Sensor de permitividad empleando estructuras metamateriales
El presente trabajo se enfoca en el diseño de un sensor resonante para la caracterización de la permitividad dieléctrica de líquidos, utilizando estructuras metamateriales implementadas sobre tecnología Substrate Integrated Waveguide (SIW) y microstrip. Estas estructuras permiten estimar la permitiv...
- Autores:
-
Orozco Espitia, Nicolas
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/18129
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/18129
- Palabra clave:
- Metamateriales
Microondas
Sensores
Permitividad dieléctrica
Resonadores CSRR
SIW
621.381
Metamaterials
Microwave
Sensors
Dielectric permittivity
CSRR resonators
SIW
- Rights
- License
- Attribution 4.0 International
| id |
UNBOSQUE2_ceed875c78b4e659983ef34f34785ab5 |
|---|---|
| oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/18129 |
| network_acronym_str |
UNBOSQUE2 |
| network_name_str |
Repositorio U. El Bosque |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Sensor de permitividad empleando estructuras metamateriales |
| dc.title.translated.none.fl_str_mv |
Permittivity sensor using metamaterial structures |
| title |
Sensor de permitividad empleando estructuras metamateriales |
| spellingShingle |
Sensor de permitividad empleando estructuras metamateriales Metamateriales Microondas Sensores Permitividad dieléctrica Resonadores CSRR SIW 621.381 Metamaterials Microwave Sensors Dielectric permittivity CSRR resonators SIW |
| title_short |
Sensor de permitividad empleando estructuras metamateriales |
| title_full |
Sensor de permitividad empleando estructuras metamateriales |
| title_fullStr |
Sensor de permitividad empleando estructuras metamateriales |
| title_full_unstemmed |
Sensor de permitividad empleando estructuras metamateriales |
| title_sort |
Sensor de permitividad empleando estructuras metamateriales |
| dc.creator.fl_str_mv |
Orozco Espitia, Nicolas |
| dc.contributor.advisor.none.fl_str_mv |
Diaz Pardo, Ivan |
| dc.contributor.author.none.fl_str_mv |
Orozco Espitia, Nicolas |
| dc.subject.none.fl_str_mv |
Metamateriales Microondas Sensores Permitividad dieléctrica Resonadores CSRR SIW |
| topic |
Metamateriales Microondas Sensores Permitividad dieléctrica Resonadores CSRR SIW 621.381 Metamaterials Microwave Sensors Dielectric permittivity CSRR resonators SIW |
| dc.subject.ddc.none.fl_str_mv |
621.381 |
| dc.subject.keywords.none.fl_str_mv |
Metamaterials Microwave Sensors Dielectric permittivity CSRR resonators SIW |
| description |
El presente trabajo se enfoca en el diseño de un sensor resonante para la caracterización de la permitividad dieléctrica de líquidos, utilizando estructuras metamateriales implementadas sobre tecnología Substrate Integrated Waveguide (SIW) y microstrip. Estas estructuras permiten estimar la permitividad relativa del material bajo prueba a partir del desplazamiento en la frecuencia de resonancia del sensor. Gracias a su alto factor de calidad (Q), es posible obtener una alta resolución en la detección de cambios dieléctricos. El estudio se centró en el diseño y simulación de sensores basados en metamateriales, específicamente orientados a mejorar la sensibilidad dieléctrica, entendida como la capacidad del sensor para detectar variaciones pequeñas en la permitividad relativa del material analizado. Se evaluaron distintas configuraciones geométricas, materiales dieléctricos del sustrato, y dimensiones de acoplamiento con el fin de optimizar el desempeño del sensor en términos