Comportamiento depredatorio de ninfas de odonatos bajo perturbaciones acústicas de baja frecuencia

La polución acústica liberada por diferentes actividades antrópicas puede perjudicar a las comunidades de macroinvertebrados acuáticos, modificando sus patrones de comportamiento. Se evaluó el efecto de Perturbaciones Acústicas de Baja Frecuencia (PABF) sobre el comportamiento depredatorio de ninfas...

Full description

Autores:
Ortega Navarro, Juan Pablo
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2025
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/14636
Acceso en línea:
https://hdl.handle.net/20.500.12495/14636
Palabra clave:
Ecología sensorial
Macroinvertebrados acuáticos
Depredación
Polución acústica
570
Sensory ecology
Aquatic macroinvertebrates
Predation
Noise pollution
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id UNBOSQUE2_dfc40db3c301929013c4f10dbeba52af
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/14636
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Comportamiento depredatorio de ninfas de odonatos bajo perturbaciones acústicas de baja frecuencia
dc.title.translated.none.fl_str_mv Predatory behavior of odonate nymphs under low-frequency acoustic disturbances
title Comportamiento depredatorio de ninfas de odonatos bajo perturbaciones acústicas de baja frecuencia
spellingShingle Comportamiento depredatorio de ninfas de odonatos bajo perturbaciones acústicas de baja frecuencia
Ecología sensorial
Macroinvertebrados acuáticos
Depredación
Polución acústica
570
Sensory ecology
Aquatic macroinvertebrates
Predation
Noise pollution
title_short Comportamiento depredatorio de ninfas de odonatos bajo perturbaciones acústicas de baja frecuencia
title_full Comportamiento depredatorio de ninfas de odonatos bajo perturbaciones acústicas de baja frecuencia
title_fullStr Comportamiento depredatorio de ninfas de odonatos bajo perturbaciones acústicas de baja frecuencia
title_full_unstemmed Comportamiento depredatorio de ninfas de odonatos bajo perturbaciones acústicas de baja frecuencia
title_sort Comportamiento depredatorio de ninfas de odonatos bajo perturbaciones acústicas de baja frecuencia
dc.creator.fl_str_mv Ortega Navarro, Juan Pablo
dc.contributor.advisor.none.fl_str_mv Torres Sánchez, Martha Patricia
dc.contributor.author.none.fl_str_mv Ortega Navarro, Juan Pablo
dc.subject.none.fl_str_mv Ecología sensorial
Macroinvertebrados acuáticos
Depredación
Polución acústica
topic Ecología sensorial
Macroinvertebrados acuáticos
Depredación
Polución acústica
570
Sensory ecology
Aquatic macroinvertebrates
Predation
Noise pollution
dc.subject.ddc.none.fl_str_mv 570
dc.subject.keywords.none.fl_str_mv Sensory ecology
Aquatic macroinvertebrates
Predation
Noise pollution
description La polución acústica liberada por diferentes actividades antrópicas puede perjudicar a las comunidades de macroinvertebrados acuáticos, modificando sus patrones de comportamiento. Se evaluó el efecto de Perturbaciones Acústicas de Baja Frecuencia (PABF) sobre el comportamiento depredatorio de ninfas de Anax amazili, con la hipótesis de que las ondas acústicas en el agua afectarían la depredación exitosa y el comportamiento depredatorio natural de las ninfas. Se comprobó que las PABF no inciden de forma negativa en la depredación exitosa ni en el comportamiento depredatorio de las ninfas de Anax amazili. Sin embargo, las ninfas bajo PBAF pueden desplegar de comportamientos relacionados a la depredación en contextos inoportunos, lo que se puede relacionar con un estado de alerta. Las ninfas mantuvieron un comportamiento tímido y un nivel de actividad moderado en todos los tratamientos, pero también demostraron un comportamiento exploratorio, especialmente bajo ondas de 50 Hz, lo que sugiere que un incremento en la frecuencia de onda puede inducir a un comportamiento exploratorio en las ninfas de odonatos.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-12T17:24:58Z
dc.date.available.none.fl_str_mv 2025-06-12T17:24:58Z
dc.date.issued.none.fl_str_mv 2025-05
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/14636
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/14636
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] Okude G, Fukatsu T, Futahashi R. Comprehensive comparative morphology and developmental staging of final instar larvae toward metamorphosis in the insect order Odonata. Sci Rep [Internet]. 2021;11(1):5164. Disponible en: http://dx.doi.org/10.1038/s41598-021-84639-2.
[2] Orr AG, Butler SG, Hamalainen M, Kemp RG. Insecta: Odonata. Freshwater Invertebrates of the Malaysian Region. Kuala Lumpur: National Academy of Sciences Malaysia; 2004.
[3] Pessacq P, Muzon J, Neiss UG. Order Odonata. En: Thorp and Covich’s Freshwater Invertebrates. Elsevier; 2018. p. 355–66.
[4] Crespo JG. A review of chemosensation and related behavior in aquatic insects. J Insect Sci [Internet]. 2011;11(62):62. Disponible en: http://dx.doi.org/10.1673/031.011.6201.
[5] Burks RL, Jeppesen E, Lodge DM. Pelagic prey and benthic predators: impact of odonate predation on Daphnia. Journal of the North American Benthological Society. 2001;20(4):615–28.
[6] May ML. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects [Internet]. 2019;10(3):62. Disponible en: http://dx.doi.org/10.3390/insects10030062.
[7] Bulánková E. Dragonflies (Odonata) as bioindicators. Biologia, Bratislava. 1997;52(2):177–80.
[8] Miguel TB, Oliveira-Junior JMB, Ligeiro R, Juen L. Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecol Indic [Internet]. 2017;81:555–66. Disponible en: http://dx.doi.org/10.1016/j.ecolind.2017.06.010.
