Evaluación de la diferenciación de células mesenquimales y pre-osteoblastos en un sistema de co-cultivo directo e indirecto

Antecedentes: Estudios acerca de ingeniería tisular establecen que los co-cultivos directos han sido útiles para comprender la interacción entre células debido a que la comunicación intercelular promueve el intercambio de señales y factores de crecimiento que favorecen la diferenciación hacia distin...

Full description

Autores:
Calderón García, Eliana
Ramírez Robles, Luz Eliana
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2025
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/15703
Acceso en línea:
https://hdl.handle.net/20.500.12495/15703
Palabra clave:
Preosteoblastos
Células madre
Pulpa dental
Osteoblastos
Técnicas de cultivo
Diferenciación celular
Pre-osteoblasts
Stem cells
Dental Pulp
Osteoblasts
Culture techniques
Cell differentiation
WU400
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id UNBOSQUE2_ecbb58f8b7049968c1fa3edf79cab6ee
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/15703
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Evaluación de la diferenciación de células mesenquimales y pre-osteoblastos en un sistema de co-cultivo directo e indirecto
dc.title.translated.none.fl_str_mv Evaluation of the differentiation of mesenchymal cells and pre-osteoblasts in a direct and indirect co-culture system
title Evaluación de la diferenciación de células mesenquimales y pre-osteoblastos en un sistema de co-cultivo directo e indirecto
spellingShingle Evaluación de la diferenciación de células mesenquimales y pre-osteoblastos en un sistema de co-cultivo directo e indirecto
Preosteoblastos
Células madre
Pulpa dental
Osteoblastos
Técnicas de cultivo
Diferenciación celular
Pre-osteoblasts
Stem cells
Dental Pulp
Osteoblasts
Culture techniques
Cell differentiation
WU400
title_short Evaluación de la diferenciación de células mesenquimales y pre-osteoblastos en un sistema de co-cultivo directo e indirecto
title_full Evaluación de la diferenciación de células mesenquimales y pre-osteoblastos en un sistema de co-cultivo directo e indirecto
title_fullStr Evaluación de la diferenciación de células mesenquimales y pre-osteoblastos en un sistema de co-cultivo directo e indirecto
title_full_unstemmed Evaluación de la diferenciación de células mesenquimales y pre-osteoblastos en un sistema de co-cultivo directo e indirecto
title_sort Evaluación de la diferenciación de células mesenquimales y pre-osteoblastos en un sistema de co-cultivo directo e indirecto
dc.creator.fl_str_mv Calderón García, Eliana
Ramírez Robles, Luz Eliana
dc.contributor.advisor.none.fl_str_mv Escobar Márquez, Lina María
Bendahan Álvarez, Zita Carolina
Castaño Duque, Sandra Patricia
dc.contributor.author.none.fl_str_mv Calderón García, Eliana
Ramírez Robles, Luz Eliana
dc.subject.none.fl_str_mv Preosteoblastos
Células madre
Pulpa dental
Osteoblastos
Técnicas de cultivo
Diferenciación celular
topic Preosteoblastos
Células madre
Pulpa dental
Osteoblastos
Técnicas de cultivo
Diferenciación celular
Pre-osteoblasts
Stem cells
Dental Pulp
Osteoblasts
Culture techniques
Cell differentiation
WU400
dc.subject.keywords.none.fl_str_mv Pre-osteoblasts
Stem cells
Dental Pulp
Osteoblasts
Culture techniques
Cell differentiation
dc.subject.nlm.none.fl_str_mv WU400
description Antecedentes: Estudios acerca de ingeniería tisular establecen que los co-cultivos directos han sido útiles para comprender la interacción entre células debido a que la comunicación intercelular promueve el intercambio de señales y factores de crecimiento que favorecen la diferenciación hacia distintos linajes celulares. Adicionalmente, en otros estudios se reportan interacciones celulares en co-cultivos indirectos que proporcionan un panorama favorable para la generación de tejidos o la reconstrucción de defectos óseos. No obstante, no existe evidencia clara que compare los co-cultivos directos y los indirectos en el desarrollo de procesos de proliferación y diferenciación de células madre a OBs. Esto podría en un futuro establecer nuevas terapéuticas que brindan soluciones a la reparación de tejidos de diferentes patologías. Objetivo: Determinar y comparar el efecto en la diferenciación, proliferación y morfología de células madre mesenquimales (MSCs) derivadas de la pulpa dental (hDPSC) y pre-osteoblastos (Saos-2) co-cultivados de forma directa e indirecta in vitro. Materiales y Métodos: Se evaluó proliferación, viabilidad, morfología y diferenciación celular a partir de co- cultivo directo e indirecto de células de la pulpa dental (hDPSC) y Saos-2 en medio DMEM a los 7 , 14 y 21 días. Se utilizó control positivo con medio de diferenciación y control negativo con medio DMEM. Resultados: Se realizó inmunofenotipificación a las hDPSC donde se encontró células positivas para marcadores de superficie CD105, CD90, CD73 y se evaluaron características morfológicas donde se observó células fibroblastoides adheridas a la caja. El co-cultivo indirecto y el directo de células Saos-2+hDPSC, produjo un incremento significativo (P < 0.05) en el número de células y proliferación celular desde el 6to día en el co-cultivo indirecto y desde el cuarto día en el co-cultivo directo. En las células hDPSC y Saos-2 sin co-cultivo (control) no se observó tinción con el rojo de alizarina, mientras que las células tratadas con MDO como control positivo de diferenciación osteoblástica mostraron igualmente formación de nódulos de calcio. La mayor cantidad de rojo de alizarina como medida de absorbancia, se evidenció en las células co-cultivadas de forma indirecta y en las células directamente co-cultivadas . Estas absorbancias fueron significativamente mayores que las obtenidas en las células hDPSC y Saos-2 sin co-cultivo. Al analizar los cambios en la expresión de genes de diferenciación osteoblástica como RUNX2 y osteocalcina (OCN) se encontró que a los 7 días RUNX2 aumentó su expresión en todos los grupos experimentales excepto en las células hDPSC co-cultivadas de forma indirecta con Saos-2. Por otro lado, El mayor incremento en la expresión se evidenció en el co-cultivo directo (116 veces más que el control) y hDPSC tratadas con MDO (83 veces más que el control). La expresión se redujo significativamente en todos los grupos experimentales a los 21 días. Conclusiones: Este estudio sugiere que el co-cultivo con células Saos-2 y hDPSC tanto directo como indirecto es efectivo para inducir cambios morfológicos, en la proliferación y diferenciación osteoblástica. Por este motivo, pueden ser una herramienta útil en la investigación de terapias de regeneración para la reparación de defectos óseos.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-08-12T14:15:03Z
dc.date.available.none.fl_str_mv 2025-08-12T14:15:03Z
dc.date.issued.none.fl_str_mv 2025-08
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Especialización
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/15703
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/15703
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv 1.Lee YC, Chan YH, Hsieh SC, Lew WZ, Feng S-W. Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int J Mol Sci 2019;20(20):50-15.
2.Yin T, Li L. The stem cell niches in bone. J Clin Invest 2006 ;116(5):1195-201.
3.Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration 2013;85(1):3-10.
4.Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells hopes and hypes of regenerative medicine. Acta Biochim Pol 2015;62(3):329-37.
5.Trounson A, McDonald, C. Stem cell therapies in clinical trials: progress and challenges. Cell stem cell 2015; 17(1): 11-11.
6.Daley G. The promise and perils of stem cell therapeutics. Cell stem cell 2012;10(6): 740-5.
7.Llufriu D, Semino C. Stem cell therapy for neurological disorders: a focus on aging. Neurobiology of aging 2019; 83: 67-78.
8.The National Academies of Sciences, Engineering, and Medicine. (NASEM) The National Academies Collection: Reports funded by National Institutes of Health. In Stem Cells and the Future of Regenerative Medicine.Washington DC: The institute; 2002.
9.Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med 2001 ;226(6):507-20.
10.Trounson A. Potential Pitfall of Pluripotent Stem Cells. N Engl J Med 2017; 377(5):490-491
11.Yang J, Shin Y, Seo Y, Kim S. Therapeutic Functions of Stem Cells from Oral Cavity: An Update. Int J Mol Sci 2020;21(12):43-89.
12.Roato I, Chinigò G, Genova T, Munaron L, Mussano F. Oral Cavity as a Source of Mesenchymal Stem Cells Useful for Regenerative Medicine in Dentistry. Biomedicines. 2021 25;9(9):1085.
13.Ashri NY, Ajlan SA, Aldahmash AM. Dental pulp stem cells. Biology and use for periodontal tissue engineering. Saudi Med J 2015;36(12):1391-9.
14.Rosaian AS, Rao GN, Mohan SP, Vijayarajan M, Prabhakaran RC, Sherwood A. Regenerative Capacity of Dental Pulp Stem Cells: A Systematic Review. J Pharm Bioallied Sci 2020 ;12(1):S27-S36.
15.Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2015 ;9(11):1205-16.
16.Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000 ;289(5484):1508-14.
17.Civitelli R. Cell-cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys 2008 ;473(2):188-92.
18.Chatakun P, Núñez R, Díaz J, Gil C, Martínez E, Hernández F, Ferrés E, Giner L, Atari M. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature. Cellular and Molecular Life Sciences 2014; 71(1):113–142.
19.Okajcekova T, Strnadel J, Pokusa M, Zahumensk R, Janickova M, Halasova, E, Skovierova H. A comparative in vitro analysis of the osteogenic potential of human dental pulp stem cells using various differentiation conditions. International Journal of Molecular Sciences 2020; 21(7): 2280.
20.Sánchez P, Révérend CA. Factores de diferenciación génica y su futuro en el tratamiento de la osteoporosis: de la adipogénesis a la osteoblastogénesis, ¿del mismo modo y en sentido contrario? RevACE 2018;5(4):21–5.
21.Moreno C. Proteína morfogenética ósea 2 (BMP-2): Producción y evaluación de su actividad osteoinductora in vitro e in vivo. [Tesis doctoral]. Madrid: Universidad Complutense de Madrid. Facultad de Medicina; 2015.
22.Ding HF, Liu R, Li BG, Lou JR, Dai KR, Tang T. Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules. Biochem Biophys Res Commun 2007; 362(4):923–927
23.Liu T, Gao Y, Sakamoto K, Minamizato T, Furukawa K, Tsukazaki T et al., BMP-2 promotes differentiation of osteoblasts and chondroblasts in RUNX2-deficient cell lines. J Cell Physiol 2007;211(3):728-8.
24.Sierra GD, Castro R, Gónzalez A, et al., Proteínas morfogenéticas óseas (BMP): aplicación clínica para reconstrucción de defectos en hueso. Gac Med Mex 2016;152(3):381-385.
25.Amarasekara, D. S., Kim, S., & Rho, J. Regulation of osteoblast differentiation by cytokine networks. International Journal of Molecular Sciences 2021; 22(6), 2851.
26.Vimalraj S, Arumugam B, Miranda PJ, Selvamurugan N. RUNX2: Structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol. 2015; 78:202–8.
27.Komori, T. Roles of RUNX2 in skeletal development. Advances in Experimental Medicine and Biology 2017; 962, 83–10.
28.Komori, T. Regulation of proliferation, differentiation and functions of osteoblasts by RUNX2. International Journal of Molecular Sciences 2019; 20(7):1694.
29.McPherson RA, Pincus MR. Henry’s clinical diagnosis and management by laboratory methods. 24a ed. Filadelfia, PA, Estados Unidos de América: Elsevier - Health Sciences Division; 2021.
30.Lin EY, Xi W, Aggarwal N, Shinohara ML. Osteopontin (OPN)/SPP1: from its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). Int Immunol. 2023; 35(4):171-180.
31.Muñoz T, Mezquita R, López F. Utilidad de los marcadores de remodelado óseo. Endocrinología y nutrición 2000; 47(9): 267:19
32.Castaño, M. Zapata J. Principios de Virología. Cultivos celulares. Biogénesis 2000; 5: 49-15
33.Moraes E, Gonçalves L, Reis S. Moraes C, Apolinário C, Majerowicz J, Roca J, Pelajo M, Ferreira M, Siqueira M, de Castro M, Caminha M, de Carvalho P, de Abreu P, Valle S, Ramos S, Cal W, Mendes V. Conceitos e Métodos para a Formação de Profissionais em Laboratórios de Saúde.Cultivo Celular 2009; 2 (5) :215-37.
34.Carrera, L. Comparación del cultivo celular de HeLa y HEp-2: Perspectivas de estudios con Chlamydia trachomatis 2015;13(23):19.
35.López J, Rodríguez D. Mecanismo de envejecimiento celular. Nefrología 1997; 17: 15-5.
36.Martinez, M. Técnicas para la detección de apoptosis y senescencia celular in vitro y su importancia en biotecnología de la salud. Rev. Colomb. biotecnol 2009; 11(2): 152-14.
37.Santacruz L, Melo Á, Rodríguez C, Moscoso J. Historia de los cultivos de células animales in vitro y su importancia en la actualidad. Biociencias 2017; 12(2): 122-136.
38.Almiron S, Raquel M, Segovia M, Aguirre M, Gili M. Aplicaciones del cultivo celular en odontología 2016; 55(1).
39.Mishra N, Banerjee J. Animal cell culture: From fundamental techniques to biomedical applications. En Cutting Edge Techniques in Biophysics, Biochemistry and Cell Biology: From Principle to Applications 2019; 1:14.
40.Goers L, Freemont P, Polizzi KM. Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 2014;11(96).
41.Paschos N, Brown W, Eswaramoorthy R, Hu JC, Athanasiou KA. Advances in tissue engineering through stem cell-based co-culture: Stem cell co-culture strategies in tissue engineering. J Tissue Eng Regen Med 2015;9(5):488–503.
42.Zeidan AA, Radstrom P, van Niel EW. 2010 Stable coexistence of two Caldicellulosiruptor species in a de novo constructed hydrogen-producing coculture. Microb. Cell Factories 2010; 9: 102.
43.Guan X, Delo DM, Atala A, et al., In vitro cardiomyogenic potential of human amniotic fluid stem cells. J Tissue Eng Regen Med 2011 ;5: 220–8.
44.Liu Y, Chan-Park MB. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 2010; 31: 1158–1170.
45.Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ. Development of a three- dimensional, all-human in vitro model of the blood brain barrier using mono-, co-, and tri-cultivation Transwell models. J. Neurosci. Methods 2011; 199: 223–6.
46.Wu MH, Huang SB, Lee GB. 2010 Microfluidic cell culture systems for drug research. Lab Chip 2010; 10: 939–17.
47.Klitgord N, Segre, D. Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 2010;18: 6-5
48.Bidarra S, Barrias C, Barbosa M, Soares R, Joelle A, Granja P. Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells. Stem Cell Res 2011; 7(3): 186– 11.
49.Kaji H, Camci-Unal G, Langer R, Khademhosseini A. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions. Biochim Biophys Acta. 2011;1810(3):239-50.
50.Liu D, Sun M, Zhang J, Hu R, Fu W, Xuanyuan T, Liu W. Single-cell droplet microfluidics for biomedical applications. Analyst. 2022 30;147(11):2294-2316.
51.Mestres G, Carter S-SD, Hailer NP, Diez,EscuderoA. A practical guide for evaluating the osteoimmunomodulatory properties of biomaterials 2021;130:115–37.
52.Justus C, Marie M, Sanderlin E, Yang L. Transwell In Vitro Cell Migration and Invasion Assays. Methods Mol Biol 2023;26 (44) :349-359.
53.Shou W, Ram S, Vilar. 2007 Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 2007; 104(6): 1877–5.
54.Tanouchi Y, Smith RP, You L Engineering microbial systems to explore ecological and evolutionary dynamics. Curr. Opin. Biotechnol 2012; 23(5), 791– 6.
55.Fukuda J, Khademhosseini A, Yeh J, Eng G, Cheng J, Farokhzad OC, Langer R. Micropatterned cell co- cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials 2006;27(8), 1479–7.
56.Bouland, C., Philippart, P., Dequanter, D., Corrillon, F., Loeb, I., Bron, D., Lagneaux, L., & Meuleman, N. Crosstalk between mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) in bone regeneration. Frontiers in Cell and Developmental Biology 2021; 13(9):267
57.Gaihre, B, Uswatta, S, Jayasuriya, A. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. J. Funct. Biomater 2017; 8 (49).
58.Schimming R, Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg 2004; 62(6):724–729
59.Pilipchuk, S.P.; Plonka, A.B.; Monje, A.; Taut, A.D.; Lanis, A.; Kang, B.; Giannobile, W.V. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent. Mater 2015; 31: 317–21.
60.Nakajima, K.; Kunimatsu, R.; Ando, K.; Ando, T.; Hayashi, Y.; Kihara, T.; Hiraki, T.; Tsuka, Y.; Abe, T.; Kaku, M.; et al. Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochem.Biophys. Res. Commun 2018, 497: 876–882.
61.Grellier, M., Bordenave, L., & Amédée, J. . Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends in biotechnology 2009;27(10): 562–571.
62.Beloti, M. M., Sicchieri, L. G., de Oliveira, P. T., & Rosa, A. L. . The influence of osteoblast differentiation stage on bone formation in autogenously implanted cell-based poly(lactide-co-glycolide) and calcium phosphate constructs. Tissue engineering 2012; 9(10): 999–1005.
63.Ilmer, M., Karow, M., Geissler, C., Jochum, M., & Neth, P. Human osteoblast-derived factors induce early osteogenic markers in human mesenchymal stem cells. Tissue engineering. Part A 2009; 5(9): 2397–2409
64.Birmingham, E., Niebur, G. L., McHugh, P. E., Shaw, G., Barry, F. P., & McNamara, L. M. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European cells & materials 2012; 23: 13–27.
65.Tsai, M. T., Lin, D. J., Huang, S., Lin, H. T., & Chang, W. H.. Osteogenic differentiation is synergistically influenced by osteoinductive treatment and direct cell-cell contact between murine osteoblasts and mesenchymal stem cells. International orthopaedics 2012; 36(1): 199–205.
66.Sun, J., Zhou, H., Deng, Y., Zhang, Y., Gu, P., Ge, S., & Fan, X.. Conditioned medium from bone marrow mesenchymal stem cells transiently retards osteoblast differentiation by downregulating RUNX2. Cells, tissues, organs 2012 ; 196(6): 510–522.
67.Santos, T. S., Abuna, R. P., Castro Raucci, L. M., Teixeira, L. N., de Oliveira, P. T., Beloti, M. M., & Rosa, A. L. Mesenchymal Stem Cells Repress Osteoblast Differentiation Under Osteogenic-Inducing Conditions. Journal of cellular biochemistry 2015; 116(12): 2896–2902.
68.Laowanitwattana, T., Aungsuchawan, S., Narakornsak, S., Markmee, R., Tancharoen, W., Keawdee, J., Boonma, N., Tasuya, W., Peerapapong, L., Pangjaidee, N., & Pothacharoen, P. Osteoblastic differentiation potential of human amniotic fluid-derived mesenchymal stem cells in different culture conditions. Acta histochemica 2018; 120(8): 701–712.
69.De Rosa A, Tirino V, Paino F, Tartaglione A, Mitsiadis T, Feki A, d'Aquino R, Laino L, Colacurci N, Papaccio G. Amniotic fluid-derived mesenchymal stem cells lead to bone differentiation when cocultured with dental pulp stem cells. Tissue Eng Part A 2011 Mar;17(5-6):645-53.
70.Kawashima N, Noda S, Yamamoto M, Okiji T. Properties of Dental Pulp-derived Mesenchymal Stem Cells and the Effects of Culture Conditions. J Endod 2017; 43(9S):31-4.
71.Mortada I, Mortada R . Dental pulp stem cells and osteogenesis: an update. Cytotechnology 2011; 70(5):1479-7.
72.Lugo W. Inducción en la diferenciación de células madre mesenquimales y pre-osteoblastos cultivados con medio condicionado in vitro. Tesis de grado. 2023.
73.Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S . Postnatal human dental pulp stem cells (hDPSC) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America 2000; 97(25): 13625–13630.
74.Baldión PA, Velandia-Romero ML, Castellanos JE. Odontoblast-Like Cells Differentiated from Dental Pulp Stem Cells Retain Their Phenotype after Subcultivation. Int J Cell Biol 2018; 19:1-12.
75.Gregory, C. A., Gunn, W. G., Peister, A., & Prockop, D. J. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical biochemistry 2004; 329(1): 77–84.
76.Schefe, J. H., Lehmann, K. E., Buschmann, I. R., Unger, T., & Funke-Kaiser, H. . Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula. Journal of molecular medicine 2006; 84(11): 901–910.
77.De Almeida, D. C., Ferreira, M. R. P., Franzen, J., Weidner, C. I., Frobel, J., Zenke, M., … Wagner, W.. Epigenetic Classification of Human Mesenchymal Stromal Cells. Stem Cell Reports 2016; 6(2): 168–175.
78.Shi, S., & Gronthos, S. Perivascular Niche of Postnatal Mesenchymal Stem Cells in Human Bone Marrow and Dental Pulp. Journal of Bone and Mineral Research 2003; 18(4): 696–704.
79.Bakopoulou, A., Leyhausen, G., Volk, J., Tsiftsoglou, A., Garefis, P., Koidis, P., & Geurtsen, W. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Archives of Oral Biology 2011; 56(7): 709–721.
80.Nakashima, M., & Iohara, K. Mobilized Dental Pulp Stem Cells for Pulp Regeneration: Initiation of Clinical Trial. Journal of Endodontics 2014; 40(4): S26–S32.
81.Jang JH, Lee HW, Cho KM, Shin HW, Kang MK, Park SH, Kim E. In vitro characterization of human dental pulp stem cells isolated by three different methods. Restor Dent Endod 2016;41(4):283-295.
82.Zhang L, Yu Y, Joubert C, Bruder G, Liu Y, Chang CC, Simon M, Walker SG, Rafailovich M. Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds. Polymers 2016; 13;8(5):193.
83.Gong, X., Liang, Z., Yang, Y., Liu, H., Ji, J., & Fan. A resazurin-based, nondestructive assay for monitoring cell proliferation during a scaffold-based 3D culture process. Regenerative Biomaterials 2020;(3), 271–281.
84.Präbst, K., Engelhardt, H., Ringgeler, S., & Hübner, H. Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. Cell Viability Assays 2017; 1–17.
85.Escobar LM, Bendahan Z, Garcia C, Castellanos JE. Relaxin treatment stimulates the differentiation of mesenchymal stem cells into osteoblasts. J Dent Sci 2023; 18(4):1786–1793.
86.Wang, Y., Yao, J., Yuan, M; Zhang, Z; Hu W. Osteoblasts can induce dental pulp stem cells to undergo osteogenic differentiation. Cytotechnology 2013; (65): 223–231.
87.Chen, S., Ye, X., Yu, X., Xu, Q., Pan, K., Lu, S., & Yang, P. Co-culture with periodontal ligament stem cells enhanced osteoblastic differentiation of MC3T3-E1 cells and osteoclastic differentiation of RAW264.7 cells. International journal of clinical and experimental pathology 2015; 8(11), 14596–14607.
88.Chouaib, B., Desoutter, A., Cuisinier, F; Yves P. Medio acondicionado con células madre de pulpa dental mejora la diferenciación osteoblástica y la regeneración ósea. Stem Cell Rev and Rep 2024; (21): 477–490.
89.Lee SY, Oh SJ, Miah R, Choe YH, Lee SL, Jeong YW, Son YB. Evaluation of the effects of co-culture system of human dental pulp stem cells and epithelial cells on odonto/osteogenic differentiation capacity. Journal of Animal Reproduction and Biotechnology 2024;(39):95-104.
90.Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells 2013 26;5(4):136-48
91.Kim H, Lee JH, Suh H. Interaction of mesenchymal stem cells and osteoblasts for in vitro osteogenesis. Yonsei Med J 2003;44(2):187-197.
92.Wang Y, Volloch V, Pindrus MA, Blasioli DJ, Chen J, Kaplan DL. Murine osteoblasts regulate mesenchymal stem cells via WNT and cadherin pathways: mechanism depends on cell-cell contact mode. J Tissue Eng Regen Med 2007;1(1):39-50.
93.Bian Y, Du Y, Wang R, Chen N, Du X, Wang Y, Yuan H.. A comparative study of HAMSCs/HBMSCs transwell and mixed coculture systems. IUBMB Life. 2019;71(7):1048-1055.
dc.rights.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Especialización en Ortodoncia
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Odontología
institution Universidad El Bosque
bitstream.url.fl_str_mv https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/5207dc1c-956b-477c-9ca8-ad32f23ca97a/download
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/5775dcb7-8d2f-4798-901f-954b3d9c4209/download
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/a0365b43-f2c8-4d62-85c5-2a49508417e1/download
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b3d38ea5-55a9-434c-b789-f90068b34a56/download
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/1b37ad2d-7906-435d-85ee-ca87e4df22e7/download
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b7e29afc-fcfb-4e2c-b1b6-aaddbf630e6c/download
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b6d86a76-44bd-4f58-b339-95cdaa7e30f8/download
bitstream.checksum.fl_str_mv 3d0a723bd39c7ffa72c30d004983774a
17cc15b951e7cc6b3728a574117320f9
c431452f4f98c08bc20eefa85d7d3caa
ce9ca0383396eef096860e1a823a720d
5643bfd9bcf29d560eeec56d584edaa9
ddeb73ed7f2dfcc87f65ac5a7694bab0
ad169f36104528bf17e38a6a3e1ca68f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1849967311636660224
spelling Escobar Márquez, Lina MaríaBendahan Álvarez, Zita CarolinaCastaño Duque, Sandra PatriciaCalderón García, ElianaRamírez Robles, Luz Eliana2025-08-12T14:15:03Z2025-08-12T14:15:03Z2025-08https://hdl.handle.net/20.500.12495/15703instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coAntecedentes: Estudios acerca de ingeniería tisular establecen que los co-cultivos directos han sido útiles para comprender la interacción entre células debido a que la comunicación intercelular promueve el intercambio de señales y factores de crecimiento que favorecen la diferenciación hacia distintos linajes celulares. Adicionalmente, en otros estudios se reportan interacciones celulares en co-cultivos indirectos que proporcionan un panorama favorable para la generación de tejidos o la reconstrucción de defectos óseos. No obstante, no existe evidencia clara que compare los co-cultivos directos y los indirectos en el desarrollo de procesos de proliferación y diferenciación de células madre a OBs. Esto podría en un futuro establecer nuevas terapéuticas que brindan soluciones a la reparación de tejidos de diferentes patologías. Objetivo: Determinar y comparar el efecto en la diferenciación, proliferación y morfología de células madre mesenquimales (MSCs) derivadas de la pulpa dental (hDPSC) y pre-osteoblastos (Saos-2) co-cultivados de forma directa e indirecta in vitro. Materiales y Métodos: Se evaluó proliferación, viabilidad, morfología y diferenciación celular a partir de co- cultivo directo e indirecto de células de la pulpa dental (hDPSC) y Saos-2 en medio DMEM a los 7 , 14 y 21 días. Se utilizó control positivo con medio de diferenciación y control negativo con medio DMEM. Resultados: Se realizó inmunofenotipificación a las hDPSC donde se encontró células positivas para marcadores de superficie CD105, CD90, CD73 y se evaluaron características morfológicas donde se observó células fibroblastoides adheridas a la caja. El co-cultivo indirecto y el directo de células Saos-2+hDPSC, produjo un incremento significativo (P < 0.05) en el número de células y proliferación celular desde el 6to día en el co-cultivo indirecto y desde el cuarto día en el co-cultivo directo. En las células hDPSC y Saos-2 sin co-cultivo (control) no se observó tinción con el rojo de alizarina, mientras que las células tratadas con MDO como control positivo de diferenciación osteoblástica mostraron igualmente formación de nódulos de calcio. La mayor cantidad de rojo de alizarina como medida de absorbancia, se evidenció en las células co-cultivadas de forma indirecta y en las células directamente co-cultivadas . Estas absorbancias fueron significativamente mayores que las obtenidas en las células hDPSC y Saos-2 sin co-cultivo. Al analizar los cambios en la expresión de genes de diferenciación osteoblástica como RUNX2 y osteocalcina (OCN) se encontró que a los 7 días RUNX2 aumentó su expresión en todos los grupos experimentales excepto en las células hDPSC co-cultivadas de forma indirecta con Saos-2. Por otro lado, El mayor incremento en la expresión se evidenció en el co-cultivo directo (116 veces más que el control) y hDPSC tratadas con MDO (83 veces más que el control). La expresión se redujo significativamente en todos los grupos experimentales a los 21 días. Conclusiones: Este estudio sugiere que el co-cultivo con células Saos-2 y hDPSC tanto directo como indirecto es efectivo para inducir cambios morfológicos, en la proliferación y diferenciación osteoblástica. Por este motivo, pueden ser una herramienta útil en la investigación de terapias de regeneración para la reparación de defectos óseos.Grupo de investigación UMIMC - Unidad de manejo integral de malformaciones craneofacialesEspecialista en OrtodonciaEspecializaciónBackground: Studies on tissue engineering have demonstrated that direct co-cultures are useful for understanding cell interactions, as intercellular communication facilitates the exchange of signals and growth factors that promote differentiation into various cell lineages. Additionally, other studies report cellular interactions in indirect co-cultures that provide a favorable outlook for tissue generation or bone defect reconstruction. However, there is no clear evidence comparing direct and indirect co-cultures in the development of proliferation and differentiation processes of stem cells into OBs. This could, in the future, lead to the development of new therapies that provide solutions for tissue repair in various pathologies. Aim: To determine and compare the effect on the differentiation, proliferation, and morphology of mesenchymal stem cells (MSCs) derived from dental pulp (hDPSC) and pre-osteoblasts (Saos-2) co-cultured directly and indirectly in vitro. Methods: Cell proliferation, viability, morphology, and differentiation were evaluated from direct and indirect co-culture of dental pulp cells (hDPSC) and Saos-2 in DMEM medium at 7, 14, and 21 days. A positive control with differentiation medium and a negative control with DMEM medium were used. Results: Immunophenotyping was performed on hDPSC, where cells positive for surface markers CD105, CD90, and CD73 were identified, and morphological characteristics were evaluated, revealing that fibroblast-like cells adhered to the dish. The indirect and direct co-culture of Saos-2+hDPSC cells resulted in a significant increase (P < 0.05) in cell number and proliferation from day 6 in the indirect co-culture and from day 4 in the direct co-culture. In hDPSC and Saos-2 cells without co-culture (control), no alizarin red staining was observed, while cells treated with MDO as a positive control for osteoblastic differentiation also showed calcium nodule formation. The highest amount of alizarin red, as a measure of absorbance, was evident in both indirectly co-cultured cells and directly co-cultured cells. These absorbances were significantly higher than those obtained in hDPSC and Saos-2 cells without coculture. When analyzing changes in the expression of osteoblastic differentiation genes such as RUNX2 and osteocalcin (OCN), it was found that at 7 days, RUNX2 expression increased in all experimental groups except in hDPSC cells indirectly co-cultured with Saos-2. On the other hand, the greatest increase in expression was observed in direct co-culture (116 times higher than the control) and hDPSC treated with MDO (83 times higher than the control). Expression was significantly reduced in all experimental groups at 21 days. Conclusions: This study suggests that both direct and indirect co-culture with Saos-2 cells and hDPSC is effective in inducing morphological changes, proliferation, and osteoblastic differentiation. For this reason, they may be a useful tool in the investigation of regenerative therapies for bone defect repair.application/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2PreosteoblastosCélulas madrePulpa dentalOsteoblastosTécnicas de cultivoDiferenciación celularPre-osteoblastsStem cellsDental PulpOsteoblastsCulture techniquesCell differentiationWU400Evaluación de la diferenciación de células mesenquimales y pre-osteoblastos en un sistema de co-cultivo directo e indirectoEvaluation of the differentiation of mesenchymal cells and pre-osteoblasts in a direct and indirect co-culture systemEspecialización en OrtodonciaUniversidad El BosqueFacultad de OdontologíaTesis/Trabajo de grado - Monografía - Especializaciónhttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1.Lee YC, Chan YH, Hsieh SC, Lew WZ, Feng S-W. Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int J Mol Sci 2019;20(20):50-15.2.Yin T, Li L. The stem cell niches in bone. J Clin Invest 2006 ;116(5):1195-201.3.Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration 2013;85(1):3-10.4.Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells hopes and hypes of regenerative medicine. Acta Biochim Pol 2015;62(3):329-37.5.Trounson A, McDonald, C. Stem cell therapies in clinical trials: progress and challenges. Cell stem cell 2015; 17(1): 11-11.6.Daley G. The promise and perils of stem cell therapeutics. Cell stem cell 2012;10(6): 740-5.7.Llufriu D, Semino C. Stem cell therapy for neurological disorders: a focus on aging. Neurobiology of aging 2019; 83: 67-78.8.The National Academies of Sciences, Engineering, and Medicine. (NASEM) The National Academies Collection: Reports funded by National Institutes of Health. In Stem Cells and the Future of Regenerative Medicine.Washington DC: The institute; 2002.9.Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med 2001 ;226(6):507-20.10.Trounson A. Potential Pitfall of Pluripotent Stem Cells. N Engl J Med 2017; 377(5):490-49111.Yang J, Shin Y, Seo Y, Kim S. Therapeutic Functions of Stem Cells from Oral Cavity: An Update. Int J Mol Sci 2020;21(12):43-89.12.Roato I, Chinigò G, Genova T, Munaron L, Mussano F. Oral Cavity as a Source of Mesenchymal Stem Cells Useful for Regenerative Medicine in Dentistry. Biomedicines. 2021 25;9(9):1085.13.Ashri NY, Ajlan SA, Aldahmash AM. Dental pulp stem cells. Biology and use for periodontal tissue engineering. Saudi Med J 2015;36(12):1391-9.14.Rosaian AS, Rao GN, Mohan SP, Vijayarajan M, Prabhakaran RC, Sherwood A. Regenerative Capacity of Dental Pulp Stem Cells: A Systematic Review. J Pharm Bioallied Sci 2020 ;12(1):S27-S36.15.Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2015 ;9(11):1205-16.16.Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000 ;289(5484):1508-14.17.Civitelli R. Cell-cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys 2008 ;473(2):188-92.18.Chatakun P, Núñez R, Díaz J, Gil C, Martínez E, Hernández F, Ferrés E, Giner L, Atari M. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature. Cellular and Molecular Life Sciences 2014; 71(1):113–142.19.Okajcekova T, Strnadel J, Pokusa M, Zahumensk R, Janickova M, Halasova, E, Skovierova H. A comparative in vitro analysis of the osteogenic potential of human dental pulp stem cells using various differentiation conditions. International Journal of Molecular Sciences 2020; 21(7): 2280.20.Sánchez P, Révérend CA. Factores de diferenciación génica y su futuro en el tratamiento de la osteoporosis: de la adipogénesis a la osteoblastogénesis, ¿del mismo modo y en sentido contrario? RevACE 2018;5(4):21–5.21.Moreno C. Proteína morfogenética ósea 2 (BMP-2): Producción y evaluación de su actividad osteoinductora in vitro e in vivo. [Tesis doctoral]. Madrid: Universidad Complutense de Madrid. Facultad de Medicina; 2015.22.Ding HF, Liu R, Li BG, Lou JR, Dai KR, Tang T. Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules. Biochem Biophys Res Commun 2007; 362(4):923–92723.Liu T, Gao Y, Sakamoto K, Minamizato T, Furukawa K, Tsukazaki T et al., BMP-2 promotes differentiation of osteoblasts and chondroblasts in RUNX2-deficient cell lines. J Cell Physiol 2007;211(3):728-8.24.Sierra GD, Castro R, Gónzalez A, et al., Proteínas morfogenéticas óseas (BMP): aplicación clínica para reconstrucción de defectos en hueso. Gac Med Mex 2016;152(3):381-385.25.Amarasekara, D. S., Kim, S., & Rho, J. Regulation of osteoblast differentiation by cytokine networks. International Journal of Molecular Sciences 2021; 22(6), 2851.26.Vimalraj S, Arumugam B, Miranda PJ, Selvamurugan N. RUNX2: Structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol. 2015; 78:202–8.27.Komori, T. Roles of RUNX2 in skeletal development. Advances in Experimental Medicine and Biology 2017; 962, 83–10.28.Komori, T. Regulation of proliferation, differentiation and functions of osteoblasts by RUNX2. International Journal of Molecular Sciences 2019; 20(7):1694.29.McPherson RA, Pincus MR. Henry’s clinical diagnosis and management by laboratory methods. 24a ed. Filadelfia, PA, Estados Unidos de América: Elsevier - Health Sciences Division; 2021.30.Lin EY, Xi W, Aggarwal N, Shinohara ML. Osteopontin (OPN)/SPP1: from its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). Int Immunol. 