Sensor de permitividad empleando estructuras metamateriales

El presente trabajo se enfoca en el diseño de un sensor resonante para la caracterización de la permitividad dieléctrica de líquidos, utilizando estructuras metamateriales implementadas sobre tecnología Substrate Integrated Waveguide (SIW) y microstrip. Estas estructuras permiten estimar la permitiv...

Full description

Autores:
Orozco Espitia, Nicolas
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2025
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/18129
Acceso en línea:
https://hdl.handle.net/20.500.12495/18129
Palabra clave:
Metamateriales
Microondas
Sensores
Permitividad dieléctrica
Resonadores CSRR
SIW
621.381
Metamaterials
Microwave
Sensors
Dielectric permittivity
CSRR resonators
SIW
Rights
License
Attribution 4.0 International
id UNBOSQUE2_ceed875c78b4e659983ef34f34785ab5
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/18129
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Sensor de permitividad empleando estructuras metamateriales
dc.title.translated.none.fl_str_mv Permittivity sensor using metamaterial structures
title Sensor de permitividad empleando estructuras metamateriales
spellingShingle Sensor de permitividad empleando estructuras metamateriales
Metamateriales
Microondas
Sensores
Permitividad dieléctrica
Resonadores CSRR
SIW
621.381
Metamaterials
Microwave
Sensors
Dielectric permittivity
CSRR resonators
SIW
title_short Sensor de permitividad empleando estructuras metamateriales
title_full Sensor de permitividad empleando estructuras metamateriales
title_fullStr Sensor de permitividad empleando estructuras metamateriales
title_full_unstemmed Sensor de permitividad empleando estructuras metamateriales
title_sort Sensor de permitividad empleando estructuras metamateriales
dc.creator.fl_str_mv Orozco Espitia, Nicolas
dc.contributor.advisor.none.fl_str_mv Diaz Pardo, Ivan
dc.contributor.author.none.fl_str_mv Orozco Espitia, Nicolas
dc.subject.none.fl_str_mv Metamateriales
Microondas
Sensores
Permitividad dieléctrica
Resonadores CSRR
SIW
topic Metamateriales
Microondas
Sensores
Permitividad dieléctrica
Resonadores CSRR
SIW
621.381
Metamaterials
Microwave
Sensors
Dielectric permittivity
CSRR resonators
SIW
dc.subject.ddc.none.fl_str_mv 621.381
dc.subject.keywords.none.fl_str_mv Metamaterials
Microwave
Sensors
Dielectric permittivity
CSRR resonators
SIW
description El presente trabajo se enfoca en el diseño de un sensor resonante para la caracterización de la permitividad dieléctrica de líquidos, utilizando estructuras metamateriales implementadas sobre tecnología Substrate Integrated Waveguide (SIW) y microstrip. Estas estructuras permiten estimar la permitividad relativa del material bajo prueba a partir del desplazamiento en la frecuencia de resonancia del sensor. Gracias a su alto factor de calidad (Q), es posible obtener una alta resolución en la detección de cambios dieléctricos. El estudio se centró en el diseño y simulación de sensores basados en metamateriales, específicamente orientados a mejorar la sensibilidad dieléctrica, entendida como la capacidad del sensor para detectar variaciones pequeñas en la permitividad relativa del material analizado. Se evaluaron distintas configuraciones geométricas, materiales dieléctricos del sustrato, y dimensiones de acoplamiento con el fin de optimizar el desempeño del sensor en términos de precisión, linealidad, ancho de banda y frecuencia operativa. Entre las estructuras analizadas, se identificó que el uso de resonadoras espirales circulares complementarios (Complementary Split-Ring Resonators, CSRR) ofreció una mayor sensibilidad frente a otras configuraciones, como los resonadores de anillo abierto (Open-Loop Resonators, OLR) y estructuras de línea de transmisión convencional. Se concluye que el sensor diseñado presenta un alto potencial para aplicaciones industriales, biomédicas y de control de calidad, donde es fundamental la detección precisa de la permitividad dieléctrica de líquidos.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-11-14T21:31:25Z
dc.date.issued.none.fl_str_mv 2025-11
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/18129
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/18129
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] E. L. Chuma, Y. Iano, G. Fontgalland, and L. L. Bravo-Roger, “Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator,” IEEE Sensors Journal, vol. 18, no. 24, pp. 9978–9985, Dec. 2018.
[2] E. E. Reyes, M. A. Domínguez, and D. A. Cataño, “Diseño de un sensor de permitividad dieléctrica relativa de un medio empleando una antena de microcinta con estructuras metamateriales,” Actas de Ingeniería, no. 10, pp. 43–51, Oct. 2015.