[9] Mitra TR. Insecta: Odonata. Fauna of Arunachal Pradesh, State Fauna Series. 2006;13(2):67–149.
[10] Piersanti S, Frati F, Conti E, Gaino E, Rebora M, Salerno G. First evidence of the use of olfaction in Odonata behaviour. J Insect Physiol [Internet]. 2014;62:26–31. Disponible en: http://dx.doi.org/10.1016/j.jinsphys.2014.01.006.
[11] Rebora M, Piersanti S, Gaino E. The antennal sensilla of the adult of Libellula depressa (Odonata: Libellulidae). Arthropod Struct Dev [Internet]. 2008;37(6):504–10. Disponible en: http://dx.doi.org/10.1016/j.asd.2008.03.003.
[12] Rebora M, Salerno G, Piersanti S. Aquatic insect sensilla: Morphology and function. En: Aquatic Insects. Cham: Springer International Publishing; 2019. p. 139–66.
[13] Rebora M, Piersanti S, Gaino E. Visual and mechanical cues used for prey detection by the larva of Libellula depressa (Odonata Libellulidae). Ethology Ecology & Evolution. 2004;16(2):133–44.
[14] Amat I, Desouhant E, Gomes E, Moreau J, Monceau K. Insect personality: what can we learn from metamorphosis? Curr Opin Insect Sci [Internet]. 2018;27:46–51. Disponible en: http://dx.doi.org/10.1016/j.cois.2018.02.014.
[15] Collado MÁ, Menzel R, Sol D, Bartomeus I. Innovation in solitary bees is driven by exploration, shyness and activity levels [Internet]. bioRxiv. 2019. Disponible en: http://dx.doi.org/10.1101/2019.12.23.884619.
[16] Tremmel M, Müller C. Insect personality depends on environmental conditions. Behav Ecol [Internet]. 2013;24(2):386–92. Disponible en: http://dx.doi.org/10.1093/beheco/ars175.
[17] Jandt JM, Bengston S, Pinter-Wollman N, Pruitt JN, Raine NE, Dornhaus A, et al. Behavioural syndromes and social insects: personality at multiple levels: Behavioural syndromes and social insects. Biol Rev Camb Philos Soc [Internet]. 2014;89(1):48–67. Disponible en: http://dx.doi.org/10.1111/brv.12042.
[18] Lihoreau M, Brepson L, Rivault C. The weight of the clan: even in insects, social isolation can induce a behavioural syndrome. Behav Processes [Internet]. 2009;82(1):81–4. Disponible en: http://dx.doi.org/10.1016/j.beproc.2009.03.008.
[19] Segev U, Burkert L, Feldmeyer B, Foitzik S. Pace-of-life in a social insect: behavioral syndromes in ants shift along a climatic gradient. Behav Ecol [Internet]. 2017;28(4):1149–59. Disponible en: http://dx.doi.org/10.1093/beheco/arx079.
[20] Keiser CN, Lichtenstein JLL, Wright CM, Chism GT, Pruitt JN, Gonzalez-Santoyo I, et al. Personality and behavioral syndromes in insects and spiders. Insect behavior: From mechanisms to ecological and evolutionary consequences. 2018;236–56.
[21] Dominoni DM, Halfwerk W, Baird E, Buxton RT, Fernández-Juricic E, Fristrup KM, et al. Why conservation biology can benefit from sensory ecology. Nat Ecol Evol [Internet]. 2020;4(4):502–11. Disponible en: http://dx.doi.org/10.1038/s41559-020-1135-4.
[22] Roberts L, Elliott M. Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos. Sci Total Environ [Internet]. 2017;595:255–68. Disponible en: http://dx.doi.org/10.1016/j.scitotenv.2017.03.117.
[23] Aimon C, Simpson SD, Hazelwood RA, Bruintjes R, Urbina MA. Anthropogenic underwater vibrations are sensed and stressful for the shore crab Carcinus maenas. Environ Pollut [Internet]. 2021;285(117148):117148. Disponible en: http://dx.doi.org/10.1016/j.envpol.2021.117148.
[24] Hildebrand JA. Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series. 2009;395:5–20.
[25] Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J, Lucchi A, Symondson WOC, et al. Vibrational communication networks: Eavesdropping and biotic noise. En: Animal Signals and Communication. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 93–123.
[26] Hildebrand J. Sources of anthropogenic sound in the marine environment. En 2004.
[27] Hawkins AD, Hazelwood RA, Popper AN, Macey PC. Substrate vibrations and their potential effects upon fishes and invertebrates. J Acoust Soc Am [Internet]. 2021;149(4):2782. Disponible en: http://dx.doi.org/10.1121/10.0004773.
[28] Te Velde K, Mairo A, Peeters ET, Winter HV, Tudorache C, Slabbekoorn H. Natural soundscapes of lowland river habitats and the potential threat of urban noise pollution to migratory fish. Environmental Pollution. 2024;359:124517.
[29] Saura FJ. La contaminación acústica submarina: Fuentes e impacto biológico. SAES, Cartagena; 2009.
[30] André M, Solé M, Lenoir M, Durfort M, Quero C, Mas A, et al. Low‐frequency sounds induce acoustic trauma in cephalopods. Front Ecol Environ [Internet]. 2011;9(9):489–93. Disponible en: http://dx.doi.org/10.1890/100124.
[31] Redondo L, Mateo AR. Ruido subacuático: fundamentos, fuentes, cálculo y umbrales de contaminación ambiental. Revista Digital del Cedex. 2017;(186):73–73.
