Potencial terapéutico de toxinas animales frente a la actividad antimicrobiana: una revisión bibliográfica

La resistencia antimicrobiana (RAM) se ha convertido en un riesgo de salud pública a nivel mundial debido a que las enfermedades por microorganismos son unas de las principales causas de mortalidad en el mundo. Por esta razón, surge la necesidad de buscar nuevas alternativas terapéuticas. Las toxina...

Full description

Autores:
Leyva Góngora, Daniela
Solano Casas, Jhon Anderson
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2025
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/14420
Acceso en línea:
https://hdl.handle.net/20.500.12495/14420
Palabra clave:
Agente antimicrobiano
Venenos de animales
Propiedades antimicrobianas
Mecanismo de acción
Toxina
Resistencia
615.19
Antimicrobial agent
Animal venoms
Antimicrobial properties
Mechanism of action
Toxin
Resistance
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id UNBOSQUE2_bc169d87d82a80f9622ebbd4a5f905fb
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/14420
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Potencial terapéutico de toxinas animales frente a la actividad antimicrobiana: una revisión bibliográfica
dc.title.translated.none.fl_str_mv Therapeutic potential of animal toxins regarding antimicrobial activity: a literature review
title Potencial terapéutico de toxinas animales frente a la actividad antimicrobiana: una revisión bibliográfica
spellingShingle Potencial terapéutico de toxinas animales frente a la actividad antimicrobiana: una revisión bibliográfica
Agente antimicrobiano
Venenos de animales
Propiedades antimicrobianas
Mecanismo de acción
Toxina
Resistencia
615.19
Antimicrobial agent
Animal venoms
Antimicrobial properties
Mechanism of action
Toxin
Resistance
title_short Potencial terapéutico de toxinas animales frente a la actividad antimicrobiana: una revisión bibliográfica
title_full Potencial terapéutico de toxinas animales frente a la actividad antimicrobiana: una revisión bibliográfica
title_fullStr Potencial terapéutico de toxinas animales frente a la actividad antimicrobiana: una revisión bibliográfica
title_full_unstemmed Potencial terapéutico de toxinas animales frente a la actividad antimicrobiana: una revisión bibliográfica
title_sort Potencial terapéutico de toxinas animales frente a la actividad antimicrobiana: una revisión bibliográfica
dc.creator.fl_str_mv Leyva Góngora, Daniela
Solano Casas, Jhon Anderson
dc.contributor.advisor.none.fl_str_mv Fernández Rodríguez, Leonardo
dc.contributor.author.none.fl_str_mv Leyva Góngora, Daniela
Solano Casas, Jhon Anderson
dc.subject.none.fl_str_mv Agente antimicrobiano
Venenos de animales
Propiedades antimicrobianas
Mecanismo de acción
Toxina
Resistencia
topic Agente antimicrobiano
Venenos de animales
Propiedades antimicrobianas
Mecanismo de acción
Toxina
Resistencia
615.19
Antimicrobial agent
Animal venoms
Antimicrobial properties
Mechanism of action
Toxin
Resistance
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv Antimicrobial agent
Animal venoms
Antimicrobial properties
Mechanism of action
Toxin
Resistance
description La resistencia antimicrobiana (RAM) se ha convertido en un riesgo de salud pública a nivel mundial debido a que las enfermedades por microorganismos son unas de las principales causas de mortalidad en el mundo. Por esta razón, surge la necesidad de buscar nuevas alternativas terapéuticas. Las toxinas de origen animal emergen como una fuente prometedora de antimicrobianos debido a sus diversos mecanismos de acción y su alta especificidad. De esta manera, se realizó una revisión bibliográfica de artículos de investigación que evaluaron la efectividad, toxicidad y mecanismo de acción de toxinas de venenos animales contra patógenos. Se identificaron diversas toxinas con actividad antimicrobiana contra bacterias Gram positivas (G(+)) y Gram negativas (G(-)), virus, hongos y parásitos. se identificaron diversos mecanismos de acción como la disrupción de membranas celulares, la inhibición de la síntesis proteica y la interferencia en procesos metabólicos. Algunas toxinas mostraron perfiles de seguridad prometedores, por su alta potencia contra patógenos y baja hemólisis/toxicidad en mamíferos, por lo que se postularon como candidatos terapéuticos innovadores. En conclusión, las toxinas de origen animal representan una fuente prometedora para el desarrollo de nuevos antimicrobianos, otorgando alternativas para combatir la RAM.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-05-21T14:28:06Z
dc.date.available.none.fl_str_mv 2025-05-21T14:28:06Z
dc.date.issued.none.fl_str_mv 2025-05
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/14420
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/14420
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv 1. OMS. (2021, November 17). Resistencia a los antimicrobianos. https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance.