[3] X. Zhang, C. Ruan, T. U. Haq, and K. Chen, “High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator,” Sensors, vol. 19, no. 4, pp. 1–12, Feb. 2019.
[4] R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications. Hoboken, NJ, USA: Wiley, 2008.
[5] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations. Hoboken, NJ, USA: Wiley-IEEE Press, 2021.
[6] A. H. Abdo, A. Sebak, and T. A. Denidni, “High-sensitivity microwave sensor for liquid characterization based on metamaterial-inspired structure,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 3, pp. 1768–1778, Mar. 2021.
[7] A. J. A. Al-Gburi, A. M. Mohammed, and S. A. B. Al-Bayati, “Detection of semi-solid materials utilizing triple-ring CSRR microwave sensor,” Sensors, vol. 23, no. 6, pp. 1–14, Mar. 2023.
[8] J. B. Pendry, “Metamaterials and the control of electromagnetic fields,” Science, vol. 306, no. 5700, pp. 1353–1355, Nov. 2004.
[9] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ, USA: Wiley, 2011.
[10] M. R. Basar and F. H. Wee, “Complementary split-ring resonator for sensing applications: A review,” IEEE Access, vol. 8, pp. 186123–186137, Oct. 2020.
[11] H. H. Tran, H. K. Park, and I. Park, “Compact electromagnetic bandgap (EBG) structures for high-performance RF circuits and antennas,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1787–1802, May 2020.
[12] S. Ghosh and K. V. Srivastava, “Recent advances in frequency selective surfaces for electromagnetic shielding and sensing,” IEEE Antennas and Propagation Magazine, vol. 63, no. 2, pp. 45–57, Apr. 2021.
[13] F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy. Berlin, Germany: Springer, 2002.
[14] C. Liu, C. Liao, Y. Peng, and W. Wang, “Microwave sensors and their applications in permittivity measurement,” Sensors, vol. 24, no. 23, pp. 7696–7715, Dec. 2024.
[15] A. M. Mohammed, S. A. A. Gopalan, and A. J. A. Al-Gburi, “3D printed coaxial microwave resonator sensor for dielectric measurements of liquid,” Microwave and Optical Technology Letters, vol. 63, no. 3, pp. 805–810, Mar. 2021.
[16] E. Reyes-Vera, G. Acevedo-Osorio, M. Arias-Correa, and D. E. Senior, “A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization,” Sensors, vol. 19, no. 8, pp. 1–12, Apr. 2019.
[17] S. K. Palaniswamy, A. Elfrink, and G. A. E. Vandenbosch, “Analysis and design of planar microwave sensors for permittivity characterization of liquids,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 11, pp. 4722–4732, Nov. 2021.
[18] A. I. Gubin, Y. V. Maslov, A. A. Litvak, and A. M. Zagoskin, “Whispering-gallery mode resonator technique with microfluidic channel for permittivity measurement of liquids,” arXiv preprint, arXiv:2205.01346, May 2022.
[19] L. M. Pulido-Mancera, J. C. González, A. Ávila, and J. D. Baena, “Measurements of permittivity based in microstrip technology,” Momento, no. 47, pp. 68–76, Jul. 2013.
[20] Rogers Corporation, “RT/duroid® 5880 high frequency laminates,” Datasheet, 2023.
[21] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ, USA: Wiley, 2012.
[22] S. Lucyszyn, “Microwave resistive components,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 12, pp. 2821–2833, Dec. 1995.
[23] DuPont, “Kapton® Polyimide Films technical data sheet,” 2022.
[24] Huber+Suhner, “SMA connectors 50 Ω technical report,” 2022.
[25] A. Abduljabar, H. F. Abutarboush, R. Nilavalan, and D. Budimir, “Metamaterial-inspired microwave sensors for dielectric characterization of liquids,” IEEE Sensors Journal, vol. 16, no. 17, pp. 6319–6325, Sep. 2016
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Ingeniería Electrónica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/64b31f61-08f1-4a64-941f-04870fd255ee/download
https://repositorio.unbosque.edu.co/bitstreams/1ea5b162-8c12-43fd-a34d-d1faf6d82810/download
https://repositorio.unbosque.edu.co/bitstreams/212a00bf-aa25-44f8-ae1a-34b6f78bfa2f/download
https://repositorio.unbosque.edu.co/bitstreams/4c4aadb1-1bf6-43e4-b478-407d075d80c1/download
https://repositorio.unbosque.edu.co/bitstreams/a0260f02-50b3-4b74-af5e-1e5c7eacbe06/download
bitstream.checksum.fl_str_mv f06af22bfd8636c5201352007ffedf36
2db7b3ae26cf722e933fdf96a184c856
0a3df19c34e9711d85f9d094c2aa2e33
ae31ac83c6382c31a01ab8eac4d84bf1
c23b5bf09111d21f99245bb771e46198
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1849967242369826816
spelling Diaz Pardo, IvanOrozco Espitia, Nicolas2025-11-14T21:31:25Z2025-11https://hdl.handle.net/20.500.12495/18129instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl presente trabajo se enfoca en el diseño de un sensor resonante para la caracterización de la permitividad dieléctrica de líquidos, utilizando estructuras metamateriales implementadas sobre tecnología Substrate Integrated Waveguide (SIW) y microstrip. Estas estructuras permiten estimar la permitividad relativa del material bajo prueba a partir del desplazamiento en la frecuencia de resonancia del sensor. Gracias a su alto factor de calidad (Q), es posible obtener una alta resolución en la detección de cambios dieléctricos. El estudio se centró en el diseño y simulación de sensores basados en metamateriales, específicamente orientados a mejorar la sensibilidad dieléctrica, entendida como la capacidad del sensor para detectar variaciones pequeñas en la permitividad relativa del material analizado. Se evaluaron distintas configuraciones geométricas, materiales dieléctricos del sustrato, y dimensiones de acoplamiento con el fin de optimizar el desempeño del sensor en términos de precisión, linealidad, ancho de banda y frecuencia operativa. Entre las estructuras analizadas, se identificó que el uso de resonadoras espirales circulares complementarios (Complementary Split-Ring Resonators, CSRR) ofreció una mayor sensibilidad frente a otras configuraciones, como los resonadores de anillo abierto (Open-Loop Resonators, OLR) y estructuras de línea de transmisión convencional. Se concluye que el sensor diseñado presenta un alto potencial para aplicaciones industriales, biomédicas y de control de calidad, donde es fundamental la detección precisa de la permitividad dieléctrica de líquidos.Ingeniero ElectrónicoPregradoThis work focuses on the design of a resonant sensor for characterizing the dielectric permittivity of liquids, using metamaterial structures implemented on Substrate Integrated Waveguide (SIW) and microstrip technology. These structures allow the relative permittivity of the material under test to be estimated from the shift in the sensor's resonance frequency. Thanks to its high quality factor (Q), it is possible to obtain high resolution in the detection of dielectric changes. The study focused on the design and simulation of sensors based on metamaterials, specifically aimed at improving dielectric sensitivity, understood as the sensor's ability to detect small variations in the relative permittivity of the material being analyzed. Different geometric configurations, dielectric substrate materials, and coupling dimensions were evaluated in order to optimize the sensor's performance in terms of accuracy, linearity, bandwidth, and operating frequency. Among the structures analyzed, it was found that the use of complementary split-ring resonators (CSRR) offered greater sensitivity compared to other configurations, such as open-loop resonators (OLR) and conventional transmission line structures. It is