[32] Kastelein RA, Gransier R, Marijt MAT, Hoek L. Hearing frequency thresholds of harbor porpoises (Phocoena phocoena) temporarily affected by played back offshore pile driving sounds. The Journal of the Acoustical Society of America. 2015;137(2):556–64.
[33] Tougaard J, Carstensen J, Teilmann J, Skov H, Rasmussen P. Pile driving zone of responsiveness extends beyond 20 km for harbor porpoises (Phocoena phocoena (L.)). The Journal of the Acoustical Society of America. 2009;126(1):11–4.
[34] Torres, R. Armas Acústicas Aplicaciones para sumisión y control. 2020.
[35] Serrano. Nuevos conceptos y criterios en la determinación de la profundidad de dragado.
[36] Bjørnø L, Buckingham MJ. General characteristics of the underwater environment. En: Applied Underwater Acoustics. Elsevier; 2017. p. 1–84.
[37] Wang Z-T, Duan P-X, Akamatsu T, Chen Y-W, An X, Yuan J, et al. Riverside underwater noise pollution threaten porpoises and fish along the middle and lower reaches of the Yangtze River, China. Ecotoxicol Environ Saf [Internet]. 2021;226(112860):112860. Disponible en: http://dx.doi.org/10.1016/j.ecoenv.2021.112860.
[38] Roberts L, Howard DR. Substrate-borne vibrational noise in the anthropocene: From land to sea. En: Biotremology: Physiology, Ecology, and Evolution. Cham: Springer International Publishing; 2022. p. 123–55.
[39] McPeek MA. Ecological factors limiting the distributions and abundances of Odonata. En: Dragonflies and Damselflies. Oxford University PressOxford; 2008. p. 51–62.
[40] Stoks R, Córdoba-Aguilar A. Evolutionary ecology of Odonata: a complex life cycle perspective. Annu Rev Entomol [Internet]. 2012;57(1):249–65. Disponible en: http://dx.doi.org/10.1146/annurev-ento-120710-100557.
[41] Darrigran G, Vilches A, Legarralde T, Damborenea C. Guía para el estudio de macroinvertebrados. I.-Métodos de colecta y técnicas de fijación. 2007.
[42] Costa C, Ide S, Simonka CE. Insectos inmaduros: metamorphosis e identificación. 2006.
[43] Trapero-Quintana A, Naranjo C. Clave para la identificación de especies de Odonata en estado larval de Cuba. Boletín Sociedad Entomológica Aragonesa. 2009;44:459–67.
[44] Roldán, G. Guia para el Estudio de los Macroinvertebrados Acuaticos del Departamento de Antioquia (Guide for the Study of the Aquatic Macroinvertebrates from Antioquia Department) (Colombia). J North Am Benthol Soc [Internet]. 1989;8(4):373–4. Disponible en: http://dx.doi.org/10.2307/1467503.
[45] Brungs WA. Effects of residual chlorine on aquatic life. J Water Pollut Control Fed. 1973;45(10):2180–93.
[46] Valenti TW, Cherry DS, Currie RJ, Neves RJ, Jones JW, Mair R, et al. Chlorine toxicity to early life stages of freshwater mussels (Bivalvia: Unionidae). Environ Toxicol Chem [Internet]. 2006;25(9):2512–8. Disponible en: http://dx.doi.org/10.1897/05-527r1.1.
[47] Caltzontzin-Rabell V, Romero-Zepeda H, Gutiérrez-Antonio C, García-Trejo JF, Feregrino-Pérez AA. Perspectiva ética sobre el uso de insectos en proyectos de investigación. Digital Ciencia@ UAQRO. 2021;14(2):60–9.
[48] Lang HH. Surface wave discrimination between prey and nonprey by the back swimmer Notonecta glauca L.(Hemiptera, Heteroptera). Behavioral Ecology and Sociobiology. 1980;6:233–46.
[49] Zenni TM, Crivelaro AZ, Pestana GC, Guillermo-Ferreira R. Shy–bold behaviours in dragonfly larvae: syndromes or personality? Behaviour [Internet]. 2024;161(7):535–44. Disponible en: http://dx.doi.org/10.1163/1568539x-bja10272.
[50] Müller T, Müller C. Behavioural phenotypes over the lifetime of a holometabolous insect. Front Zool [Internet]. 2015;12 Suppl 1(Suppl 1):S8. Disponible en: http://dx.doi.org/10.1186/1742-9994-12-S1-S8.
[51] Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ. Integrating animal temperament within ecology and evolution. Biol Rev Camb Philos Soc [Internet]. 2007;82(2):291–318. Disponible en: http://dx.doi.org/10.1111/j.1469-185x.2007.00010.x.
[52] Udny Yule, G., & Kendall, M. G. Introduction to mathematical statistics.
[53] Harding H, Bruintjes R, Radford AN, Simpson SD. Measurement of Hearing in the Atlantic salmon (Salmo salar) using Auditory Evoked Potentials, and effects of Pile Driving Playback on salmon Behaviour and Physiology. Marine Scotland Science; 2016.
[54] Pearson WH, Skalski JR, Sulkin SD, Malme CI. Effects of seismic energy releases on the survival and development of zoeal larvae of dungeness crab (Cancer magister). Mar Environ Res [Internet]. 1994;38(2):93–113. Disponible en: http://dx.doi.org/10.1016/0141-1136(94)90003-5.
[55] Kastelein RA, Heul S van der, Verboom WC, Jennings N, Veen J van der, de Haan D. Startle response of captive North Sea fish species to underwater tones between 0.1 and 64 kHz. Mar Environ Res [Internet]. 2008;65(5):369–77. Disponible en: http://dx.doi.org/10.1016/j.marenvres.2008.01.001.
[56] Wysocki LE, Dittami JP, Ladich F. Ship noise and cortisol secretion in European freshwater fishes. Biol Conserv [Internet]. 2006;128(4):501–8. Disponible en: http://dx.doi.org/10.1016/j.biocon.2005.10.020.
[57] Zang X, Martinez JJ, Lu J, Titzler PS, Deng ZD. Does the Hood Canal Bridge traffic noise affect migrating steelhead smolts? En: OCEANS 2019 MTS/IEEE SEATTLE. IEEE; 2019.
[58] Halvorsen MB, Casper BM, Woodley CM, Carlson TJ, Popper AN. Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds. PLoS One [Internet]. 2012;7(6):e38968. Disponible en: http://dx.doi.org/10.1371/journal.pone.0038968.
[59] Cox BS, Dux AM, Quist MC, Guy CS. Use of a seismic air gun to reduce survival of nonnative lake trout embryos: A tool for conservation? N Am J Fish Manag [Internet]. 2012;32(2):292–8. Disponible en: http://dx.doi.org/10.1080/02755947.2012.675960.
[60] Palacino-Rodríguez F, Palacino DA, Rache-Rodríguez L, Cordero-Rivera A, Penagos AC, Lamelas-López L. Larval development and behavior of Rhionaeschna marchali Rambur (Anisoptera: Aeshnidae) under captivity conditions. Int J Odonatol [Internet]. 2018;21(1):55–70. Disponible en: http://dx.doi.org/10.1080/13887890.2018.1437478.
[61] Kanou M, Shimozawa T. The elicitation of the predatory labial strike of dragonfly larvae in response to a purely mechanical stimulus. Journal of Experimental Biology. 1983;107(1):391–404.
[62] Gabel F, Stoll S, Fischer P, Pusch MT, Garcia X-F. Waves affect predator-prey interactions between fish and benthic invertebrates. Oecologia [Internet]. 2011;165(1):101–9. Disponible en: http://dx.doi.org/10.1007/s00442-010-1841-8.
[63] Purser J, Radford AN. Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus). PloS one. 2011;6(2):e17478.
[64] Chan AAY-H, Giraldo-Perez P, Smith S, Blumstein DT. Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis. Biol Lett [Internet]. 2010;6(4):458–61. Disponible en: http://dx.doi.org/10.1098/rsbl.2009.1081.
[65] Fisher DN, David M, Tregenza T, Rodríguez-Muñoz R. Dynamics of among-individual behavioral variation over adult lifespan in a wild insect. Behav Ecol [Internet]. 2015;26(4):975–85. Disponible en: http://dx.doi.org/10.1093/beheco/arv048.
[66] Carter AJ, Feeney WE, Marshall HH, Cowlishaw G, Heinsohn R. Animal personality: what are behavioural ecologists measuring?: What are animal personality researchers measuring. Biol Rev Camb Philos Soc [Internet]. 2013;88(2):465–75. Disponible en: http://dx.doi.org/10.1111/brv.12007.
[67] Sih A, Bell AM, Johnson JC, Ziemba RE. Behavioral syndromes: An integrative overview. Q Rev Biol [Internet]. 2004;79(3):241–77. Disponible en: http://dx.doi.org/10.1086/422893.
[68] Hedrick AV, Kortet R. Sex differences in the repeatability of boldness over metamorphosis. Behav Ecol Sociobiol [Internet]. 2012;66(3):407–12. Disponible en: http://dx.doi.org/10.1007/s00265-011-1286-z.
[69] Modlmeier AP, Keiser CN, Wright CM, Lichtenstein JL, Pruitt JN. Integrating animal personality into insect population and community ecology. Curr Opin Insect Sci [Internet]. 2015;9:77–85. Disponible en: http://dx.doi.org/10.1016/j.cois.2015.03.008.
[70] Wright AJ, Soto NA, Baldwin AL, Bateson M, Beale CM, Clark C, et al. Anthropogenic noise as a stressor in animals: a multidisciplinary perspective. International Journal of Comparative Psychology. 2007;20(2).
[71] Okumura T, Akamatsu T, Yan HY. Analyses of small tank acoustics: empirical and theoretical approaches. Bioacoustics. 2002;12(2–3):330–2.
[72] Golab MJ, Sniegula S, Antoł A, Brodin T. Adult insect personality in the wild-Calopteryx splendens as a model for field studies. Ecol Evol [Internet]. 2021;11(24):18467–76. Disponible en: http://dx.doi.org/10.1002/ece3.8439.
[73] Popper AN, Hawkins AD, Sand O, Sisneros JA. Examining the hearing abilities of fishes. J Acoust Soc Am [Internet]. 2019;146(2):948. Disponible en: http://dx.doi.org/10.1121/1.5120185.
[74] Martínez Ortega Rosa María, Tuya Pendás Leonel C, Martínez Ortega Mercedes, Pérez Abreu Alberto, Cánovas Ana María. EL COEFICIENTE DE CORRELACION DE LOS RANGOS DE SPEARMAN CARACTERIZACION. Rev haban cienc méd [Internet]. 2009 Jun [citado 2025 Mayo 23] ; 8( 2 ): . Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2009000200017&lng=es.