2. C. J. Murray et al., “Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis,” The Lancet, vol. 399, no. 10325, pp. 629–655, Feb. 2022. https://doi.org/10.1016/s0140-6736(21)02724-0.
3. Infecciones resistentes a los medicamentos: una amenaza para nuestro futuro económico.” Accessed: Feb. 29, 2024. [Online]. Available: https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future.
4. F. K. Majiduddin, I. C. Materon, and T. G. Palzkill, “Molecular analysis of beta-lactamase structure and function,” International Journal of Medical Microbiology, vol. 292, no. 2, pp. 127–137, 2002. https://doi.org/10.1078/1438-4221-00198.
5. J. Potrykus, S. Barańska, and G. Wegrzyn, “Inactivation of the acrA Gene Is Partially Responsible for Chloramphenicol Sensitivity of Escherichia coli CM2555 Strain Expressing the Chloramphenicol Acetyltransferase Gene,” Microbial Drug Resistance, vol. 8, no. 3, pp. 179–185, Sep. 2002. https://doi.org/10.1078/1438-4221-00198.
6. H. Nikaido, “Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria,” Semin Cell Dev Biol, vol. 12, no. 3, pp. 215–223, Jun. 2001. https://doi.org/10.1006/scdb.2000.0247.
7. Martínez-Martínez L, Calvo J. Desarrollo de las resistencias a los antibióticos: causas, consecuencias y su importancia para la salud pública. Enfermedades Infecciosas y Microbiología Clínica. 1 de noviembre de 2010;28:4-9. https://doi.org/10.1016/s0213-005x(10)70035-5.
8. B. Bolon et al., “Animal Toxins,” in Haschek and Rousseaux’s Handbook of Toxicologic Pathology, Volume 3, Elsevier, 2023, pp. 547–628. https://doi.org/10.1016/B978-0-443-16153-7.00008-3.
9. Sanchez M. L, Mecanismos de acción de péptidos antimicrobianos y mecanismos de resistencia de los patógenos. Bioquímica y Patología Clínica [Internet]. 2016;80(1):36-43. https://www.redalyc.org/articulo.oa?id=65173061006.
10. L. Vargas, S. Estrada, and J. Vásquez, “Toxinas de venenos de serpientes y escorpiones, una fuente natural de moléculas con actividad antimicrobiana.,” Facultad de Ciencias Farmacéuticas y Alimentarias, pp. 1–18, Mar. 2015. doi: 10.16925/ cu.v2i2.1166.
11. Lima, W.G., Maia, C.Q., de Carvalho, T.S. et al. Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review. Arch Virol 167, 1763–1772 (2022). https://doi.org/10.1007/s00705-022-05494-8.
12. Rayyan - Revisión sistemática, revisión de alcance y metanálisis - LibGuides de la Universidad de Sudáfrica (UNISA) [Internet]. [cited 2025 Mar 26]. Available from: https://libguides.unisa.ac.za/c.php?g=1378233&p=10207110.
13. Uddin MB, Lee BH, Nikapitiya C, Kim JH, Kim TH, Lee HC, et al. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. Journal of Microbiology. 2016 Dec 26;54(12):853–66. https://doi.org/10.1007/s12275-016-6376-1.
14. Radhakrishnan N, Kumar SD, Shin SY, Yang S. Enhancing Selective Antimicrobial and Antibiofilm Activities of Melittin through 6-Aminohexanoic Acid Substitution. Biomolecules. 2024 Jun 14;14(6):699. https://doi.org/10.3390/biom14060699.
15. CHOI JH, JANG AY, LIN S, LIM S, KIM D, PARK K, et al. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol Med Rep. 2015 Nov;12(5):6483–90. https://doi.org/10.3892/mmr.2015.4275.
16. Ji M, Zhu T, Xing M, Luan N, Mwangi J, Yan X, et al. An Antiviral Peptide from Alopecosa nagpag Spider Targets NS2B–NS3 Protease of Flaviviruses. Toxins (Basel). 2019 Oct 10;11(10):584. https://doi.org/10.3390/toxins11100584.
17. Rothan HA, Bahrani H, Rahman N, Yusof R. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus. BMC Microbiol. 2014;14(1):140. https://doi.org/10.1186/1471-2180-14-140.