concluded that the designed sensor has high potential for industrial, biomedical, and quality control applications, where accurate detection of the dielectric permittivity of liquids is essential.application/pdfAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2MetamaterialesMicroondasSensoresPermitividad dieléctricaResonadores CSRRSIW621.381MetamaterialsMicrowaveSensorsDielectric permittivityCSRR resonatorsSIWSensor de permitividad empleando estructuras metamaterialesPermittivity sensor using metamaterial structuresIngeniería ElectrónicaUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa[1] E. L. Chuma, Y. Iano, G. Fontgalland, and L. L. Bravo-Roger, “Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator,” IEEE Sensors Journal, vol. 18, no. 24, pp. 9978–9985, Dec. 2018.[2] E. E. Reyes, M. A. Domínguez, and D. A. Cataño, “Diseño de un sensor de permitividad dieléctrica relativa de un medio empleando una antena de microcinta con estructuras metamateriales,” Actas de Ingeniería, no. 10, pp. 43–51, Oct. 2015.[3] X. Zhang, C. Ruan, T. U. Haq, and K. Chen, “High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator,” Sensors, vol. 19, no. 4, pp. 1–12, Feb. 2019.[4] R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications. Hoboken, NJ, USA: Wiley, 2008.[5] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations. Hoboken, NJ, USA: Wiley-IEEE Press, 2021.[6] A. H. Abdo, A. Sebak, and T. A. Denidni, “High-sensitivity microwave sensor for liquid characterization based on metamaterial-inspired structure,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 3, pp. 1768–1778, Mar. 2021.[7] A. J. A. Al-Gburi, A. M. Mohammed, and S. A. B. Al-Bayati, “Detection of semi-solid materials utilizing triple-ring CSRR microwave sensor,” Sensors, vol. 23, no. 6, pp. 1–14, Mar. 2023.[8] J. B. Pendry, “Metamaterials and the control of electromagnetic fields,” Science, vol. 306, no. 5700, pp. 1353–1355, Nov. 2004.[9] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ, USA: Wiley, 2011.[10] M. R. Basar and F. H. Wee, “Complementary split-ring resonator for sensing applications: A review,” IEEE Access, vol. 8, pp. 186123–186137, Oct. 2020.[11] H. H. Tran, H. K. Park, and I. Park, “Compact electromagnetic bandgap (EBG) structures for high-performance RF circuits and antennas,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1787–1802, May 2020.[12] S. Ghosh and K. V. Srivastava, “Recent advances in frequency selective surfaces for electromagnetic shielding and sensing,” IEEE Antennas and Propagation Magazine, vol. 63, no. 2, pp. 45–57, Apr. 2021.[13] F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy. Berlin, Germany: Springer, 2002.[14] C. Liu, C. Liao, Y. Peng, and W. Wang, “Microwave sensors and their applications in permittivity measurement,” Sensors, vol. 24, no. 23, pp. 7696–7715, Dec. 2024.[15] A. M. Mohammed, S. A. A. Gopalan, and A. J. A. Al-Gburi, “3D printed coaxial microwave resonator sensor for dielectric measurements of liquid,” Microwave and Optical Technology Letters, vol. 63, no. 3, pp. 805–810, Mar. 2021.[16] E. Reyes-Vera, G. Acevedo-Osorio, M. Arias-Correa, and D. E. Senior, “A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization,” Sensors, vol. 19, no. 8, pp. 1–12, Apr. 2019.[17] S. K. Palaniswamy, A. Elfrink, and G. A. E. Vandenbosch, “Analysis and design of planar microwave sensors for permittivity characterization of liquids,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 11, pp. 4722–4732, Nov. 2021.[18] A. I. Gubin, Y. V. Maslov, A. A. Litvak, and A. M. Zagoskin, “Whispering-gallery mode resonator technique with microfluidic channel for permittivity measurement of liquids,” arXiv preprint, arXiv:2205.01346, May 2022.[19] L. M. Pulido-Mancera, J. C. González, A. Ávila, and J. D. Baena, “Measurements of permittivity based in microstrip technology,” Momento, no. 47, pp. 68–76, Jul. 2013.[20] Rogers Corporation, “RT/duroid® 5880 high frequency laminates,” Datasheet, 2023.[21] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ, USA: Wiley, 2012.