de precisión, linealidad, ancho de banda y frecuencia operativa. Entre las estructuras analizadas, se identificó que el uso de resonadoras espirales circulares complementarios (Complementary Split-Ring Resonators, CSRR) ofreció una mayor sensibilidad frente a otras configuraciones, como los resonadores de anillo abierto (Open-Loop Resonators, OLR) y estructuras de línea de transmisión convencional. Se concluye que el sensor diseñado presenta un alto potencial para aplicaciones industriales, biomédicas y de control de calidad, donde es fundamental la detección precisa de la permitividad dieléctrica de líquidos. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-14T21:31:25Z |
| dc.date.issued.none.fl_str_mv |
2025-11 |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
| dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
| format |
https://purl.org/coar/resource_type/c_7a1f |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/18129 |
| dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
| dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
| dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
| url |
https://hdl.handle.net/20.500.12495/18129 |
| identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
| dc.language.iso.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
[1] E. L. Chuma, Y. Iano, G. Fontgalland, and L. L. Bravo-Roger, “Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator,” IEEE Sensors Journal, vol. 18, no. 24, pp. 9978–9985, Dec. 2018. [2] E. E. Reyes, M. A. Domínguez, and D. A. Cataño, “Diseño de un sensor de permitividad dieléctrica relativa de un medio empleando una antena de microcinta con estructuras metamateriales,” Actas de Ingeniería, no. 10, pp. 43–51, Oct. 2015. [3] X. Zhang, C. Ruan, T. U. Haq, and K. Chen, “High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator,” Sensors, vol. 19, no. 4, pp. 1–12, Feb. 2019. [4] R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications. Hoboken, NJ, USA: Wiley, 2008. [5] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations. Hoboken, NJ, USA: Wiley-IEEE Press, 2021. [6] A. H. Abdo, A. Sebak, and T. A. Denidni, “High-sensitivity microwave sensor for liquid characterization based on metamaterial-inspired structure,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 3, pp. 1768–1778, Mar. 2021. [7] A. J. A. Al-Gburi, A. M. Mohammed, and S. A. B. Al-Bayati, “Detection of semi-solid materials utilizing triple-ring CSRR microwave sensor,” Sensors, vol. 23, no. 6, pp. 1–14, Mar. 2023. [8] J. B. Pendry, “Metamaterials and the control of electromagnetic fields,” Science, vol. 306, no. 5700, pp. 1353–1355, Nov. 2004. [9] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ, USA: Wiley, 2011. [10] M. R. Basar and F. H. Wee, “Complementary split-ring resonator for sensing applications: A review,” IEEE Access, vol. 8, pp. 186123–186137, Oct. 2020. [11] H. H. Tran, H. K. Park, and I. Park, “Compact electromagnetic bandgap (EBG) structures for high-performance RF circuits and antennas,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1787–1802, May 2020. [12] S. Ghosh and K. V. Srivastava, “Recent advances in frequency selective surfaces for electromagnetic shielding and sensing,” IEEE Antennas and Propagation Magazine, vol. 63, no. 2, pp. 45–57, Apr. 2021. [13] F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy. Berlin, Germany: Springer, 2002. [14] C. Liu, C. Liao, Y. Peng, and W. Wang, “Microwave sensors and their applications in permittivity