18. Kuhn-Nentwig L, Willems J, Seebeck T, Shalaby T, Kaiser M, Nentwig W. Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells. Amino Acids. 2011 Jan 7;40(1):69–76. https://doi.org/10.1007/s00726-009-0471-0.
19. Wang L, Wang YJ, Liu YY, Li H, Guo LX, Liu ZH, et al. In Vitro Potential of Lycosin-I as an Alternative Antimicrobial Drug for Treatment of Multidrug-Resistant Acinetobacter baumannii Infections. Antimicrob Agents Chemother. 2014 Nov;58(11):6999–7002. https://doi.org/10.1128/aac.03279-14.
20. Wang K, Mwangi J, Cao K, Wang Y, Gao J, Yang M, et al. Peptide Toxin Diversity and a Novel Antimicrobial Peptide from the Spider Oxyopes forcipiformis. Toxins (Basel). 2024 Oct 31;16(11):466. https://doi.org/10.3390/toxins16110466.
21. Liu Y, Tang Y, Tang X, Wu M, Hou S, Liu X, et al. Anti-Toxoplasma gondii Effects of a Novel Spider Peptide XYP1 In Vitro and In Vivo. Biomedicines. 2021 Aug 1;9(8):934. https://doi.org/10.3390/biomedicines9080934.
22. Shin MK, Hwang IW, Jang BY, Bu KB, Han DH, Lee SH, et al. The Identification of a Novel Spider Toxin Peptide, Lycotoxin-Pa2a, with Antibacterial and Anti-Inflammatory Activities. Antibiotics. 2023 Dec 7;12(12):1708. https://doi.org/10.3390/antibiotics12121708.
23. Silva ON, Torres MDT, Cao J, Alves ESF, Rodrigues L V., Resende JM, et al. Repurposing a peptide toxin from wasp venom into antiinfectives with dual antimicrobial and immunomodulatory properties. Proceedings of the National Academy of Sciences. 2020 Oct 27;117(43):26936–45. https://doi.org/10.1073/pnas.2012379117.
24. Zhang J, Sun R, Chen Z, Zhou C, Ma C, Zhou M, et al. Evaluation of the Antimicrobial Properties of a Natural Peptide from Vespa mandarinia Venom and Its Synthetic Analogues as a Possible Route to Defeat Drug-Resistant Microbes. Biology (Basel). 2022 Aug 25;11(9):1263. https://doi.org/10.3390/biology11091263.
25. Chaparro-Aguirre E, Segura-Ramírez PJ, Alves FL, Riske KA, Miranda A, Silva Júnior PI. Antimicrobial activity and mechanism of action of a novel peptide present in the ecdysis process of centipede Scolopendra subspinipes subspinipes. Sci Rep. 2019 Sep 20;9(1):13631. https://doi.org/10.1038/s41598-019-50061-y.
26. Li F, Lang Y, Ji Z, Xia Z, Han Y, Cheng Y, et al. A scorpion venom peptide Ev37 restricts viral late entry by alkalizing acidic organelles. Journal of Biological Chemistry. 2019 Jan;294(1):182–94. https://doi.org/10.1074/jbc.RA118.005015.
27. Luo X, Deng H, Ding L, Ye X, Sun F, Qin C, et al. Cationicity Enhancement on the Hydrophilic Face of Ctriporin Significantly Reduces Its Hemolytic Activity and Improves the Antimicrobial Activity against Antibiotic-Resistant ESKAPE Pathogens. Toxins (Basel). 2024 Mar 18;16(3):156. https://doi.org/10.3390/toxins16030156.
28. Amorim-Carmo B, Daniele-Silva A, Parente AMS, Furtado AA, Carvalho E, Oliveira JWF, et al. Potent and Broad-Spectrum Antimicrobial Activity of Analogs from the Scorpion Peptide Stigmurin. Int J Mol Sci. 2019 Jan 31;20(3):623. https://doi.org/10.3390/ijms20030623.
29. Park J, Kim H, Kang DD, Park Y. Exploring the Therapeutic Potential of Scorpion-Derived Css54 Peptide Against Candida albicans. Journal of Microbiology. 2024 Feb 8;62(2):101–12. https://doi.org/10.1007/s12275-024-00113-4.
30. Song C, Wen R, Zhou J, Zeng X, Kou Z, Zhang J, et al. Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans. Pharmaceutics. 2022 Sep 13;14(9):1937. https://doi.org/10.3390/pharmaceutics14091937.
