Formulation of a predictive model for academic performance based on students' academic and demographic data
This work is based upon the results of an evaluation process applied over data mining techniques, in order to find the most adequate ones to extract classification rules from first-year students' academic and demographic data in relation with their academic performance. As a result of this, the...
- Autores:
-
Merchán Rubiano, Sandra Milena
Duarte Garcia, Jorge Alberto
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_6501
- Fecha de publicación:
- 2015
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/5072
- Palabra clave:
- Metodología
Estudiantes -- Calificación
Mediciones y pruebas educativas
- Rights
- License
- Acceso abierto
| id |
UNBOSQUE2_b36569171c918c2e4d189b3b17d10700 |
|---|---|
| oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/5072 |
| network_acronym_str |
UNBOSQUE2 |
| network_name_str |
Repositorio U. El Bosque |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Formulation of a predictive model for academic performance based on students' academic and demographic data |
| dc.title.translated.spa.fl_str_mv |
Formulation of a predictive model for academic performance based on students' academic and demographic data |
| title |
Formulation of a predictive model for academic performance based on students' academic and demographic data |
| spellingShingle |
Formulation of a predictive model for academic performance based on students' academic and demographic data Metodología Estudiantes -- Calificación Mediciones y pruebas educativas |
| title_short |
Formulation of a predictive model for academic performance based on students' academic and demographic data |
| title_full |
Formulation of a predictive model for academic performance based on students' academic and demographic data |
| title_fullStr |
Formulation of a predictive model for academic performance based on students' academic and demographic data |
| title_full_unstemmed |
Formulation of a predictive model for academic performance based on students' academic and demographic data |
| title_sort |
Formulation of a predictive model for academic performance based on students' academic and demographic data |
| dc.creator.fl_str_mv |
Merchán Rubiano, Sandra Milena Duarte Garcia, Jorge Alberto |
| dc.contributor.author.none.fl_str_mv |
Merchán Rubiano, Sandra Milena Duarte Garcia, Jorge Alberto |
| dc.contributor.orcid.none.fl_str_mv |
Merchán Rubiano, Sandra Milena [0000-0003-3142-1417] |
| dc.subject.armarc.spa.fl_str_mv |
Metodología Estudiantes -- Calificación Mediciones y pruebas educativas |
| topic |
Metodología Estudiantes -- Calificación Mediciones y pruebas educativas |
| description |
This work is based upon the results of an evaluation process applied over data mining techniques, in order to find the most adequate ones to extract classification rules from first-year students' academic and demographic data in relation with their academic performance. As a result of this, the formulation of a predictive model for academic performance is presented; model whose construction was achieved by analyzing, selecting and defining the classification rules that properly predict the academic performance of Systems Engineering students, at Universidad El Bosque in Bogotá, Colombia. Classification rules that make up the model are analyzed from a contextualized academic point of view; consequently evaluating the pertinence of the relationships between attributes contained within these rules and their ability to predict poor academic performance (through academic risk). Also their applicability to datasets from other academic programs is contemplated, in order to generate useful strategies to prevent academic desertion, being poor academic performance one of the most influencing factors over this phenomenon. |
| publishDate |
2015 |
| dc.date.issued.none.fl_str_mv |
2015 |
| dc.date.accessioned.none.fl_str_mv |
2020-11-17T21:24:40Z |
| dc.date.available.none.fl_str_mv |
2020-11-17T21:24:40Z |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.local.none.fl_str_mv |
Artículo de revista |
| dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_6501 |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
https://purl.org/coar/resource_type/c_6501 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/5072 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/FIE.2015.7344047 |
| dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
| dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
| dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
| url |
https://hdl.handle.net/20.500.12495/5072 https://doi.org/10.1109/FIE.2015.7344047 |
| identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.spa.fl_str_mv |
Proceedings - Frontiers in Education Conference, FIE, Vol. 2, December 2015 |
| dc.relation.uri.none.fl_str_mv |
https://ieeexplore.ieee.org/document/7344047?reload=true&arnumber=7344047 |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.local.spa.fl_str_mv |
Acceso abierto |
| dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 Acceso abierto |
| dc.rights.creativecommons.none.fl_str_mv |
2015 |
| rights_invalid_str_mv |
Acceso abierto https://purl.org/coar/access_right/c_abf2 2015 http://purl.org/coar/access_right/c_abf2 |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
IEEE |
| institution |
Universidad El Bosque |
| bitstream.url.fl_str_mv |
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b78bbbc1-52d3-4d7d-9b71-e9070b96999b/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
| repository.mail.fl_str_mv |
bibliotecas@biteca.com |
| _version_ |
1849967133907222528 |
| spelling |
Merchán Rubiano, Sandra MilenaDuarte Garcia, Jorge AlbertoMerchán Rubiano, Sandra Milena [0000-0003-3142-1417]2020-11-17T21:24:40Z2020-11-17T21:24:40Z2015https://hdl.handle.net/20.500.12495/5072https://doi.org/10.1109/FIE.2015.7344047instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengIEEEProceedings - Frontiers in Education Conference, FIE, Vol. 2, December 2015https://ieeexplore.ieee.org/document/7344047?reload=true&arnumber=7344047Formulation of a predictive model for academic performance based on students' academic and demographic dataFormulation of a predictive model for academic performance based on students' academic and demographic dataArtículo de revistahttps://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85MetodologíaEstudiantes -- CalificaciónMediciones y pruebas educativasThis work is based upon the results of an evaluation process applied over data mining techniques, in order to find the most adequate ones to extract classification rules from first-year students' academic and demographic data in relation with their academic performance. As a result of this, the formulation of a predictive model for academic performance is presented; model whose construction was achieved by analyzing, selecting and defining the classification rules that properly predict the academic performance of Systems Engineering students, at Universidad El Bosque in Bogotá, Colombia. Classification rules that make up the model are analyzed from a contextualized academic point of view; consequently evaluating the pertinence of the relationships between attributes contained within these rules and their ability to predict poor academic performance (through academic risk). Also their applicability to datasets from other academic programs is contemplated, in order to generate useful strategies to prevent academic desertion, being poor academic performance one of the most influencing factors over this phenomenon.Acceso abiertohttps://purl.org/coar/access_right/c_abf2Acceso abierto2015http://purl.org/coar/access_right/c_abf2LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b78bbbc1-52d3-4d7d-9b71-e9070b96999b/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREAD20.500.12495/5072oai:pruebas-update-repositorio-unbosque.cloudbiteca.com:20.500.12495/50722022-05-05T23:18:42.904Zmetadata.onlyhttps://pruebas-update-repositorio-unbosque.cloudbiteca.comRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
