina JC, Barrera-Causil CJ, et al. Modulatory Effect of Chlorogenic Acid and Coffee Extracts on Wnt/β-Catenin Pathway in Colorectal Cancer Cells. Nutrients. 1 de noviembre de 2022;14(22):4880.18. Ballesteros-Vivas D, Álvarez-Rivera G, Morantes SJ, Sánchez-Camargo A del P, Ibáñez E, Parada-Alfonso F, et al. An integrated approach for the valorization of mango seed kernel: Efficient extraction solvent selection, phytochemical profiling and antiproliferative activity assessment. Food Research International. 1 de diciembre de 2019;126(2019):108616.19. Ballesteros-Vivas D, Alvarez-Rivera G, León C, Morantes SJ, Ibánez E, Parada-Alfonso F, et al. Foodomics evaluation of the anti-proliferative potential of Passiflora mollissima seeds. Food Research International. 1 de abril de 2020;130.20. Alvarez F, Tello E, Bauer K, E. Diaz L, Rodriguez J, Jimenez C. Cytotoxic and Antimicrobial Diterpenes Isolated from Hyptis dilatata. Curr Bioact Compd. 3 de octubre de 2015;11(3):189-97.21. Franco MS, Cordero CP, Morantes SJ, Aristizabal F, Osorio C. Cytotoxic labdane diterpenoids isolated from the hexane fraction of the croton stipuliformis stem bark. Vitae. 2011;18(2).22. Barrios J, Cordero CP, Aristizabal F, Heredia FJ, Morales AL, Osorio C. Chemical analysis and screening as anticancer agent of anthocyanin-rich extract from Uva caimarona (pourouma cecropiifolia mart.) fruit. J Agric Food Chem. 2010;58(4).23. González Camargo FD, Santamaria-Torres M, Cala MP, Guevara-Suarez M, Restrepo SR, Sánchez-Camargo A, et al. Genome-Scale Metabolic Reconstruction, Non-Targeted LC-QTOF-MS Based Metabolomics Data, and Evaluation of Anticancer Activity of Cannabis sativa Leaf Extracts. Metabolites. 1 de julio de 2023;13(7):1-29.24. Muñoz-Acevedo A, González MC, Rodríguez JD, De Moya YS. New chemovariety of lippia alba from Colombia: Compositional analysis of the volatile secondary metabolites and some in vitro biological activities of the essential oil from plant leaves. Nat Prod Commun. 2019;14(7).25. Muñoz-Acevedo A, González MC, De Moya YS, Rodríguez JD. Volatile Metabolites of Piper eriopodon (Miq.) C.DC. from Northern Region of Colombia and Assessment of In Vitro Bioactivities of the Leaf Essential Oil. Molecules. 2023;28(6).26. Diaz LE, Munoz DR, Prieto RE, Cuervo SA, Gonzalez DL, Guzman JD, et al. Antioxidant, antitubercular and cytotoxic activities of Piper imperiale. Molecules. 2012;17(4).27. Torrenegra-Guerrero RD, Rodriguez-Mayusa J, Mendez-Callejas GM, Canter R, Whitted C, Palau VE. Antiproliferative activity of extracts of Gnaphalium Gracile H.B.K. against cancer cell lines. Pharmacologyonline. 2018;2.28. Urueña C, Cifuentes C, Castañeda D, Arango A, Kaur P, Asea A, et al. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells. BMC Complement Altern Med. 2008;8.29. Díaz L, Cely-Veloza W, Coy-Barrera E. Identification of Anti-Proliferative Compounds from Genista monspessulana Seeds through Covariate Based Integration of Chemical Fingerprints and Bioactivity Datasets. Molecules. 2022;27(13).30. Delgado C, Mendez-Callejas G, Celis C. Caryophyllene oxide, the active compound isolated from leaves of hymenaea courbaril l. (fabaceae) with antiproliferative and apoptotic effects on pc-3 androgen-independent prostate cancer cell line. Molecules. 1 de octubre de 2021;26(20):6142.31. Corzo Parada L, Urueña C, Leal-García E, Barreto A, Ballesteros-Ramírez R, Rodríguez-Pardo V, et al. Doxorubicin Activity Is Modulated by Traditional Herbal Extracts in a 2D and 3D Multicellular Sphere Model of Leukemia. Pharmaceutics. 2023;15(6).32. Ballesteros-Ramírez R, Aldana E, Herrera MV, Urueña C, Rojas LY, Echeverri LF, et al. Preferential Activity of Petiveria alliacea Extract on Primary Myeloid Leukemic Blast. Evidence-based Complementary and Alternative Medicine. 2020;2020.33. Castañeda DM, Pombo LM, Urueña CP, Hernandez JF, Fiorentino S. A gallotannin-rich fraction from Caesalpinia spinosa (Molina) Kuntze displays cytotoxic activity and raises sensitivity to doxorubicin in a leukemia cell line. BMC Complement Altern Med. 10 de abril de 2012;12(38):110.34. Jimenez-Usuga N del S, Malafronte N, Cotugno R, De Leo M, Osorio E, De Tommasi N. New sesquiterpene lactones from Ambrosia cumanensis Kunth. Fitoterapia. 1 de septiembre de 2016;113:170-4.35. Lasso P, Rojas L, Arévalo C, Urueña C, Murillo N, Nossa P, et al. Piper nigrum extract suppresses tumor growth and enhances the antitumor immune response in murine models of breast cancer and melanoma. Cancer Immunology, Immunotherapy. 1 de octubre de 2023;72(10):3279-92.36. Lasso P, Rojas L, Arévalo C, Urueña C, Murillo N, Barreto A, et al. Tillandsia usneoides Extract Decreases the Primary Tumor in a Murine Breast Cancer Model but Not in Melanoma. Cancers (Basel). 2022;14(21).37. Lizcano LJ, Siles M, Trepiana J, Luisa Hernández M, Navarro R, Ruiz-Larrea MB, et al. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of Hepatocarcinoma cells. Nutrients. 2015;7(1).38. Hernández JF, Urueña CP, Sandoval TA, Cifuentes MC, Formentini L, Cuezva JM, et al. A cytotoxic Petiveria alliacea dry extract induces ATP depletion and decreases β-F1-ATPase expression in breast cancer cells and promotes survival in tumor-bearing mice. Revista Brasileira de Farmacognosia. 2017;27(3).39. Lasso P, Rojas L, Arévalo C, Urueña C, Murillo N, Fiorentino S. Natural Products Induce Different Anti-Tumor Immune Responses in Murine Models of 4T1 Mammary Carcinoma and B16-F10 Melanoma. Int J Mol Sci. 1 de diciembre de 2023;24(23):16698.40. Zheng XS, Chan TF, Zhou HH. Review Genetic and Genomic Approaches to Identify and Study the Targets of Bioactive Small Molecules human diseases. FK506 and cyclosporin A (CsA) are BSMs that are used in the clinic to inhibit graft rejection in kidney transplant patients. Not surprisingly, these molecules are potent inhibitors of T cell proliferation. The modulatory effects of BSMs have also been har. Chem Biol. 2004;11:609-18.41. Mans DRA, Rocha AB, Schwartsmann G. Anti-Cancer Drug Discovery and Development in Brazil: Targeted Plant Collection as a Rational Strategy to Acquire Candidate Anti-Cancer Compounds. Oncologist. 1 de junio de 2000;5(3):185-98.42. Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. Vol. 65, Nucleus (India).Springer; 2022. p. 399-411.43. Demirci F. Natural Products Isolation. 2.a ed. Vol. 70, Journal of Natural Products - J NAT PROD. 2007. 712 p.44. Sazonova E V., Chesnokov MS, Zhivotovsky B, Kopeina GS. Drug toxicity assessment: cell proliferation versus cell death. Cell Death Discov. 1 de diciembre de 2022;8(1).45. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Vol. 25, Cell Death and Differentiation. Nature Publishing Group; 2018. p. 486-541.46. Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Vol. 7, Signal Transduction and Targeted Therapy. Springer Nature; 2022.47. Nagata S. Apoptosis and Clearance of Apoptotic Cells. Annual Reviews. 2018;39:15.48. Lasso P, Rojas L, Arévalo C, Urueña C, Murillo N, Nossa P, et al. Piper nigrum extract suppresses tumor growth and enhances the antitumor immune response in murine models of breast cancer and melanoma. Cancer Immunology, Immunotherapy. 1 de octubre de 2023;72(10):3279-92.49. Bonilla-Porras AR, Salazar-Ospina A, Jimenez-Del-Rio M, Pereañez-Jimenez A, Velez-Pardo C. Pro-apoptotic effect of Persea americana var. Hass(avocado) on Jurkat lymphoblastic leukemia cells. Pharm Biol. 1 de abril de 2014;52(4):458-65.50. Gomez-Cadena A, Uruenã C, Prieto K, Martinez-Usatorre A, Donda A, Barreto A, et al. Immune-system-dependent anti-tumor activity of a plant derived polyphenol rich fraction in a melanoma mouse model. Cell Death Dis. 2 de junio de 2016;7(6).51. Urueña C, Mancipe J, Hernandez J, Castañeda D, Pombo L, Gomez A, et al. Gallotannin-rich Caesalpinia spinosa fraction decreases the primary tumor and factors associated with poor prognosis in a murine breast cancer model. 