31. Zhao Z, Hong W, Zeng Z, Wu Y, Hu K, Tian X, et al. Mucroporin-M1 Inhibits Hepatitis B Virus Replication by Activating the Mitogen-activated Protein Kinase (MAPK) Pathway and Down-regulating HNF4α in Vitro and in Vivo. Journal of Biological Chemistry. 2012 Aug;287(36):30181–90. https://doi.org/10.1074/jbc.M112.370312.
32. Jlassi A, Mekni-Toujani M, Ferchichi A, Gharsallah C, Malosse C, Chamot-Rooke J, et al. BotCl, the First Chlorotoxin-Like Peptide Inhibiting Newcastle Disease Virus: The Emergence of a New Scorpion Venom AMPs Family. Molecules. 2023 May 26;28(11):4355. https://doi.org/10.3390/molecules28114355.
33. Xia Z, Wang H, Chen W, Wang A, Cao Z. Scorpion Venom Antimicrobial Peptide Derivative BmKn2-T5 Inhibits Enterovirus 71 in the Early Stages of the Viral Life Cycle In Vitro. Biomolecules. 2024 May 1;14(5):545. https://doi.org/10.3390/biom14050545.
34. Hernández-Arvizu EE, Asada M, Kawazu SI, Vega CA, Rodríguez-Torres A, Morales-García R, et al. Antiparasitic Evaluation of Aquiluscidin, a Cathelicidin Obtained from Crotalus aquilus, and the Vcn-23 Derivative Peptide against Babesia bovis, B. bigemina and B. ovata. Pathogens. 2024 Jun 10;13(6):496. https://doi.org/10.3390/pathogens13060496.
35. Yamane ES, Bizerra FC, Oliveira EB, Moreira JT, Rajabi M, Nunes GLC, et al. Unraveling the antifungal activity of a South American rattlesnake toxin crotamine. Biochimie. 2013 Feb;95(2):231–40. https://doi.org/10.1016/j.biochi.2012.09.019.
36. Samy RP, Stiles BG, Chinnathambi A, Zayed ME, Alharbi SA, Franco OL, et al. Viperatoxin‐II: A novel viper venom protein as an effective bactericidal agent. FEBS Open Bio. 2015 Jan 23;5(1):928–41. https://doi.org/10.1016/j.fob.2015.10.004.
37. Conlon JM, Guilhaudis L, Attoub S, Coquet L, Leprince J, Jouenne T, et al. Purification, Conformational Analysis and Cytotoxic Activities of Host-Defense Peptides from the Giant Gladiator Treefrog Boana boans (Hylidae: Hylinae). Antibiotics. 2023 Jun 25;12(7):1102. https://doi.org/10.3390/antibiotics12071102.
38. Yin W, Yao J, Leng X, Ma C, Chen X, Jiang Y, et al. Enhancement of Antimicrobial Function by L/D-Lysine Substitution on a Novel Broad-Spectrum Antimicrobial Peptide, Phylloseptin-TO2: A Structure-Related Activity Research Study. Pharmaceutics. 2024 Aug 21;16(8):1098. https://doi.org/10.3390/pharmaceutics16081098.
39. Zhang M, Wang J, Li C, Wu S, Liu W, Zhou C, et al. Cathelicidin AS-12W Derived from the Alligator sinensis and Its Antimicrobial Activity Against Drug-Resistant Gram-Negative Bacteria In Vitro and In Vivo. Probiotics Antimicrob Proteins. 2024 Apr 8. https://doi.org/10.1007/s12602-024-10250-2.
40. Mulder KCL, Lima LA, Miranda VJ, Dias SC, Franco OL. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol. 2014;4. https://doi.org/10.3389/fmicb.2013.00321.
41. Skalickova S, Heger Z, Krejcova L, Pekarik V, Bastl K, Janda J, et al. Perspective of Use of Antiviral Peptides against Influenza Virus. Viruses. 2015 Oct 20;7(10):5428–42. https://doi.org/10.3390/v7102883.
dc.rights.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/7eb40dc1-17cc-45ed-b367-16f123d5b4a0/download
https://repositorio.unbosque.edu.co/bitstreams/2f08068d-2f4e-4065-a041-10476bbaaa52/download
https://repositorio.unbosque.edu.co/bitstreams/c14f6935-06e0-4f42-ad9f-511471ded0f8/download
https://repositorio.unbosque.edu.co/bitstreams/fb7e6c7f-63ed-441c-b2c3-dd471061888e/download
https://repositorio.unbosque.edu.co/bitstreams/c9b358f4-ed83-4090-b077-2b27191246d9/download
https://repositorio.unbosque.edu.co/bitstreams/4a57034e-ba67-4253-8a22-0e2ee7c88703/download
https://repositorio.unbosque.edu.co/bitstreams/177e6af4-9dd4-4fe6-a5a4-f71f88c57cb4/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
ee174281adc5e90a211b66aa84f680cb
4438de3e56182446f82e450dcd73875e
117691a45dcf7c7e4b26918c5eee998c
5643bfd9bcf29d560eeec56d584edaa9
74c580a421fc0d9c1ea204a539b3f6be
c2696ecfbcf173517e8d4e915e964d1c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1834107959433494528
spelling Fernández Rodríguez, LeonardoLeyva Góngora, DanielaSolano Casas, Jhon Anderson2025-05-21T14:28:06Z2025-05-21T14:28:06Z2025-05https://hdl.handle.net/20.500.12495/14420Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLa resistencia antimicrobiana (RAM) se ha convertido en un riesgo de salud pública a nivel mundial debido a que las enfermedades por microorganismos son unas de las principales causas de mortalidad en el mundo. Por esta razón, surge la necesidad de buscar nuevas alternativas terapéuticas. Las toxinas de origen animal emergen como una fuente prometedora de antimicrobianos debido a sus diversos mecanismos de acción y su alta especificidad. De esta manera, se realizó una revisión bibliográfica de artículos de investigación que evaluaron la efectividad, toxicidad y mecanismo de acción de toxinas de venenos animales contra patógenos. Se identificaron diversas toxinas con actividad antimicrobiana contra bacterias Gram positivas (G(+)) y Gram negativas (G(-)), virus, hongos y parásitos. se identificaron diversos mecanismos de acción como la disrupción de membranas celulares, la inhibición de la síntesis proteica y la interferencia en procesos metabólicos. Algunas toxinas mostraron perfiles de seguridad prometedores, por su alta potencia contra patógenos y baja hemólisis/toxicidad en mamíferos, por lo que se postularon como candidatos terapéuticos innovadores. En conclusión, las toxinas de origen animal representan una fuente prometedora para el desarrollo de nuevos antimicrobianos, otorgando alternativas para combatir la RAM.PregradoQuímico FarmacéuticoAntimicrobial resistance (AMR) has become a public health risk worldwide because diseases caused by microorganisms are one of the main causes of mortality in the world. For this reason, there is a need to search for new therapeutic alternatives. Toxins of animal origin emerge as a promising source of antimicrobials due to their diverse mechanisms of action and high specificity. Thus, a bibliographic review of research articles evaluating the effectiveness, toxicity and mechanism of action of animal venom toxins against pathogens was carried out. Several toxins with antimicrobial activity against Gram-positive (G(+)) and Gram-negative (G(-)) bacteria, viruses, fungi and parasites were identified. Several mechanisms of action were identified, such as cell membrane disruption, inhibition of protein synthesis and interference in metabolic processes. Some toxins showed promising safety profiles, due to their high potency against pathogens and low hemolysis/toxicity in mammals, and were therefore postulated as innovative therapeutic candidates. In conclusion, toxins of animal origin represent a promising source for the development of new antimicrobials, providing alternatives to combat AMR.application/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Agente antimicrobianoVenenos de animalesPropiedades antimicrobianasMecanismo de