measurement,” Sensors, vol. 24, no. 23, pp. 7696–7715, Dec. 2024. [15] A. M. Mohammed, S. A. A. Gopalan, and A. J. A. Al-Gburi, “3D printed coaxial microwave resonator sensor for dielectric measurements of liquid,” Microwave and Optical Technology Letters, vol. 63, no. 3, pp. 805–810, Mar. 2021. [16] E. Reyes-Vera, G. Acevedo-Osorio, M. Arias-Correa, and D. E. Senior, “A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization,” Sensors, vol. 19, no. 8, pp. 1–12, Apr. 2019. [17] S. K. Palaniswamy, A. Elfrink, and G. A. E. Vandenbosch, “Analysis and design of planar microwave sensors for permittivity characterization of liquids,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 11, pp. 4722–4732, Nov. 2021. [18] A. I. Gubin, Y. V. Maslov, A. A. Litvak, and A. M. Zagoskin, “Whispering-gallery mode resonator technique with microfluidic channel for permittivity measurement of liquids,” arXiv preprint, arXiv:2205.01346, May 2022. [19] L. M. Pulido-Mancera, J. C. González, A. Ávila, and J. D. Baena, “Measurements of permittivity based in microstrip technology,” Momento, no. 47, pp. 68–76, Jul. 2013. [20] Rogers Corporation, “RT/duroid® 5880 high frequency laminates,” Datasheet, 2023. [21] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ, USA: Wiley, 2012. [22] S. Lucyszyn, “Microwave resistive components,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 12, pp. 2821–2833, Dec. 1995. [23] DuPont, “Kapton® Polyimide Films technical data sheet,” 2022. [24] Huber+Suhner, “SMA connectors 50 Ω technical report,” 2022. [25] A. Abduljabar, H. F. Abutarboush, R. Nilavalan, and D. Budimir, “Metamaterial-inspired microwave sensors for dielectric characterization of liquids,” IEEE Sensors Journal, vol. 16, no. 17, pp. 6319–6325, Sep. 2016 |
| dc.rights.en.fl_str_mv |
Attribution 4.0 International |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.rights.local.spa.fl_str_mv |
Acceso abierto |
| dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.program.spa.fl_str_mv |
Ingeniería Electrónica |
| dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
| institution |
Universidad El Bosque |
| bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/64b31f61-08f1-4a64-941f-04870fd255ee/download https://repositorio.unbosque.edu.co/bitstreams/1ea5b162-8c12-43fd-a34d-d1faf6d82810/download https://repositorio.unbosque.edu.co/bitstreams/212a00bf-aa25-44f8-ae1a-34b6f78bfa2f/download https://repositorio.unbosque.edu.co/bitstreams/4c4aadb1-1bf6-43e4-b478-407d075d80c1/download https://repositorio.unbosque.edu.co/bitstreams/a0260f02-50b3-4b74-af5e-1e5c7eacbe06/download |
| bitstream.checksum.fl_str_mv |
f06af22bfd8636c5201352007ffedf36 2db7b3ae26cf722e933fdf96a184c856 0a3df19c34e9711d85f9d094c2aa2e33 ae31ac83c6382c31a01ab8eac4d84bf1 c23b5bf09111d21f99245bb771e46198 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
| repository.mail.fl_str_mv |
bibliotecas@biteca.com |
| _version_ |
1849967242369826816 |
| spelling |
Diaz Pardo, IvanOrozco Espitia, Nicolas2025-11-14T21:31:25Z2025-11https://hdl.handle.net/20.500.12495/18129instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl presente trabajo se enfoca en el diseño de un sensor resonante para la caracterización de la permitividad dieléctrica de líquidos, utilizando estructuras metamateriales implementadas sobre tecnología Substrate Integrated Waveguide (SIW) y microstrip. Estas estructuras permiten estimar la permitividad relativa del material bajo prueba a partir del desplazamiento en la frecuencia de resonancia del