2023; 35(4):171-180.31.Muñoz T, Mezquita R, López F. Utilidad de los marcadores de remodelado óseo. Endocrinología y nutrición 2000; 47(9): 267:1932.Castaño, M. Zapata J. Principios de Virología. Cultivos celulares. Biogénesis 2000; 5: 49-1533.Moraes E, Gonçalves L, Reis S. Moraes C, Apolinário C, Majerowicz J, Roca J, Pelajo M, Ferreira M, Siqueira M, de Castro M, Caminha M, de Carvalho P, de Abreu P, Valle S, Ramos S, Cal W, Mendes V. Conceitos e Métodos para a Formação de Profissionais em Laboratórios de Saúde.Cultivo Celular 2009; 2 (5) :215-37.34.Carrera, L. Comparación del cultivo celular de HeLa y HEp-2: Perspectivas de estudios con Chlamydia trachomatis 2015;13(23):19.35.López J, Rodríguez D. Mecanismo de envejecimiento celular. Nefrología 1997; 17: 15-5.36.Martinez, M. Técnicas para la detección de apoptosis y senescencia celular in vitro y su importancia en biotecnología de la salud. Rev. Colomb. biotecnol 2009; 11(2): 152-14.37.Santacruz L, Melo Á, Rodríguez C, Moscoso J. Historia de los cultivos de células animales in vitro y su importancia en la actualidad. Biociencias 2017; 12(2): 122-136.38.Almiron S, Raquel M, Segovia M, Aguirre M, Gili M. Aplicaciones del cultivo celular en odontología 2016; 55(1).39.Mishra N, Banerjee J. Animal cell culture: From fundamental techniques to biomedical applications. En Cutting Edge Techniques in Biophysics, Biochemistry and Cell Biology: From Principle to Applications 2019; 1:14.40.Goers L, Freemont P, Polizzi KM. Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 2014;11(96).41.Paschos N, Brown W, Eswaramoorthy R, Hu JC, Athanasiou KA. Advances in tissue engineering through stem cell-based co-culture: Stem cell co-culture strategies in tissue engineering. J Tissue Eng Regen Med 2015;9(5):488–503.42.Zeidan AA, Radstrom P, van Niel EW. 2010 Stable coexistence of two Caldicellulosiruptor species in a de novo constructed hydrogen-producing coculture. Microb. Cell Factories 2010; 9: 102.43.Guan X, Delo DM, Atala A, et al., In vitro cardiomyogenic potential of human amniotic fluid stem cells. J Tissue Eng Regen Med 2011 ;5: 220–8.44.Liu Y, Chan-Park MB. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 2010; 31: 1158–1170.45.Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ. Development of a three- dimensional, all-human in vitro model of the blood brain barrier using mono-, co-, and tri-cultivation Transwell models. J. Neurosci. Methods 2011; 199: 223–6.46.Wu MH, Huang SB, Lee GB. 2010 Microfluidic cell culture systems for drug research. Lab Chip 2010; 10: 939–17.47.Klitgord N, Segre, D. Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 2010;18: 6-548.Bidarra S, Barrias C, Barbosa M, Soares R, Joelle A, Granja P. Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells. Stem Cell Res 2011; 7(3): 186– 11.49.Kaji H, Camci-Unal G, Langer R, Khademhosseini A. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions. Biochim Biophys Acta. 2011;1810(3):239-50.50.Liu D, Sun M, Zhang J, Hu R, Fu W, Xuanyuan T, Liu W. Single-cell droplet microfluidics for biomedical applications. Analyst. 2022 30;147(11):2294-2316.51.Mestres G, Carter S-SD, Hailer NP, Diez,EscuderoA. A practical guide for evaluating the osteoimmunomodulatory properties of biomaterials 2021;130:115–37.52.Justus C, Marie M, Sanderlin E, Yang L. Transwell In Vitro Cell Migration and Invasion Assays. Methods Mol Biol 2023;26 (44) :349-359.53.Shou W, Ram S, Vilar. 2007 Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 2007; 104(6): 1877–5.54.Tanouchi Y, Smith RP, You L Engineering microbial systems to explore ecological and evolutionary dynamics. Curr. Opin. Biotechnol 2012; 23(5), 791– 6.55.Fukuda J, Khademhosseini A, Yeh J, Eng G, Cheng J, Farokhzad OC, Langer R. Micropatterned cell co- cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials 2006;27(8), 1479–7.56.Bouland, C., Philippart, P., Dequanter, D., Corrillon, F., Loeb, I., Bron, D., Lagneaux, L., & Meuleman, N. Crosstalk between mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) in bone regeneration. Frontiers in Cell and Developmental Biology 2021; 13(9):26757.Gaihre, B, Uswatta, S, Jayasuriya, A. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. J. Funct. Biomater 2017; 8 (49).58.Schimming R, Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg 2004; 62(6):724–72959.Pilipchuk, S.P.; Plonka, A.B.; Monje, A.; Taut, A.D.; Lanis, A.; Kang, B.; Giannobile, W.V. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent. Mater 2015; 31: 317–21.60.Nakajima, K.; Kunimatsu, R.; Ando, K.; Ando, T.; Hayashi, Y.; Kihara, T.; Hiraki, T.; Tsuka, Y.; Abe, T.; Kaku, M.; et al. Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochem.Biophys. Res. Commun 2018, 497: 876–882.61.Grellier, M., Bordenave, L., & Amédée, J. . Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends in biotechnology 2009;27(10): 562–571.62.Beloti, M. M., Sicchieri, L. G., de Oliveira, P. T., & Rosa, A. L. . The influence of osteoblast differentiation stage on bone formation in autogenously implanted cell-based poly(lactide-co-glycolide) and calcium phosphate constructs. Tissue engineering 2012; 9(10): 999–1005.63.Ilmer, M., Karow, M., Geissler, C., Jochum, M., & Neth, P. Human osteoblast-derived factors induce early osteogenic markers in human mesenchymal stem cells. Tissue engineering. Part A 2009; 5(9): 2397–240964.Birmingham, E., Niebur, G. L., McHugh, P. E., Shaw, G., Barry, F. P., & McNamara, L. M. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European cells & materials 2012; 23: 13–27.65.Tsai, M. T., Lin, D. J., Huang, S., Lin, H. T., & Chang, W. H.. Osteogenic differentiation is synergistically influenced by osteoinductive treatment and direct cell-cell contact between murine osteoblasts and mesenchymal stem cells. International orthopaedics 2012; 36(1): 199–205.66.Sun, J., Zhou, H., Deng, Y., Zhang, Y., Gu, P., Ge, S., & Fan, X.. Conditioned medium from bone marrow mesenchymal stem cells transiently retards osteoblast differentiation by downregulating RUNX2. Cells, tissues, organs 2012 ; 196(6): 510–522.67.Santos, T. S., Abuna, R. P., Castro Raucci, L. M., Teixeira, L. N., de Oliveira, P. T., Beloti, M. M., & Rosa, A. L. Mesenchymal Stem Cells Repress Osteoblast Differentiation Under Osteogenic-Inducing Conditions. Journal of cellular biochemistry 2015; 116(12): 2896–2902.68.Laowanitwattana, T., Aungsuchawan, S., Narakornsak, S., Markmee, R., Tancharoen, W., Keawdee, J., Boonma, N., Tasuya, W., Peerapapong, L., Pangjaidee, N., & Pothacharoen, P. Osteoblastic differentiation potential of human amniotic fluid-derived mesenchymal stem cells in different culture conditions. Acta histochemica 2018; 120(8): 701–712.69.De Rosa A, Tirino V, Paino F, Tartaglione A, Mitsiadis T, Feki A, d'Aquino R, Laino L, Colacurci N, Papaccio G. Amniotic fluid-derived mesenchymal stem cells lead to bone differentiation when cocultured with dental pulp stem cells. Tissue Eng Part A 2011 Mar;17(5-6):645-53.70.Kawashima N, Noda S, Yamamoto M, Okiji T. Properties of Dental Pulp-derived Mesenchymal Stem Cells and the Effects of Culture Conditions. J Endod 2017; 43(9S):31-4.71.Mortada I, Mortada R . Dental pulp stem cells and osteogenesis: an update. Cytotechnology 2011; 70(5):1479-7.72.Lugo W. Inducción en la diferenciación de células madre mesenquimales y pre-osteoblastos cultivados con medio condicionado in vitro. Tesis de grado. 