acciónToxinaResistencia615.19Antimicrobial agentAnimal venomsAntimicrobial propertiesMechanism of actionToxinResistancePotencial terapéutico de toxinas animales frente a la actividad antimicrobiana: una revisión bibliográficaTherapeutic potential of animal toxins regarding antimicrobial activity: a literature reviewQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. OMS. (2021, November 17). Resistencia a los antimicrobianos. https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance.2. C. J. Murray et al., “Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis,” The Lancet, vol. 399, no. 10325, pp. 629–655, Feb. 2022. https://doi.org/10.1016/s0140-6736(21)02724-0.3. Infecciones resistentes a los medicamentos: una amenaza para nuestro futuro económico.” Accessed: Feb. 29, 2024. [Online]. Available: https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future.4. F. K. Majiduddin, I. C. Materon, and T. G. Palzkill, “Molecular analysis of beta-lactamase structure and function,” International Journal of Medical Microbiology, vol. 292, no. 2, pp. 127–137, 2002. https://doi.org/10.1078/1438-4221-00198.5. J. Potrykus, S. Barańska, and G. Wegrzyn, “Inactivation of the acrA Gene Is Partially Responsible for Chloramphenicol Sensitivity of Escherichia coli CM2555 Strain Expressing the Chloramphenicol Acetyltransferase Gene,” Microbial Drug Resistance, vol. 8, no. 3, pp. 179–185, Sep. 2002. https://doi.org/10.1078/1438-4221-00198.6. H. Nikaido, “Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria,” Semin Cell Dev Biol, vol. 12, no. 3, pp. 215–223, Jun. 2001. https://doi.org/10.1006/scdb.2000.0247.7. Martínez-Martínez L, Calvo J. Desarrollo de las resistencias a los antibióticos: causas, consecuencias y su importancia para la salud pública. Enfermedades Infecciosas y Microbiología Clínica. 1 de noviembre de 2010;28:4-9. https://doi.org/10.1016/s0213-005x(10)70035-5.8. B. Bolon et al., “Animal Toxins,” in Haschek and Rousseaux’s Handbook of Toxicologic Pathology, Volume 3, Elsevier, 2023, pp. 547–628. https://doi.org/10.1016/B978-0-443-16153-7.00008-3.9. Sanchez M. L, Mecanismos de acción de péptidos antimicrobianos y mecanismos de resistencia de los patógenos. Bioquímica y Patología Clínica [Internet]. 2016;80(1):36-43. https://www.redalyc.org/articulo.oa?id=65173061006.10. L. Vargas, S. Estrada, and J. Vásquez, “Toxinas de venenos de serpientes y escorpiones, una fuente natural de moléculas con actividad antimicrobiana.,” Facultad de Ciencias Farmacéuticas y Alimentarias, pp. 1–18, Mar. 2015. doi: 10.16925/ cu.v2i2.1166.11. Lima, W.G., Maia, C.Q., de Carvalho, T.S. et al. Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review. Arch Virol 167, 1763–1772 (2022). https://doi.org/10.1007/s00705-022-05494-8.12. Rayyan - Revisión sistemática, revisión de alcance y metanálisis - LibGuides de la Universidad de Sudáfrica (UNISA) [Internet]. [cited 2025 Mar 26]. Available from: https://libguides.unisa.ac.za/c.php?g=1378233&p=10207110.13. Uddin MB, Lee BH, Nikapitiya C, Kim JH, Kim TH, Lee HC, et al. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. Journal of Microbiology. 2016 Dec 26;54(12):853–66. https://doi.org/10.1007/s12275-016-6376-1.14. Radhakrishnan N, Kumar SD, Shin SY, Yang S. Enhancing Selective Antimicrobial and Antibiofilm Activities of Melittin through 6-Aminohexanoic Acid Substitution. Biomolecules. 2024 Jun 14;14(6):699. https://doi.org/10.3390/biom14060699.15. CHOI JH, JANG AY, LIN S, LIM S, KIM D, PARK K, et al. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol Med Rep. 2015 Nov;12(5):6483–90. https://doi.org/10.3892/mmr.2015.4275.16. Ji M, Zhu T, Xing M, Luan N, Mwangi J, Yan X, et al. An Antiviral Peptide from Alopecosa nagpag Spider Targets NS2B–NS3 Protease of Flaviviruses. Toxins (Basel). 2019 Oct 10;11(10):584. https://doi.org/10.3390/toxins11100584.17. Rothan HA, Bahrani H, Rahman N, Yusof R. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus. BMC Microbiol. 