dc.rights.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Biología
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/03ca71a4-0c0b-42a0-b705-2df475a055b4/download
https://repositorio.unbosque.edu.co/bitstreams/ab0052f9-07fc-4d99-9884-4322287dc420/download
https://repositorio.unbosque.edu.co/bitstreams/e6a5cd99-b7d2-4771-9868-3270bf171fd4/download
https://repositorio.unbosque.edu.co/bitstreams/941319cc-aac7-4f8f-9560-5fe7e0026b01/download
https://repositorio.unbosque.edu.co/bitstreams/5e6f6a32-1fe0-40a3-b43e-ba88ec5a0a7e/download
https://repositorio.unbosque.edu.co/bitstreams/71a58338-fda7-4211-a3bc-969a05be1bd0/download
https://repositorio.unbosque.edu.co/bitstreams/c763d9f5-bc4d-430b-bfba-acaa5da6a7a9/download
bitstream.checksum.fl_str_mv c79d6f89bc448bc5379d5e508bc4d3cc
17cc15b951e7cc6b3728a574117320f9
b034a179de717fa1ae98fb8e4e7f1b18
f9d6bdd57392118cadfe8ac282d6c4de
5643bfd9bcf29d560eeec56d584edaa9
46e4e2c4cba3fc4386cf55f98166595c
6627e08960110efebbf476562eb5c894
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1836752062834016256
spelling Torres Sánchez, Martha PatriciaOrtega Navarro, Juan Pablo2025-06-12T17:24:58Z2025-06-12T17:24:58Z2025-05https://hdl.handle.net/20.500.12495/14636instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLa polución acústica liberada por diferentes actividades antrópicas puede perjudicar a las comunidades de macroinvertebrados acuáticos, modificando sus patrones de comportamiento. Se evaluó el efecto de Perturbaciones Acústicas de Baja Frecuencia (PABF) sobre el comportamiento depredatorio de ninfas de Anax amazili, con la hipótesis de que las ondas acústicas en el agua afectarían la depredación exitosa y el comportamiento depredatorio natural de las ninfas. Se comprobó que las PABF no inciden de forma negativa en la depredación exitosa ni en el comportamiento depredatorio de las ninfas de Anax amazili. Sin embargo, las ninfas bajo PBAF pueden desplegar de comportamientos relacionados a la depredación en contextos inoportunos, lo que se puede relacionar con un estado de alerta. Las ninfas mantuvieron un comportamiento tímido y un nivel de actividad moderado en todos los tratamientos, pero también demostraron un comportamiento exploratorio, especialmente bajo ondas de 50 Hz, lo que sugiere que un incremento en la frecuencia de onda puede inducir a un comportamiento exploratorio en las ninfas de odonatos.BiólogoPregradoNoise pollution released by human activities can harm aquatic macroinvertebrate communities by modifying their behavioral patterns. The effect of low-frequency acoustic disturbances on the predatory behavior of Anax amazili nymphs was evaluated, with the hypothesis that acoustic waves in the water would affect successful predation and the natural predatory behavior of the nymphs. It was found that low-frequency acoustic disturbances do not negatively affect successful predation or predatory behavior of Anax amazili nymphs. However, nymphs under low-frequency acoustic disturbances may display predation-related behaviors in inappropriate contexts, which may be related to a state of alertness. Nymphs maintained shy behavior and a moderate activity level in all treatments, but also demonstrated exploratory behavior, especially under 50 Hz waves, suggesting that an increase in wave frequency can induce exploratory behavior in odonate nymphs.application/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Ecología sensorialMacroinvertebrados acuáticosDepredaciónPolución acústica570Sensory ecologyAquatic macroinvertebratesPredationNoise pollutionComportamiento depredatorio de ninfas de odonatos bajo perturbaciones acústicas de baja frecuenciaPredatory behavior of odonate nymphs under low-frequency acoustic disturbancesBiologíaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa[1] Okude G, Fukatsu T, Futahashi R. Comprehensive comparative morphology and developmental staging of final instar larvae toward metamorphosis in the insect order Odonata. Sci Rep [Internet]. 2021;11(1):5164. Disponible en: http://dx.doi.org/10.1038/s41598-021-84639-2.[2] Orr AG, Butler SG, Hamalainen M, Kemp RG. Insecta: Odonata. Freshwater Invertebrates of the Malaysian Region. Kuala Lumpur: National Academy of Sciences Malaysia; 2004.[3] Pessacq P, Muzon J, Neiss UG. Order Odonata. En: Thorp and Covich’s Freshwater Invertebrates. Elsevier; 2018. p. 355–66.[4] Crespo JG. A review of chemosensation and related behavior in aquatic insects. J Insect Sci [Internet]. 2011;11(62):62. Disponible en: http://dx.doi.org/10.1673/031.011.6201.[5] Burks RL, Jeppesen E, Lodge DM. Pelagic prey and benthic predators: impact of odonate predation on Daphnia. Journal of the North American Benthological Society. 2001;20(4):615–28.[6] May ML. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects [Internet]. 2019;10(3):62. Disponible en: http://dx.doi.org/10.3390/insects10030062.[7] Bulánková E. Dragonflies (Odonata) as bioindicators. Biologia, Bratislava. 1997;52(2):177–80.[8] Miguel TB, Oliveira-Junior JMB, Ligeiro R, Juen L. Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecol Indic [Internet]. 2017;81:555–66. Disponible en: http://dx.doi.org/10.1016/j.ecolind.2017.06.010.[9] Mitra TR. Insecta: Odonata. Fauna of Arunachal Pradesh, State Fauna Series. 2006;13(2):67–149.[10] Piersanti S, Frati F, Conti E, Gaino E, Rebora M, Salerno G. First evidence of the use of olfaction in Odonata behaviour. J Insect Physiol [Internet]. 2014;62:26–31. Disponible en: http://dx.doi.org/10.1016/j.jinsphys.2014.01.006.[11] Rebora M, Piersanti S, Gaino E. The antennal sensilla of the adult of Libellula depressa (Odonata: Libellulidae). Arthropod Struct Dev [Internet]. 2008;37(6):504–10. Disponible en: http://dx.doi.org/10.1016/j.asd.2008.03.003.[12] Rebora M, Salerno G, Piersanti S. Aquatic insect sensilla: Morphology and function. En: Aquatic Insects. Cham: Springer International Publishing; 2019. p. 139–66.[13] Rebora M, Piersanti S, Gaino E. Visual and mechanical cues used for prey detection by the larva of Libellula depressa (Odonata Libellulidae). Ethology Ecology & Evolution. 2004;16(2):133–44.[14] Amat I, Desouhant E, Gomes E, Moreau J, Monceau K. Insect personality: what can we learn from metamorphosis? Curr Opin Insect Sci [Internet]. 2018;27:46–51. Disponible en: http://dx.doi.org/10.1016/j.cois.2018.02.014.[15] Collado MÁ, Menzel R, Sol D, Bartomeus I. Innovation in solitary bees is driven by exploration, shyness and activity levels [Internet]. bioRxiv. 2019. Disponible en: http://dx.doi.org/10.1101/2019.12.23.884619.[16] Tremmel M, Müller C. Insect personality depends on environmental conditions. Behav Ecol [Internet]. 2013;24(2):386–92. Disponible en: http://dx.doi.org/10.1093/beheco/ars175.[17] Jandt JM, Bengston S, Pinter-Wollman N, Pruitt JN, Raine NE, Dornhaus A, et al. Behavioural syndromes and social insects: personality at multiple levels: Behavioural syndromes and social insects. Biol Rev Camb Philos Soc [Internet]. 2014;89(1):48–67. Disponible en: http://dx.doi.org/10.1111/brv.12042.[18] Lihoreau M, Brepson L, Rivault C. The weight of the clan: even in insects, social isolation can induce a behavioural syndrome. Behav Processes [Internet]. 2009;82(1):81–4. Disponible en: http://dx.doi.org/10.1016/j.beproc.2009.03.008.[19] Segev U, Burkert L, Feldmeyer B, Foitzik S. Pace-of-life in a social insect: behavioral syndromes in ants shift along a climatic gradient. Behav Ecol [Internet]. 2017;28(4):1149–59. Disponible en: http://dx.doi.org/10.1093/beheco/arx079.[20] Keiser CN, Lichtenstein JLL, Wright CM, Chism GT, Pruitt JN, Gonzalez-Santoyo I, et al. Personality and behavioral syndromes in insects and spiders. Insect behavior: From mechanisms to ecological and evolutionary consequences. 2018;236–56.[21] Dominoni DM, Halfwerk W, Baird E, Buxton RT, Fernández-Juricic E, Fristrup KM, et al. Why conservation biology can benefit from sensory ecology. Nat Ecol Evol [Internet]. 2020;4(4):502–11. Disponible en: http://dx.doi.org/10.1038/s41559-020-1135-4.[22] Roberts L, Elliott M. Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos. Sci Total Environ [Internet]. 2017;595:255–68. Disponible en: http://dx.doi.org/10.1016/j.scitotenv.2017.03.117.[23] Aimon C, Simpson SD, Hazelwood RA, Bruintjes R, Urbina MA. Anthropogenic underwater vibrations are sensed and stressful for the shore crab Carcinus maenas. Environ Pollut [Internet]. 2021;285(117148):117148. Disponible en: http://dx.doi.org/10.1016/j.envpol.2021.117148.[24] Hildebrand JA. Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series. 2009;395:5–20.[25] Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J, Lucchi A, Symondson WOC, et al. Vibrational communication networks: Eavesdropping and biotic noise. En: Animal Signals and Communication. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 93–123.[26] Hildebrand J. Sources of anthropogenic sound in the marine environment. En 2004.[27] Hawkins AD, Hazelwood RA, Popper AN, Macey PC. Substrate vibrations and their potential effects upon fishes and invertebrates. J Acoust Soc Am [Internet]. 2021;149(4):2782. Disponible en: http://dx.doi.org/10.1121/10.0004773.[28] Te Velde K, Mairo A, Peeters ET, Winter HV, Tudorache C, Slabbekoorn H. Natural soundscapes of lowland river habitats and the potential threat of urban noise pollution to migratory fish. Environmental Pollution. 2024;359:124517.[29] Saura FJ. La contaminación acústica submarina: Fuentes e impacto biológico. SAES, Cartagena; 2009.[30] André M, Solé M, Lenoir M, Durfort M, Quero C, Mas A, et al. Low‐frequency sounds induce acoustic trauma in cephalopods. Front Ecol Environ [Internet]. 2011;9(9):489–93. Disponible en: http://dx.doi.org/10.1890/100124.[31] Redondo L, Mateo AR. Ruido subacuático: fundamentos, fuentes, cálculo y umbrales de contaminación ambiental. Revista Digital del Cedex. 2017;(186):73–73.[32] Kastelein RA, Gransier R, Marijt MAT, Hoek L. Hearing frequency thresholds of harbor porpoises (Phocoena phocoena) temporarily affected by played back offshore pile driving sounds. The Journal of the Acoustical Society of America. 2015;137(2):556–64.