2023.73.Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S . Postnatal human dental pulp stem cells (hDPSC) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America 2000; 97(25): 13625–13630.74.Baldión PA, Velandia-Romero ML, Castellanos JE. Odontoblast-Like Cells Differentiated from Dental Pulp Stem Cells Retain Their Phenotype after Subcultivation. Int J Cell Biol 2018; 19:1-12.75.Gregory, C. A., Gunn, W. G., Peister, A., & Prockop, D. J. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical biochemistry 2004; 329(1): 77–84.76.Schefe, J. H., Lehmann, K. E., Buschmann, I. R., Unger, T., & Funke-Kaiser, H. . Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula. Journal of molecular medicine 2006; 84(11): 901–910.77.De Almeida, D. C., Ferreira, M. R. P., Franzen, J., Weidner, C. I., Frobel, J., Zenke, M., … Wagner, W.. Epigenetic Classification of Human Mesenchymal Stromal Cells. Stem Cell Reports 2016; 6(2): 168–175.78.Shi, S., & Gronthos, S. Perivascular Niche of Postnatal Mesenchymal Stem Cells in Human Bone Marrow and Dental Pulp. Journal of Bone and Mineral Research 2003; 18(4): 696–704.79.Bakopoulou, A., Leyhausen, G., Volk, J., Tsiftsoglou, A., Garefis, P., Koidis, P., & Geurtsen, W. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Archives of Oral Biology 2011; 56(7): 709–721.80.Nakashima, M., & Iohara, K. Mobilized Dental Pulp Stem Cells for Pulp Regeneration: Initiation of Clinical Trial. Journal of Endodontics 2014; 40(4): S26–S32.81.Jang JH, Lee HW, Cho KM, Shin HW, Kang MK, Park SH, Kim E. In vitro characterization of human dental pulp stem cells isolated by three different methods. Restor Dent Endod 2016;41(4):283-295.82.Zhang L, Yu Y, Joubert C, Bruder G, Liu Y, Chang CC, Simon M, Walker SG, Rafailovich M. Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds. Polymers 2016; 13;8(5):193.83.Gong, X., Liang, Z., Yang, Y., Liu, H., Ji, J., & Fan. A resazurin-based, nondestructive assay for monitoring cell proliferation during a scaffold-based 3D culture process. Regenerative Biomaterials 2020;(3), 271–281.84.Präbst, K., Engelhardt, H., Ringgeler, S., & Hübner, H. Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. Cell Viability Assays 2017; 1–17.85.Escobar LM, Bendahan Z, Garcia C, Castellanos JE. Relaxin treatment stimulates the differentiation of mesenchymal stem cells into osteoblasts. J Dent Sci 2023; 18(4):1786–1793.86.Wang, Y., Yao, J., Yuan, M; Zhang, Z; Hu W. Osteoblasts can induce dental pulp stem cells to undergo osteogenic differentiation. Cytotechnology 2013; (65): 223–231.87.Chen, S., Ye, X., Yu, X., Xu, Q., Pan, K., Lu, S., & Yang, P. Co-culture with periodontal ligament stem cells enhanced osteoblastic differentiation of MC3T3-E1 cells and osteoclastic differentiation of RAW264.7 cells. International journal of clinical and experimental pathology 2015; 8(11), 14596–14607.88.Chouaib, B., Desoutter, A., Cuisinier, F; Yves P. Medio acondicionado con células madre de pulpa dental mejora la diferenciación osteoblástica y la regeneración ósea. Stem Cell Rev and Rep 2024; (21): 477–490.89.Lee SY, Oh SJ, Miah R, Choe YH, Lee SL, Jeong YW, Son YB. Evaluation of the effects of co-culture system of human dental pulp stem cells and epithelial cells on odonto/osteogenic differentiation capacity. Journal of Animal Reproduction and Biotechnology 2024;(39):95-104.90.Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells 2013 26;5(4):136-4891.Kim H, Lee JH, Suh H. Interaction of mesenchymal stem cells and osteoblasts for in vitro osteogenesis. Yonsei Med J 2003;44(2):187-197.92.Wang Y, Volloch V, Pindrus MA, Blasioli DJ, Chen J, Kaplan DL. Murine osteoblasts regulate mesenchymal stem cells via WNT and cadherin pathways: mechanism depends on cell-cell contact mode. J Tissue Eng Regen Med 2007;1(1):39-50.93.Bian Y, Du Y, Wang R, Chen N, Du X, Wang Y, Yuan H.. A comparative study of HAMSCs/HBMSCs transwell and mixed coculture systems. IUBMB Life. 2019;71(7):1048-1055.spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf2360280https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/5207dc1c-956b-477c-9ca8-ad32f23ca97a/download3d0a723bd39c7ffa72c30d004983774aMD51trueAnonymousREAD2027-08-10LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/5775dcb7-8d2f-4798-901f-954b3d9c4209/download17cc15b951e7cc6b3728a574117320f9MD55falseAnonymousREADCarta autorizacion.pdfapplication/pdf266198https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/a0365b43-f2c8-4d62-85c5-2a49508417e1/downloadc431452f4f98c08bc20eefa85d7d3caaMD57falseBiblioteca - (Publicadores)READAnexo 1 Acta de aprobacion.pdfapplication/pdf289271https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b3d38ea5-55a9-434c-b789-f90068b34a56/downloadce9ca0383396eef096860e1a823a720dMD58falseBiblioteca - (Publicadores)READCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/1b37ad2d-7906-435d-85ee-ca87e4df22e7/download5643bfd9bcf29d560eeec56d584edaa9MD56falseAnonymousREADTEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain101975https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b7e29afc-fcfb-4e2c-b1b6-aaddbf630e6c/downloadddeb73ed7f2dfcc87f65ac5a7694bab0MD59falseAnonymousREAD2027-08-11THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg2593https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b6d86a76-44bd-4f58-b339-95cdaa7e30f8/downloadad169f36104528bf17e38a6a3e1ca68fMD510falseAnonymousREAD2027-08-1120.500.12495/15703oai:pruebas-update-repositorio-unbosque.cloudbiteca.com:20.500.12495/157032025-08-13T10:09:12.084Zhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2027-08-10https://pruebas-update-repositorio-unbosque.cloudbiteca.comRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=