2014;14(1):140. https://doi.org/10.1186/1471-2180-14-140.18. Kuhn-Nentwig L, Willems J, Seebeck T, Shalaby T, Kaiser M, Nentwig W. Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells. Amino Acids. 2011 Jan 7;40(1):69–76. https://doi.org/10.1007/s00726-009-0471-0.19. Wang L, Wang YJ, Liu YY, Li H, Guo LX, Liu ZH, et al. In Vitro Potential of Lycosin-I as an Alternative Antimicrobial Drug for Treatment of Multidrug-Resistant Acinetobacter baumannii Infections. Antimicrob Agents Chemother. 2014 Nov;58(11):6999–7002. https://doi.org/10.1128/aac.03279-14.20. Wang K, Mwangi J, Cao K, Wang Y, Gao J, Yang M, et al. Peptide Toxin Diversity and a Novel Antimicrobial Peptide from the Spider Oxyopes forcipiformis. Toxins (Basel). 2024 Oct 31;16(11):466. https://doi.org/10.3390/toxins16110466.21. Liu Y, Tang Y, Tang X, Wu M, Hou S, Liu X, et al. Anti-Toxoplasma gondii Effects of a Novel Spider Peptide XYP1 In Vitro and In Vivo. Biomedicines. 2021 Aug 1;9(8):934. https://doi.org/10.3390/biomedicines9080934.22. Shin MK, Hwang IW, Jang BY, Bu KB, Han DH, Lee SH, et al. The Identification of a Novel Spider Toxin Peptide, Lycotoxin-Pa2a, with Antibacterial and Anti-Inflammatory Activities. Antibiotics. 2023 Dec 7;12(12):1708. https://doi.org/10.3390/antibiotics12121708.23. Silva ON, Torres MDT, Cao J, Alves ESF, Rodrigues L V., Resende JM, et al. Repurposing a peptide toxin from wasp venom into antiinfectives with dual antimicrobial and immunomodulatory properties. Proceedings of the National Academy of Sciences. 2020 Oct 27;117(43):26936–45. https://doi.org/10.1073/pnas.2012379117.24. Zhang J, Sun R, Chen Z, Zhou C, Ma C, Zhou M, et al. Evaluation of the Antimicrobial Properties of a Natural Peptide from Vespa mandarinia Venom and Its Synthetic Analogues as a Possible Route to Defeat Drug-Resistant Microbes. Biology (Basel). 2022 Aug 25;11(9):1263. https://doi.org/10.3390/biology11091263.25. Chaparro-Aguirre E, Segura-Ramírez PJ, Alves FL, Riske KA, Miranda A, Silva Júnior PI. Antimicrobial activity and mechanism of action of a novel peptide present in the ecdysis process of centipede Scolopendra subspinipes subspinipes. Sci Rep. 2019 Sep 20;9(1):13631. https://doi.org/10.1038/s41598-019-50061-y.26. Li F, Lang Y, Ji Z, Xia Z, Han Y, Cheng Y, et al. A scorpion venom peptide Ev37 restricts viral late entry by alkalizing acidic organelles. Journal of Biological Chemistry. 2019 Jan;294(1):182–94. https://doi.org/10.1074/jbc.RA118.005015.27. Luo X, Deng H, Ding L, Ye X, Sun F, Qin C, et al. Cationicity Enhancement on the Hydrophilic Face of Ctriporin Significantly Reduces Its Hemolytic Activity and Improves the Antimicrobial Activity against Antibiotic-Resistant ESKAPE Pathogens. Toxins (Basel). 2024 Mar 18;16(3):156. https://doi.org/10.3390/toxins16030156.28. Amorim-Carmo B, Daniele-Silva A, Parente AMS, Furtado AA, Carvalho E, Oliveira JWF, et al. Potent and Broad-Spectrum Antimicrobial Activity of Analogs from the Scorpion Peptide Stigmurin. Int J Mol Sci. 2019 Jan 31;20(3):623. https://doi.org/10.3390/ijms20030623.29. Park J, Kim H, Kang DD, Park Y. Exploring the Therapeutic Potential of Scorpion-Derived Css54 Peptide Against Candida albicans. Journal of Microbiology. 2024 Feb 8;62(2):101–12. https://doi.org/10.1007/s12275-024-00113-4.30. Song C, Wen R, Zhou J, Zeng X, Kou Z, Zhang J, et al. Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans. Pharmaceutics. 2022 Sep 13;14(9):1937. https://doi.org/10.3390/pharmaceutics14091937.31. Zhao Z, Hong W, Zeng Z, Wu Y, Hu K, Tian X, et al. Mucroporin-M1 Inhibits Hepatitis B Virus Replication by Activating the Mitogen-activated Protein Kinase (MAPK) Pathway and Down-regulating HNF4α in Vitro and in Vivo. Journal of Biological Chemistry. 2012 Aug;287(36):30181–90. https://doi.org/10.1074/jbc.M112.370312.32. Jlassi A, Mekni-Toujani M, Ferchichi A, Gharsallah C, Malosse C, Chamot-Rooke J, et al. BotCl, the First Chlorotoxin-Like Peptide Inhibiting Newcastle Disease Virus: The Emergence of a New Scorpion Venom AMPs Family. Molecules. 