sensor. Gracias a su alto factor de calidad (Q), es posible obtener una alta resolución en la detección de cambios dieléctricos. El estudio se centró en el diseño y simulación de sensores basados en metamateriales, específicamente orientados a mejorar la sensibilidad dieléctrica, entendida como la capacidad del sensor para detectar variaciones pequeñas en la permitividad relativa del material analizado. Se evaluaron distintas configuraciones geométricas, materiales dieléctricos del sustrato, y dimensiones de acoplamiento con el fin de optimizar el desempeño del sensor en términos de precisión, linealidad, ancho de banda y frecuencia operativa. Entre las estructuras analizadas, se identificó que el uso de resonadoras espirales circulares complementarios (Complementary Split-Ring Resonators, CSRR) ofreció una mayor sensibilidad frente a otras configuraciones, como los resonadores de anillo abierto (Open-Loop Resonators, OLR) y estructuras de línea de transmisión convencional. Se concluye que el sensor diseñado presenta un alto potencial para aplicaciones industriales, biomédicas y de control de calidad, donde es fundamental la detección precisa de la permitividad dieléctrica de líquidos.Ingeniero ElectrónicoPregradoThis work focuses on the design of a resonant sensor for characterizing the dielectric permittivity of liquids, using metamaterial structures implemented on Substrate Integrated Waveguide (SIW) and microstrip technology. These structures allow the relative permittivity of the material under test to be estimated from the shift in the sensor's resonance frequency. Thanks to its high quality factor (Q), it is possible to obtain high resolution in the detection of dielectric changes. The study focused on the design and simulation of sensors based on metamaterials, specifically aimed at improving dielectric sensitivity, understood as the sensor's ability to detect small variations in the relative permittivity of the material being analyzed. Different geometric configurations, dielectric substrate materials, and coupling dimensions were evaluated in order to optimize the sensor's performance in terms of accuracy, linearity, bandwidth, and operating frequency. Among the structures analyzed, it was found that the use of complementary split-ring resonators (CSRR) offered greater sensitivity compared to other configurations, such as open-loop resonators (OLR) and conventional transmission line structures. It is concluded that the designed sensor has high potential for industrial, biomedical, and quality control applications, where accurate detection of the dielectric permittivity of liquids is essential.application/pdfAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2MetamaterialesMicroondasSensoresPermitividad dieléctricaResonadores CSRRSIW621.381MetamaterialsMicrowaveSensorsDielectric permittivityCSRR resonatorsSIWSensor de permitividad empleando estructuras metamaterialesPermittivity sensor using metamaterial structuresIngeniería ElectrónicaUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa[1] E. L. Chuma, Y. Iano, G. Fontgalland, and L. L. Bravo-Roger, “Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator,” IEEE Sensors Journal, vol. 18, no. 24, pp. 9978–9985, Dec. 2018.[2] E. E. Reyes, M. A. Domínguez, and D. A. Cataño, “Diseño de un sensor de permitividad dieléctrica relativa de un medio empleando una antena de microcinta con estructuras metamateriales,” Actas de Ingeniería, no. 10, pp. 43–51, Oct. 2015.[3] X. Zhang, C. Ruan, T. U. Haq, and K. Chen, “High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator,” Sensors, vol. 19, no. 4, pp. 1–12, Feb. 2019.[4] R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications. Hoboken, NJ, USA: Wiley, 2008.[5] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations. Hoboken, NJ, USA: Wiley-IEEE Press, 2021.[6] A. H. Abdo, A. Sebak, and T. A. Denidni, “High-sensitivity microwave sensor for liquid characterization based on metamaterial-inspired structure,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 3, pp. 1768–1778, Mar. 2021.[7] A. J. A. Al-Gburi, A. M. Mohammed, and S. A. B. Al-Bayati, “Detection of semi-solid materials utilizing triple-ring CSRR microwave sensor,” Sensors, vol. 23, no. 6, pp. 1–14, Mar. 2023.[8] J. B. Pendry, “Metamaterials and the control of electromagnetic fields,” Science, vol. 306, no. 5700, pp. 1353–1355, Nov. 2004.[9] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ, USA: Wiley, 2011.[10] M. R. Basar and F. H. Wee, “Complementary split-ring resonator for sensing applications: A review,” IEEE Access, vol. 8, pp. 186123–186137, Oct. 2020.[11] H. H. Tran, H. K. Park, and I. Park, “Compact electromagnetic bandgap (EBG) structures for high-performance RF circuits and antennas,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1787–1802, May 2020.[12] S. Ghosh and K. V. Srivastava, “Recent advances in frequency selective surfaces for electromagnetic shielding and sensing,” IEEE Antennas and Propagation Magazine, vol. 63, no. 2, pp. 45–57, Apr. 2021.[13] F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy. Berlin, Germany: Springer, 2002.[14] C. Liu, C. Liao, Y. Peng, and W. Wang, “Microwave sensors and their applications in permittivity measurement,” Sensors, vol. 24, no. 23, pp. 7696–7715, Dec. 2024.[15] A. M. Mohammed, S. A. A. Gopalan, and A. J. A. Al-Gburi, “3D printed coaxial microwave resonator sensor for dielectric measurements of liquid,” Microwave and Optical Technology Letters, vol. 63, no. 3, pp. 805–810, Mar. 2021.[16] E. Reyes-Vera, G. Acevedo-Osorio, M. Arias-Correa, and D. E. Senior, “A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization,” Sensors, vol. 19, no. 8, pp. 1–12, Apr. 2019.[17] S. K. Palaniswamy, A. Elfrink, and G. A. E. Vandenbosch, “Analysis and design of planar microwave sensors for permittivity characterization of liquids,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 11, pp. 4722–4732, Nov. 2021.[18] A. I. Gubin, Y. V. Maslov, A. A. Litvak, and A. M. Zagoskin, “Whispering-gallery mode resonator technique with microfluidic channel for permittivity measurement of liquids,” arXiv preprint, arXiv:2205.01346, May 2022.[19] L. M. Pulido-Mancera, J. C. González, A. Ávila, and J. D. Baena, “Measurements of permittivity based in microstrip technology,” Momento, no. 47, pp. 68–76, Jul. 2013.[20] Rogers Corporation, “RT/duroid® 5880 high frequency laminates,” Datasheet, 2023.[21] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ, USA: Wiley, 2012.[22] S. Lucyszyn, “Microwave resistive components,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 12, pp. 2821–2833, Dec. 1995.[23] DuPont, “Kapton® Polyimide Films technical data sheet,” 2022.[24] Huber+Suhner, “SMA connectors 50 Ω technical report,” 2022.