[33] Tougaard J, Carstensen J, Teilmann J, Skov H, Rasmussen P. Pile driving zone of responsiveness extends beyond 20 km for harbor porpoises (Phocoena phocoena (L.)). The Journal of the Acoustical Society of America. 2009;126(1):11–4.[34] Torres, R. Armas Acústicas Aplicaciones para sumisión y control. 2020.[35] Serrano. Nuevos conceptos y criterios en la determinación de la profundidad de dragado.[36] Bjørnø L, Buckingham MJ. General characteristics of the underwater environment. En: Applied Underwater Acoustics. Elsevier; 2017. p. 1–84.[37] Wang Z-T, Duan P-X, Akamatsu T, Chen Y-W, An X, Yuan J, et al. Riverside underwater noise pollution threaten porpoises and fish along the middle and lower reaches of the Yangtze River, China. Ecotoxicol Environ Saf [Internet]. 2021;226(112860):112860. Disponible en: http://dx.doi.org/10.1016/j.ecoenv.2021.112860.[38] Roberts L, Howard DR. Substrate-borne vibrational noise in the anthropocene: From land to sea. En: Biotremology: Physiology, Ecology, and Evolution. Cham: Springer International Publishing; 2022. p. 123–55.[39] McPeek MA. Ecological factors limiting the distributions and abundances of Odonata. En: Dragonflies and Damselflies. Oxford University PressOxford; 2008. p. 51–62.[40] Stoks R, Córdoba-Aguilar A. Evolutionary ecology of Odonata: a complex life cycle perspective. Annu Rev Entomol [Internet]. 2012;57(1):249–65. Disponible en: http://dx.doi.org/10.1146/annurev-ento-120710-100557.[41] Darrigran G, Vilches A, Legarralde T, Damborenea C. Guía para el estudio de macroinvertebrados. I.-Métodos de colecta y técnicas de fijación. 2007.[42] Costa C, Ide S, Simonka CE. Insectos inmaduros: metamorphosis e identificación. 2006.[43] Trapero-Quintana A, Naranjo C. Clave para la identificación de especies de Odonata en estado larval de Cuba. Boletín Sociedad Entomológica Aragonesa. 2009;44:459–67.[44] Roldán, G. Guia para el Estudio de los Macroinvertebrados Acuaticos del Departamento de Antioquia (Guide for the Study of the Aquatic Macroinvertebrates from Antioquia Department) (Colombia). J North Am Benthol Soc [Internet]. 1989;8(4):373–4. Disponible en: http://dx.doi.org/10.2307/1467503.[45] Brungs WA. Effects of residual chlorine on aquatic life. J Water Pollut Control Fed. 1973;45(10):2180–93.[46] Valenti TW, Cherry DS, Currie RJ, Neves RJ, Jones JW, Mair R, et al. Chlorine toxicity to early life stages of freshwater mussels (Bivalvia: Unionidae). Environ Toxicol Chem [Internet]. 2006;25(9):2512–8. Disponible en: http://dx.doi.org/10.1897/05-527r1.1.[47] Caltzontzin-Rabell V, Romero-Zepeda H, Gutiérrez-Antonio C, García-Trejo JF, Feregrino-Pérez AA. Perspectiva ética sobre el uso de insectos en proyectos de investigación. Digital Ciencia@ UAQRO. 2021;14(2):60–9.[48] Lang HH. Surface wave discrimination between prey and nonprey by the back swimmer Notonecta glauca L.(Hemiptera, Heteroptera). Behavioral Ecology and Sociobiology. 1980;6:233–46.[49] Zenni TM, Crivelaro AZ, Pestana GC, Guillermo-Ferreira R. Shy–bold behaviours in dragonfly larvae: syndromes or personality? Behaviour [Internet]. 2024;161(7):535–44. Disponible en: http://dx.doi.org/10.1163/1568539x-bja10272.[50] Müller T, Müller C. Behavioural phenotypes over the lifetime of a holometabolous insect. Front Zool [Internet]. 2015;12 Suppl 1(Suppl 1):S8. Disponible en: http://dx.doi.org/10.1186/1742-9994-12-S1-S8.[51] Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ. Integrating animal temperament within ecology and evolution. Biol Rev Camb Philos Soc [Internet]. 2007;82(2):291–318. Disponible en: http://dx.doi.org/10.1111/j.1469-185x.2007.00010.x.[52] Udny Yule, G., & Kendall, M. G. Introduction to mathematical statistics.[53] Harding H, Bruintjes R, Radford AN, Simpson SD. Measurement of Hearing in the Atlantic salmon (Salmo salar) using Auditory Evoked Potentials, and effects of Pile Driving Playback on salmon Behaviour and Physiology. Marine Scotland Science; 2016.[54] Pearson WH, Skalski JR, Sulkin SD, Malme CI. Effects of seismic energy releases on the survival and development of zoeal larvae of dungeness crab (Cancer magister). Mar Environ Res [Internet]. 1994;38(2):93–113. Disponible en: http://dx.doi.org/10.1016/0141-1136(94)90003-5.[55] Kastelein RA, Heul S van der, Verboom WC, Jennings N, Veen J van der, de Haan D. Startle response of captive North Sea fish species to underwater tones between 0.1 and 64 kHz. Mar Environ Res [Internet]. 2008;65(5):369–77. Disponible en: http://dx.doi.org/10.1016/j.marenvres.2008.01.001.[56] Wysocki LE, Dittami JP, Ladich F. Ship noise and cortisol secretion in European freshwater fishes. Biol Conserv [Internet]. 2006;128(4):501–8. Disponible en: http://dx.doi.org/10.1016/j.biocon.2005.10.020.[57] Zang X, Martinez JJ, Lu J, Titzler PS, Deng ZD. Does the Hood Canal Bridge traffic noise affect migrating steelhead smolts? En: OCEANS 2019 MTS/IEEE SEATTLE. IEEE; 2019.[58] Halvorsen MB, Casper BM, Woodley CM, Carlson TJ, Popper AN. Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds. PLoS One [Internet]. 