Valorización de la borra de café (Coffea arabica) mediante tecnologías de conversión energética: análisis técnico y ambiental
El sector cafetero genera volúmenes significativos de residuos orgánicos, principalmente en forma de borra de café (BC), cuya valorización energética mediante tecnologías Waste-to-Energy (WTE) es clave para el desarrollo de una matriz energética más limpia y circular. La elección de la tecnología WT...
- Autores:
-
Herrera Calderón, Maria Daniela
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14553
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/14553
- Palabra clave:
- Análisis ambiental
Digestión anaerobia
Energía renovable
Gasificación
Pirólisis
Simulación de procesos
628
Environmental analysis
Anaerobic digestion
Renewable energy
Gasification
Pyrolysis
Process simulation
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNBOSQUE2_a16d69651369a74ca34a3032fcfa7b77 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14553 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Valorización de la borra de café (Coffea arabica) mediante tecnologías de conversión energética: análisis técnico y ambiental |
dc.title.translated.none.fl_str_mv |
Valorization of coffee spent grounds (Coffea arabica) through waste to energy technologies: technical and environmental analysis |
title |
Valorización de la borra de café (Coffea arabica) mediante tecnologías de conversión energética: análisis técnico y ambiental |
spellingShingle |
Valorización de la borra de café (Coffea arabica) mediante tecnologías de conversión energética: análisis técnico y ambiental Análisis ambiental Digestión anaerobia Energía renovable Gasificación Pirólisis Simulación de procesos 628 Environmental analysis Anaerobic digestion Renewable energy Gasification Pyrolysis Process simulation |
title_short |
Valorización de la borra de café (Coffea arabica) mediante tecnologías de conversión energética: análisis técnico y ambiental |
title_full |
Valorización de la borra de café (Coffea arabica) mediante tecnologías de conversión energética: análisis técnico y ambiental |
title_fullStr |
Valorización de la borra de café (Coffea arabica) mediante tecnologías de conversión energética: análisis técnico y ambiental |
title_full_unstemmed |
Valorización de la borra de café (Coffea arabica) mediante tecnologías de conversión energética: análisis técnico y ambiental |
title_sort |
Valorización de la borra de café (Coffea arabica) mediante tecnologías de conversión energética: análisis técnico y ambiental |
dc.creator.fl_str_mv |
Herrera Calderón, Maria Daniela |
dc.contributor.advisor.none.fl_str_mv |
Botello Suárez, Wilmar Alirio |
dc.contributor.author.none.fl_str_mv |
Herrera Calderón, Maria Daniela |
dc.contributor.orcid.none.fl_str_mv |
https://orcid.org/0000-0001-8801-5124 |
dc.subject.none.fl_str_mv |
Análisis ambiental Digestión anaerobia Energía renovable Gasificación Pirólisis Simulación de procesos |
topic |
Análisis ambiental Digestión anaerobia Energía renovable Gasificación Pirólisis Simulación de procesos 628 Environmental analysis Anaerobic digestion Renewable energy Gasification Pyrolysis Process simulation |
dc.subject.ddc.none.fl_str_mv |
628 |
dc.subject.keywords.none.fl_str_mv |
Environmental analysis Anaerobic digestion Renewable energy Gasification Pyrolysis Process simulation |
description |
El sector cafetero genera volúmenes significativos de residuos orgánicos, principalmente en forma de borra de café (BC), cuya valorización energética mediante tecnologías Waste-to-Energy (WTE) es clave para el desarrollo de una matriz energética más limpia y circular. La elección de la tecnología WTE más adecuada requiere un análisis complejo. En este estudio se compararon tres tecnologías: gasificación, pirólisis y digestión anaerobia (DA), aplicadas a la BC. Mediante simulaciones en Aspen Plus, la pirólisis a ~500 °C y la gasificación a 950–1000 °C mostraron potenciales energéticos de hasta 2.100 y ~2.000 kWh/ton BC, respectivamente. En contraste, el potencial teórico de metano calculado para la DA correspondió