[25] A. Abduljabar, H. F. Abutarboush, R. Nilavalan, and D. Budimir, “Metamaterial-inspired microwave sensors for dielectric characterization of liquids,” IEEE Sensors Journal, vol. 16, no. 17, pp. 6319–6325, Sep. 2016spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82109https://repositorio.unbosque.edu.co/bitstreams/64b31f61-08f1-4a64-941f-04870fd255ee/downloadf06af22bfd8636c5201352007ffedf36MD52falseAnonymousREADCarta de autorizacion.pdfapplication/pdf149061https://repositorio.unbosque.edu.co/bitstreams/1ea5b162-8c12-43fd-a34d-d1faf6d82810/download2db7b3ae26cf722e933fdf96a184c856MD57falseBiblioteca - (Publicadores)READAnexo 1. Acta de sustentacion.pdfapplication/pdf364764https://repositorio.unbosque.edu.co/bitstreams/212a00bf-aa25-44f8-ae1a-34b6f78bfa2f/download0a3df19c34e9711d85f9d094c2aa2e33MD58falseBiblioteca - (Publicadores)READORIGINALTrabajo de GradoTrabajo de Gradoapplication/pdf1525980https://repositorio.unbosque.edu.co/bitstreams/4c4aadb1-1bf6-43e4-b478-407d075d80c1/downloadae31ac83c6382c31a01ab8eac4d84bf1MD55trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81020https://repositorio.unbosque.edu.co/bitstreams/a0260f02-50b3-4b74-af5e-1e5c7eacbe06/downloadc23b5bf09111d21f99245bb771e46198MD56falseAnonymousREAD20.500.12495/18129oai:repositorio.unbosque.edu.co:20.500.12495/181292025-11-14T21:32:27.804347Zhttp://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comPGgzPkxpY2VuY2lhIGRlIERpc3RyaWJ1Y2nDs24gTm8gRXhjbHVzaXZhPC9oMz4KUGFyYSBxdWUgZWwgPGI+UmVwb3NpdG9yaW8gZGUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlPC9iPiBwdWVkYSByZXByb2R1Y2lyIHkgY29tdW5pY2FyIHDDumJsaWNhbWVudGUgc3UgZG9jdW1lbnRvIGVzIG5lY2VzYXJpbyBsYSBhY2VwdGFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3MuIFBvciBmYXZvciwgbGVhIGxhcyBzaWd1aWVudGVzIDxiPmNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhPC9iPjoKPG9sPgogIDxsaT5BY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIDxiPlVuaXZlcnNpZGFkIEVsIEJvc3F1ZTwvYj4gZWwgZGVyZWNobyBubyBleGNsdXNpdm8gZGUgYXJjaGl2YXIsIHJlcHJvZHVjaXIsIGNvbnZlcnRpciAoY29tbyBzZSBkZWZpbmUgbcOhcyBhYmFqbyksIGNvbXVuaWNhciB5L28gZGlzdHJpYnVpciBzdSBkb2N1bWVudG8gbXVuZGlhbG1lbnRlIGVuIGZvcm1hdG8gZWxlY3Ryw7NuaWNvLjwvbGk+CiAgPGxpPlRhbWJpw6luIGVzdMOhIGRlIGFjdWVyZG8gY29uIHF1ZSBsYSA8Yj5Vbml2ZXJzaWRhZCBFbCBCb3NxdWU8L2I+ZSBwdWVkYSBjb25zZXJ2YXIgbcOhcyBkZSB1bmEgY29waWEgZGUgZXN0ZSBkb2N1bWVudG8geSwgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLCBjb252ZXJ0aXJsbyBhIGN1YWxxdWllciBmb3JtYXRvIGRlIGZpY2hlcm8sIG1lZGlvIG8gc29wb3J0ZSwgcGFyYSBwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHByZXNlcnZhY2nDs24geSBhY2Nlc28uPC9saT4KICA8bGk+RGVjbGFyYSBxdWUgZWwgZG9jdW1lbnRvIGVzIHVuIHRyYWJham8gb3JpZ2luYWwgc3V5byB5L28gcXVlIHRpZW5lIGVsIGRlcmVjaG8gcGFyYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGRvY3VtZW50byBubyBpbmZyaW5nZSwgZW4gdGFudG8gZW4gY3VhbnRvIGxlIHNlYSBwb3NpYmxlIHNhYmVyLCBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbmluZ3VuYSBvdHJhIHBlcnNvbmEgbyBlbnRpZGFkLjwvbGk+CiAgPGxpPlNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSA8Yj5Vbml2ZXJzaWRhZCBFbCBCb3NxdWU8L2I+IGxvcyBkZXJlY2hvcyByZXF1ZXJpZG9zIHBvciBlc3RhIGxpY2VuY2lhLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGVudHJlZ2Fkby48L2xpPgogIDxsaT5TaSBlbCBkb2N1bWVudG8gc2UgYmFzYSBlbiB1bmEgb2JyYSBxdWUgaGEgc2lkbyBwYXRyb2NpbmFkYSBvIGFwb3lhZGEgcG9yIHVuYSBhZ2VuY2lhIHUgb3JnYW5pemFjacOzbiBkaWZlcmVudGUgZGUgbGEgPGI+VW5pdmVyc2lkYWQgRWwgQm9zcXVlPC9iPiwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLjwvbGk+CiAgPGxpPjxiPlVuaXZlcnNpZGFkIEVsIEJvc3F1ZTwvYj4gaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIHN1L3Mgbm9tYnJlL3MgY29tbyBlbC9sb3MgYXV0b3IvZXMgbyBwcm9waWV0YXJpby9zIGRlIGxvcyBkZXJlY2hvcyBkZWwgZG9jdW1lbnRvLCB5IG5vIGhhcsOhIG5pbmd1bmEgYWx0ZXJhY2nDs24gZGUgc3UgZG9jdW1lbnRvIGRpZmVyZW50ZSBhIGxhcyBwZXJtaXRpZGFzIGVuIGVzdGEgbGljZW5jaWEuPC9saT4KPC9vbD4K |