2012;7(6):e38968. Disponible en: http://dx.doi.org/10.1371/journal.pone.0038968.[59] Cox BS, Dux AM, Quist MC, Guy CS. Use of a seismic air gun to reduce survival of nonnative lake trout embryos: A tool for conservation? N Am J Fish Manag [Internet]. 2012;32(2):292–8. Disponible en: http://dx.doi.org/10.1080/02755947.2012.675960.[60] Palacino-Rodríguez F, Palacino DA, Rache-Rodríguez L, Cordero-Rivera A, Penagos AC, Lamelas-López L. Larval development and behavior of Rhionaeschna marchali Rambur (Anisoptera: Aeshnidae) under captivity conditions. Int J Odonatol [Internet]. 2018;21(1):55–70. Disponible en: http://dx.doi.org/10.1080/13887890.2018.1437478.[61] Kanou M, Shimozawa T. The elicitation of the predatory labial strike of dragonfly larvae in response to a purely mechanical stimulus. Journal of Experimental Biology. 1983;107(1):391–404.[62] Gabel F, Stoll S, Fischer P, Pusch MT, Garcia X-F. Waves affect predator-prey interactions between fish and benthic invertebrates. Oecologia [Internet]. 2011;165(1):101–9. Disponible en: http://dx.doi.org/10.1007/s00442-010-1841-8.[63] Purser J, Radford AN. Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus). PloS one. 2011;6(2):e17478.[64] Chan AAY-H, Giraldo-Perez P, Smith S, Blumstein DT. Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis. Biol Lett [Internet]. 2010;6(4):458–61. Disponible en: http://dx.doi.org/10.1098/rsbl.2009.1081.[65] Fisher DN, David M, Tregenza T, Rodríguez-Muñoz R. Dynamics of among-individual behavioral variation over adult lifespan in a wild insect. Behav Ecol [Internet]. 2015;26(4):975–85. Disponible en: http://dx.doi.org/10.1093/beheco/arv048.[66] Carter AJ, Feeney WE, Marshall HH, Cowlishaw G, Heinsohn R. Animal personality: what are behavioural ecologists measuring?: What are animal personality researchers measuring. Biol Rev Camb Philos Soc [Internet]. 2013;88(2):465–75. Disponible en: http://dx.doi.org/10.1111/brv.12007.[67] Sih A, Bell AM, Johnson JC, Ziemba RE. Behavioral syndromes: An integrative overview. Q Rev Biol [Internet]. 2004;79(3):241–77. Disponible en: http://dx.doi.org/10.1086/422893.[68] Hedrick AV, Kortet R. Sex differences in the repeatability of boldness over metamorphosis. Behav Ecol Sociobiol [Internet]. 2012;66(3):407–12. Disponible en: http://dx.doi.org/10.1007/s00265-011-1286-z.[69] Modlmeier AP, Keiser CN, Wright CM, Lichtenstein JL, Pruitt JN. Integrating animal personality into insect population and community ecology. Curr Opin Insect Sci [Internet]. 2015;9:77–85. Disponible en: http://dx.doi.org/10.1016/j.cois.2015.03.008.[70] Wright AJ, Soto NA, Baldwin AL, Bateson M, Beale CM, Clark C, et al. Anthropogenic noise as a stressor in animals: a multidisciplinary perspective. International Journal of Comparative Psychology. 2007;20(2).[71] Okumura T, Akamatsu T, Yan HY. Analyses of small tank acoustics: empirical and theoretical approaches. Bioacoustics. 2002;12(2–3):330–2.[72] Golab MJ, Sniegula S, Antoł A, Brodin T. Adult insect personality in the wild-Calopteryx splendens as a model for field studies. Ecol Evol [Internet]. 2021;11(24):18467–76. Disponible en: http://dx.doi.org/10.1002/ece3.8439.[73] Popper AN, Hawkins AD, Sand O, Sisneros JA. Examining the hearing abilities of fishes. J Acoust Soc Am [Internet]. 2019;146(2):948. Disponible en: http://dx.doi.org/10.1121/1.5120185.[74] Martínez Ortega Rosa María, Tuya Pendás Leonel C, Martínez Ortega Mercedes, Pérez Abreu Alberto, Cánovas Ana María. EL COEFICIENTE DE CORRELACION DE LOS RANGOS DE SPEARMAN CARACTERIZACION. Rev haban cienc méd [Internet]. 2009 Jun [citado 2025 Mayo 23] ; 8( 2 ): . Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2009000200017&lng=es.spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1917143https://repositorio.unbosque.edu.co/bitstreams/03ca71a4-0c0b-42a0-b705-2df475a055b4/downloadc79d6f89bc448bc5379d5e508bc4d3ccMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/ab0052f9-07fc-4d99-9884-4322287dc420/download17cc15b951e7cc6b3728a574117320f9MD54Carta de autorizacion.pdfapplication/pdf505007https://repositorio.unbosque.edu.co/bitstreams/e6a5cd99-b7d2-4771-9868-3270bf171fd4/downloadb034a179de717fa1ae98fb8e4e7f1b18MD56Anexo 1 acta de aprobacion.pdfapplication/pdf481778https://repositorio.unbosque.edu.co/bitstreams/941319cc-aac7-4f8f-9560-5fe7e0026b01/downloadf9d6bdd57392118cadfe8ac282d6c4deMD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repositorio.unbosque.edu.co/bitstreams/5e6f6a32-1fe0-40a3-b43e-ba88ec5a0a7e/download5643bfd9bcf29d560eeec56d584edaa9MD55TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain89827https://repositorio.unbosque.edu.co/bitstreams/71a58338-fda7-4211-a3bc-969a05be1bd0/download46e4e2c4cba3fc4386cf55f98166595cMD58THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg3077https://repositorio.unbosque.edu.co/bitstreams/c763d9f5-bc4d-430b-bfba-acaa5da6a7a9/download6627e08960110efebbf476562eb5c894MD5920.500.12495/14636oai:repositorio.unbosque.edu.co:20.500.12495/146362025-06-14 05:03:35.421http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=