2013.52. LeJeune TM, Tsui HY, Parsons LB, Miller GE, Whitted C, Lynch KE, et al. Mechanism of Action of Two Flavone Isomers Targeting Cancer Cells with Varying Cell Differentiation Status. PLoS One. 1 de noviembre de 2015;10(11).53. Tait S, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621-32.54. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 2007;35(4):495.55. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of Procaspase-9 by Apaf-1-Mediated Oligomerization. Vol. 1, Molecular Cell. 1998.56. Mendez-Callejas G, Piñeros-Avila M, Yosa-Reyes J, Pestana-Nobles R, Torrenegra R, Camargo-Ubate MF, et al. A Novel Tri-Hydroxy-Methylated Chalcone Isolated from Chromolaena tacotana with Anti-Cancer Potential Targeting Pro-Survival Proteins. Int J Mol Sci. 1 de octubre de 2023;24(20).57. Lohrum M, Vousden KH. Regulation and activation of p53 and its family members. Cell Death Differ. 1999;6:1162-8.58. Mihara M, Erster S, Zaika A, Petrenko O. p53 Has a Direct Apoptogenic Role at the Mitochondria shows that the type, strength, and kinetics of the target gene profiles depend on p53 levels, stress type. Vol. 11, Molecular Cell. 2003.59. Raman V, Lorenzo JLF, Stashenko EE, Levy M, Levy MM, Camarillo IG. Lippia origanoides extract induces cell cycle arrest and apoptosis and suppresses NF-κB signaling in triple-negative breast cancer cells. Int J Oncol. 2017;51(6).60. Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. En: Advances in Protein Chemistry and Structural Biology. 2021.61. Nair P, Lu M, Petersen S, Ashkenazi A. Apoptosis initiation through the cell-extrinsic pathway. En: Methods in Enzymology. 2014.62. Kominami K, Nakabayashi J, Nagai T, Tsujimura Y, Chiba K, Kimura H, et al. The molecular mechanism of apoptosis upon caspase-8 activation: Quantitative experimental validation of a mathematical model. Biochim Biophys Acta Mol Cell Res. 2012;1823(10).63. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Vol. 18, Cell Death and Differentiation. 2011.64. Mendez-Callejas G, Piñeros-Avila M, Yosa-Reyes J, Pestana-Nobles R, Torrenegra R, Camargo-Ubate MF, et al. A Novel Tri-Hydroxy-Methylated Chalcone Isolated from Chromolaena tacotana with Anti-Cancer Potential Targeting Pro-Survival Proteins. Int J Mol Sci. 2023;24(20).65. Nugteren S, Samsom JN. Cytokines and Growth Factor Reviews. Secretory Leukocyte Protease Inhibitor (SLPI) in mucosal tissues: Protects against inflammation, but promotes cancer. 2021;59(February).66. Prieto K, Lozano MP, Urueña C, Alméciga-Díaz CJ, Fiorentino S, Barreto A. The delay in cell death caused by the induction of autophagy by P2Et extract is essential for the generation of immunogenic signals in melanoma cells. Apoptosis. 2020;25(11-12).67. Gomez-Cadena A, Uruenã C, Prieto K, Martinez-Usatorre A, Donda A, Barreto A, et al. Immune-system-dependent anti-tumor activity of a plant derived polyphenol rich fraction in a melanoma mouse model. Cell Death Dis. 2016;7(6).68. Bonilla-Porras AR, Salazar-Ospina A, Jimenez-Del-Rio M, Pereañez-Jimenez A, Velez-Pardo C. Pro-apoptotic effect of Persea americana var. Hass (avocado) on Jurkat lymphoblastic leukemia cells. Pharm Biol. 2014;52(4).69. Muñoz D, Brucoli M, Zecchini S, Sandoval-Hernandez A, Arboleda G, Lopez-Vallejo F, et al. XIAP as a target of new small organic natural molecules inducing human cancer cell death. Cancers (Basel). 2019;11(9).70. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. marzo de 2013;31:51-72.71. Kepp O, Tartour E, Vitale I, Vacchelli E, Adjemian S, Agostinis P, et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 1 de octubre de 2014;3(9).72. Arimoto KI, Miyauchi S, Liu M, Zhang DE. Emerging role of immunogenic cell death in cancer immunotherapy. Vol. 15, Frontiers in Immunology. Frontiers Media SA; 2024.73. Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer. Vol. 14, Molecular Oncology. John Wiley and Sons Ltd; 2020. p. 2994-3006.74. Gomez-Cadena A, Uruenã C, Prieto K, Martinez-Usatorre A, Donda A, Barreto A, et al. Immune-system-dependent anti-tumor activity of a plant derived polyphenol rich fraction in a melanoma mouse model. Cell Death Dis. 2 de junio de 2016;7(6).75. Urueña C, Gomez A, Sandoval T, Hernandez J, Li S, Barreto A, et al. Multifunctional T Lymphocytes Generated after Therapy with an Antitumor Gallotanin-Rich Normalized Fraction Are Related to Primary Tumor Size Reduction in a Breast Cancer Model. Integr Cancer Ther. 18 de septiembre de 2015;14(5):468-83.76. Mier-Giraldo H, Díaz-Barrera LE, Delgado-Murcia LG, Valero-Valdivieso MF, Cáez-Ramírez G. Cytotoxic and Immunomodulatory Potential Activity of Physalis peruviana Fruit Extracts on Cervical Cancer (HeLa) and Fibroblast (L929) Cells. J Evid Based Complementary Altern Med. 1 de octubre de 2017;22(4):777-87.77. Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, et al. Molecular characteristics of immunogenic cancer cell death. Vol. 15, Cell Death and Differentiation. 2008. p. 3-12.78. Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. enero de 2014;21(1):79-91.79. Lian W, Wang Y, Zhang J, Yan Y, Xia C, Gan H, et al. The genus Datura L. (Solanaceae): A systematic review of botany, traditional use, phytochemistry, pharmacology, and toxicology. Vol. 204, Phytochemistry. Elsevier Ltd; 2022.80. Jayaprakasam B, Nair MG. Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. 2002.81. Ichikawa H, Takada Y, Shishodia S, Jayaprakasam B, Nair MG, Aggarwal BB. Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-ΚB (NF-ΚB) activation and NF-ΚB-regulated gene expression. Mol Cancer Ther. junio de 2006;5(6):1434-45.82. Patti R, Gumired K, Reddanna P, Sutton LN, Phillips PC, Reddy CD. Overexpression of cyclooxygenase-2 (COX-2) in human primitive neuroectodermal tumors: effect of celecoxib and rofecoxib. Cancer Lett. 6 de junio de 2002;180(1):13-21.83. Senthil V, Ramadevi S, Venkatakrishnan V, Giridharan P, Lakshmi BS, Vishwakarma RA, et al. Withanolide induces apoptosis in HL-60 leukemia cells via mitochondria mediated cytochrome c release and caspase activation. Chem Biol Interact. 5 de abril de 2007;167(1):19-30.84. Kornitzer D, Ciechanover A. Proteasome/Ubiquitination Protein Degradation and the Ubiquitin/Proteasome System. 2003.85. Schwartz GK, Shah MA. Targeting the cell cycle: A new approach to cancer therapy. Journal of Clinical Oncology. 2005;23(36):9408-21.86. Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula S V. An overview on the role of dietary phenolics for the treatment of cancers. Vol. 15, Nutrition Journal. 2016.spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/1fc3f3d7-e2b1-4dc8-a12d-53ea28b8b25d/download17cc15b951e7cc6b3728a574117320f9MD51Carta de autorizacion.pdfapplication/pdf525848https://repositorio.unbosque.edu.co/bitstreams/677a9bb1-7247-4310-83c0-82799298c2db/downloadabf933b0f364dd40ee5693833ca7bdc6MD54Anexo 1 acta de aprobacion.pdfapplication/pdf1216615https://repositorio.unbosque.edu.co/bitstreams/7f4c1ed0-b2f0-4618-aa07-b136ee9089fe/download877d23f440882a72f62f3228ece479b6MD55ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1312584https://repositorio.unbosque.edu.co/bitstreams/313c6b4f-ba19-4e8f-9d36-8915f4e23f35/download08494e996f94a7a38bffa2d6810e63a2MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/7f015a2a-8795-4bbd-b744-1a1a8324c61e/download3b6ce8e9e36c89875e8cf39962fe8920MD53TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain79713https://repositorio.unbosque.edu.co/bitstreams/aabec841-b5bb-483b-b22f-2f89ee025acd/download6af0ee72a52f12da89b152cab63f19e4MD56THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5213https://repositorio.unbosque.edu.co/bitstreams/73f3024a-eccc-45c0-a231-375cbf7f2fc0/download7fa5e702811d43e7f22502ffceca2ea8MD5720.500.12495/14386oai:repositorio.unbosque.edu.co:20.500.12495/143862025-05-20 05:02:40.896http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalembargo2027-05-18https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=