[22] S. Lucyszyn, “Microwave resistive components,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 12, pp. 2821–2833, Dec. 1995.[23] DuPont, “Kapton® Polyimide Films technical data sheet,” 2022.[24] Huber+Suhner, “SMA connectors 50 Ω technical report,” 2022.[25] A. Abduljabar, H. F. Abutarboush, R. Nilavalan, and D. Budimir, “Metamaterial-inspired microwave sensors for dielectric characterization of liquids,” IEEE Sensors Journal, vol. 16, no. 17, pp. 6319–6325, Sep. 2016spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82109https://repositorio.unbosque.edu.co/bitstreams/64b31f61-08f1-4a64-941f-04870fd255ee/downloadf06af22bfd8636c5201352007ffedf36MD52falseAnonymousREADCarta de autorizacion.pdfapplication/pdf149061https://repositorio.unbosque.edu.co/bitstreams/1ea5b162-8c12-43fd-a34d-d1faf6d82810/download2db7b3ae26cf722e933fdf96a184c856MD57falseBiblioteca - (Publicadores)READAnexo 1. Acta de sustentacion.pdfapplication/pdf364764https://repositorio.unbosque.edu.co/bitstreams/212a00bf-aa25-44f8-ae1a-34b6f78bfa2f/download0a3df19c34e9711d85f9d094c2aa2e33MD58falseBiblioteca - (Publicadores)READORIGINALTrabajo de GradoTrabajo de Gradoapplication/pdf1525980https://repositorio.unbosque.edu.co/bitstreams/4c4aadb1-1bf6-43e4-b478-407d075d80c1/downloadae31ac83c6382c31a01ab8eac4d84bf1MD55trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81020https://repositorio.unbosque.edu.co/bitstreams/a0260f02-50b3-4b74-af5e-1e5c7eacbe06/downloadc23b5bf09111d21f99245bb771e46198MD56falseAnonymousREAD20.500.12495/18129oai:repositorio.unbosque.edu.co:20.500.12495/181292025-11-14T21:32:27.804347Zhttp://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comPGgzPkxpY2VuY2lhIGRlIERpc3RyaWJ1Y2nDs24gTm8gRXhjbHVzaXZhPC9oMz4KUGFyYSBxdWUgZWwgPGI+UmVwb3NpdG9yaW8gZGUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlPC9iPiBwdWVkYSByZXByb2R1Y2lyIHkgY29tdW5pY2FyIHDDumJsaWNhbWVudGUgc3UgZG9jdW1lbnRvIGVzIG5lY2VzYXJpbyBsYSBhY2VwdGFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3MuIFBvciBmYXZvciwgbGVhIGxhcyBzaWd1aWVudGVzIDxiPmNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhPC9iPjoKPG9sPgogIDxsaT5BY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIDxiPlVuaXZlcnNpZGFkIEVsIEJvc3F1ZTwvYj4gZWwgZGVyZWNobyBubyBleGNsdXNpdm8gZGUgYXJjaGl2YXIsIHJlcHJvZHVjaXIsIGNvbnZlcnRpciAoY29tbyBzZSBkZWZpbmUgbcOhcyBhYmFqbyksIGNvbXVuaWNhciB5L28gZGlzdHJpYnVpciBzdSBkb2N1bWVudG8gbXVuZGlhbG1lbnRlIGVuIGZvcm1hdG8gZWxlY3Ryw7NuaWNvLjwvbGk+CiAgPGxpPlRhbWJpw6luIGVzdMOhIGRlIGFjdWVyZG8gY29uIHF1ZSBsYSA8Yj5Vbml2ZXJzaWRhZCBFbCBCb3NxdWU8L2I+ZSBwdWVkYSBjb25zZXJ2YXIgbcOhcyBkZSB1bmEgY29waWEgZGUgZXN0ZSBkb2N1bWVudG8geSwgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLCBjb252ZXJ0aXJsbyBhIGN1YWxxdWllciBmb3JtYXRvIGRlIGZpY2hlcm8sIG1lZGlvIG8gc29wb3J0ZSwgcGFyYSBwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHByZXNlcnZhY2nDs24geSBhY2Nlc28uPC9saT4KICA8bGk+RGVjbGFyYSBxdWUgZWwgZG9jdW1lbnRvIGVzIHVuIHRyYWJham8gb3JpZ2luYWwgc3V5byB5L28gcXVlIHRpZW5lIGVsIGRlcmVjaG8gcGFyYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGRvY3VtZW50byBubyBpbmZyaW5nZSwgZW4gdGFudG8gZW4gY3VhbnRvIGxlIHNlYSBwb3NpYmxlIHNhYmVyLCBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbmluZ3VuYSBvdHJhIHBlcnNvbmEgbyBlbnRpZGFkLjwvbGk+CiAgPGxpPlNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSA8Yj5Vbml2ZXJzaWRhZCBFbCBCb3NxdWU8L2I+IGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBvciBlc3RhIGxpY2VuY2lhLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGVudHJlZ2Fkby48L2xpPgogIDxsaT5TaSBlbCBkb2N1bWVudG8gc2UgYmFzYSBlbiB1bmEgb2JyYSBxdWUgaGEgc2lkbyBwYXRyb2NpbmFkYSBvIGFwb3lhZGEgcG9yIHVuYSBhZ2VuY2lhIHUgb3JnYW5pemFjacOzbiBkaWZlcmVudGUgZGUgbGEgPGI+VW5pdmVyc2lkYWQgRWwgQm9zcXVlPC9iPiwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLjwvbGk+CiAgPGxpPjxiPlVuaXZlcnNpZGFkIEVsIEJvc3F1ZTwvYj4gaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIHN1L3Mgbm9tYnJlL3MgY29tbyBlbC9sb3MgYXV0b3IvZXMgbyBwcm9waWV0YXJpby9zIGRlIGxvcyBkZXJlY2hvcyBkZWwgZG9jdW1lbnRvLCB5IG5vIGhhcsOhIG5pbmd1bmEgYWx0ZXJhY2nDs24gZGUgc3UgZG9jdW1lbnRvIGRpZmVyZW50ZSBhIGxhcyBwZXJtaXRpZGFzIGVuIGVzdGEgbGljZW5jaWEuPC9saT4KPC9vbD4K