a 1.501 kWh/ton BC. En términos económicos, la DA con comercialización de digestato fue la alternativa más viable (VPN: USD 166.868; TIR: 40 %). A nivel ecológico, la DA presentó el mejor desempeño, con menores impactos en las categorías de calentamiento global, acidificación y eutrofización. Finalmente, una evaluación multicriterio mediante el método AHP identificó a la DA como la alternativa WTE óptima (46 % de prioridad), seguida por la pirólisis (30 %). Se concluye que la DA constituye la solución integralmente más sostenible, al ofrecer un balance óptimo entre los aspectos económicos, ecológicos y técnicos evaluados. La pirólisis podría ser considerada por su alto rendimiento energético, mientras que la gasificación podría ofrecer una menor barrera de inversión inicial. Este estudio apoya la toma de decisiones orientadas a la adopción de tecnologías WTE, promoviendo la gestión sostenible de residuos del café. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-06-04T19:45:57Z |
dc.date.available.none.fl_str_mv |
2025-06-04T19:45:57Z |
dc.date.issued.none.fl_str_mv |
2025-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14553 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14553 |
identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
A. Demirbaş, “Current technologies for the thermo-conversion of biomass into fuels and chemicals,” Energy Sources, vol. 26, no. 8, pp. 715–730, Jul. 2004, doi: 10.1080/00908310490445562. A. G. Adeniyi and J. O. Ighalo, “ASPEN Plus predictive simulation of soft and hard wood pyrolysis for bio-energy recovery,” Int. J. Environment and Waste Management, vol. 26, no. 2, pp. 234–244, 2020. A. G. Lane, “Anaerobic digestion of spent coffee grounds,” Biomass, vol. 3, no. 4, pp. 247–268, Jan. 1983, doi: 10.1016/0144-4565(83)90017-3. A. Gagliano, F. Nocera, and M. Bruno, “Simulation Models of Biomass Thermochemical Conversion Processes, Gasification and Pyrolysis, for the Prediction of the Energetic Potential,” Advances in Renewable Energies and Power Technologies, vol. 2, pp. 39–85, Feb. 2018, doi: 10.1016/B978-0-12-813185-5.00002-4. Agico Cement, “How Much Does It Cost To Build a Biomass Pyrolysis Plant?” Accessed: Mar. 31, 2025. [Online]. Available: https://rotarykilnsupplier.com/equipment-info/how-much-does-it-cost-to-build-a-biomass-pyrolysis-plant/ A. M. Vargas Lazo, “Estudio de la producción de pellets a partir de borra de café,” Universidad Nacional de Colombia, Bogota, 2018. Accessed: Sep. 03, 2024. [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/68833/Tesis%20de%20maestr%C3%ADa.pdf?sequence=1&isAllowed=y ASTM International, “Test Methods for Analysis of Wood Fuels,” Apr. 01, 2019, ASTM International, West Conshohocken, PA. doi: 10.1520/E0870-82R19. A. V. Bridgwater, “Review of fast pyrolysis of biomass and product upgrading,” Biomass Bioenergy, vol. 38, pp. 68–94, Mar. 2012, doi: 10.1016/j.biombioe.2011.01.048. A. Viscontiis, M. Miccio, and D. Juchelková, “An Aspen Plus® tool for simulation of lignocellulosic biomass pyrolysis via equilibrium and ranking of the main process variables,” INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, vol. 9, pp. 71–86, 2015. B. Aristizábal, E. Vanegas, J. P. Mariscal, and M. A. Camargo, “Digestión anaerobia de residuos de poda como alternativa para disminuir emisiones de gases de efecto invernadero en rellenos sanitarios,” Energética, vol. 46, pp. 29–36, Dec. 2015, Accessed: May 07, 2025. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.redalyc.org/pdf/1470/147043932005.pdf Buencafé, “SUSTAINABILITY REPORT GRI 2021 ,” 2021. Accessed: Mar. 09, 2025. [Online]. Available: https://www.buencafe.com/wp-content/uploads/2023/06/Report-GRI-2021-In-Buencafe.pdf C. Setter, F. A. Borges, C. R. Cardoso, R. F. Mendes, and T. J. P. Oliveira, “Energy quality of pellets produced from coffee residue: Characterization of the products obtained via slow pyrolysis,” Ind Crops Prod, vol. 154, p. 112731, Oct. 2020, doi: 10.1016/j.indcrop.2020.112731. C. Setter, F. T. M. Silva, M. R. Assis, C. H. Ataíde, P. F. Trugilho, and T. J. P. