Formulation of a predictive model for academic performance based on students' academic and demographic data

This work is based upon the results of an evaluation process applied over data mining techniques, in order to find the most adequate ones to extract classification rules from first-year students' academic and demographic data in relation with their academic performance. As a result of this, the...

Full description

Autores:
Merchán Rubiano, Sandra Milena
Duarte Garcia, Jorge Alberto
Tipo de recurso:
https://purl.org/coar/resource_type/c_6501
Fecha de publicación:
2015
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
eng
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/5072
Acceso en línea:
https://hdl.handle.net/20.500.12495/5072
https://doi.org/10.1109/FIE.2015.7344047
Palabra clave:
Metodología
Estudiantes -- Calificación
Mediciones y pruebas educativas
Rights
License
Acceso abierto
id UNBOSQUE2_b36569171c918c2e4d189b3b17d10700
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/5072
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.spa.fl_str_mv Formulation of a predictive model for academic performance based on students' academic and demographic data
dc.title.translated.spa.fl_str_mv Formulation of a predictive model for academic performance based on students' academic and demographic data
title Formulation of a predictive model for academic performance based on students' academic and demographic data
spellingShingle Formulation of a predictive model for academic performance based on students' academic and demographic data
Metodología
Estudiantes -- Calificación
Mediciones y pruebas educativas
title_short Formulation of a predictive model for academic performance based on students' academic and demographic data
title_full Formulation of a predictive model for academic performance based on students' academic and demographic data
title_fullStr Formulation of a predictive model for academic performance based on students' academic and demographic data
title_full_unstemmed Formulation of a predictive model for academic performance based on students' academic and demographic data
title_sort Formulation of a predictive model for academic performance based on students' academic and demographic data
dc.creator.fl_str_mv Merchán Rubiano, Sandra Milena
Duarte Garcia, Jorge Alberto
dc.contributor.author.none.fl_str_mv Merchán Rubiano, Sandra Milena
Duarte Garcia, Jorge Alberto
dc.contributor.orcid.none.fl_str_mv Merchán Rubiano, Sandra Milena [0000-0003-3142-1417]
dc.subject.armarc.spa.fl_str_mv Metodología
Estudiantes -- Calificación
Mediciones y pruebas educativas
topic Metodología
Estudiantes -- Calificación
Mediciones y pruebas educativas
description This work is based upon the results of an evaluation process applied over data mining techniques, in order to find the most adequate ones to extract classification rules from first-year students' academic and demographic data in relation with their academic performance. As a result of this, the formulation of a predictive model for academic performance is presented; model whose construction was achieved by analyzing, selecting and defining the classification rules that properly predict the academic performance of Systems Engineering students, at Universidad El Bosque in Bogotá, Colombia. Classification rules that make up the model are analyzed from a contextualized academic point of view; consequently evaluating the pertinence of the relationships between attributes contained within these rules and their ability to predict poor academic performance (through academic risk). Also their applicability to datasets from other academic programs is contemplated, in order to generate useful strategies to prevent academic desertion, being poor academic performance one of the most influencing factors over this phenomenon.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2020-11-17T21:24:40Z
dc.date.available.none.fl_str_mv 2020-11-17T21:24:40Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.local.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_6501
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format https://purl.org/coar/resource_type/c_6501
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/5072
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/FIE.2015.7344047
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/5072
https://doi.org/10.1109/FIE.2015.7344047
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv Proceedings - Frontiers in Education Conference, FIE, Vol. 2, December 2015
dc.relation.uri.none.fl_str_mv https://ieeexplore.ieee.org/document/7344047?reload=true&arnumber=7344047
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
Acceso abierto
dc.rights.creativecommons.none.fl_str_mv 2015
rights_invalid_str_mv Acceso abierto
https://purl.org/coar/access_right/c_abf2
2015
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
institution Universidad El Bosque
bitstream.url.fl_str_mv https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b78bbbc1-52d3-4d7d-9b71-e9070b96999b/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1849967133907222528
spelling Merchán Rubiano, Sandra MilenaDuarte Garcia, Jorge AlbertoMerchán Rubiano, Sandra Milena [0000-0003-3142-1417]2020-11-17T21:24:40Z2020-11-17T21:24:40Z2015https://hdl.handle.net/20.500.12495/5072https://doi.org/10.1109/FIE.2015.7344047instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengIEEEProceedings - Frontiers in Education Conference, FIE, Vol. 2, December 2015https://ieeexplore.ieee.org/document/7344047?reload=true&arnumber=7344047Formulation of a predictive model for academic performance based on students' academic and demographic dataFormulation of a predictive model for academic performance based on students' academic and demographic dataArtículo de revistahttps://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85MetodologíaEstudiantes -- CalificaciónMediciones y pruebas educativasThis work is based upon the results of an evaluation process applied over data mining techniques, in order to find the most adequate ones to extract classification rules from first-year students' academic and demographic data in relation with their academic performance. As a result of this, the formulation of a predictive model for academic performance is presented; model whose construction was achieved by analyzing, selecting and defining the classification rules that properly predict the academic performance of Systems Engineering students, at Universidad El Bosque in Bogotá, Colombia. Classification rules that make up the model are analyzed from a contextualized academic point of view; consequently evaluating the pertinence of the relationships between attributes contained within these rules and their ability to predict poor academic performance (through academic risk). Also their applicability to datasets from other academic programs is contemplated, in order to generate useful strategies to prevent academic desertion, being poor academic performance one of the most influencing factors over this phenomenon.Acceso abiertohttps://purl.org/coar/access_right/c_abf2Acceso abierto2015http://purl.org/coar/access_right/c_abf2LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b78bbbc1-52d3-4d7d-9b71-e9070b96999b/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREAD20.500.12495/5072oai:pruebas-update-repositorio-unbosque.cloudbiteca.com:20.500.12495/50722022-05-05T23:18:42.904Zmetadata.onlyhttps://pruebas-update-repositorio-unbosque.cloudbiteca.comRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=