2023 May 26;28(11):4355. https://doi.org/10.3390/molecules28114355.33. Xia Z, Wang H, Chen W, Wang A, Cao Z. Scorpion Venom Antimicrobial Peptide Derivative BmKn2-T5 Inhibits Enterovirus 71 in the Early Stages of the Viral Life Cycle In Vitro. Biomolecules. 2024 May 1;14(5):545. https://doi.org/10.3390/biom14050545.34. Hernández-Arvizu EE, Asada M, Kawazu SI, Vega CA, Rodríguez-Torres A, Morales-García R, et al. Antiparasitic Evaluation of Aquiluscidin, a Cathelicidin Obtained from Crotalus aquilus, and the Vcn-23 Derivative Peptide against Babesia bovis, B. bigemina and B. ovata. Pathogens. 2024 Jun 10;13(6):496. https://doi.org/10.3390/pathogens13060496.35. Yamane ES, Bizerra FC, Oliveira EB, Moreira JT, Rajabi M, Nunes GLC, et al. Unraveling the antifungal activity of a South American rattlesnake toxin crotamine. Biochimie. 2013 Feb;95(2):231–40. https://doi.org/10.1016/j.biochi.2012.09.019.36. Samy RP, Stiles BG, Chinnathambi A, Zayed ME, Alharbi SA, Franco OL, et al. Viperatoxin‐II: A novel viper venom protein as an effective bactericidal agent. FEBS Open Bio. 2015 Jan 23;5(1):928–41. https://doi.org/10.1016/j.fob.2015.10.004.37. Conlon JM, Guilhaudis L, Attoub S, Coquet L, Leprince J, Jouenne T, et al. Purification, Conformational Analysis and Cytotoxic Activities of Host-Defense Peptides from the Giant Gladiator Treefrog Boana boans (Hylidae: Hylinae). Antibiotics. 2023 Jun 25;12(7):1102. https://doi.org/10.3390/antibiotics12071102.38. Yin W, Yao J, Leng X, Ma C, Chen X, Jiang Y, et al. Enhancement of Antimicrobial Function by L/D-Lysine Substitution on a Novel Broad-Spectrum Antimicrobial Peptide, Phylloseptin-TO2: A Structure-Related Activity Research Study. Pharmaceutics. 2024 Aug 21;16(8):1098. https://doi.org/10.3390/pharmaceutics16081098.39. Zhang M, Wang J, Li C, Wu S, Liu W, Zhou C, et al. Cathelicidin AS-12W Derived from the Alligator sinensis and Its Antimicrobial Activity Against Drug-Resistant Gram-Negative Bacteria In Vitro and In Vivo. Probiotics Antimicrob Proteins. 2024 Apr 8. https://doi.org/10.1007/s12602-024-10250-2.40. Mulder KCL, Lima LA, Miranda VJ, Dias SC, Franco OL. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol. 2014;4. https://doi.org/10.3389/fmicb.2013.00321.41. Skalickova S, Heger Z, Krejcova L, Pekarik V, Bastl K, Janda J, et al. Perspective of Use of Antiviral Peptides against Influenza Virus. Viruses. 2015 Oct 20;7(10):5428–42. https://doi.org/10.3390/v7102883.spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/7eb40dc1-17cc-45ed-b367-16f123d5b4a0/download17cc15b951e7cc6b3728a574117320f9MD52Carta de autorizacion.pdfapplication/pdf263035https://repositorio.unbosque.edu.co/bitstreams/2f08068d-2f4e-4065-a041-10476bbaaa52/downloadee174281adc5e90a211b66aa84f680cbMD55Anexo 1 acta de aprobacion.pdfapplication/pdf1994043https://repositorio.unbosque.edu.co/bitstreams/c14f6935-06e0-4f42-ad9f-511471ded0f8/download4438de3e56182446f82e450dcd73875eMD56ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf857857https://repositorio.unbosque.edu.co/bitstreams/fb7e6c7f-63ed-441c-b2c3-dd471061888e/download117691a45dcf7c7e4b26918c5eee998cMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repositorio.unbosque.edu.co/bitstreams/c9b358f4-ed83-4090-b077-2b27191246d9/download5643bfd9bcf29d560eeec56d584edaa9MD54TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain87119https://repositorio.unbosque.edu.co/bitstreams/4a57034e-ba67-4253-8a22-0e2ee7c88703/download74c580a421fc0d9c1ea204a539b3f6beMD57THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg4818https://repositorio.unbosque.edu.co/bitstreams/177e6af4-9dd4-4fe6-a5a4-f71f88c57cb4/downloadc2696ecfbcf173517e8d4e915e964d1cMD5820.500.12495/14420oai:repositorio.unbosque.edu.co:20.500.12495/144202025-05-22 05:05:48.917http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=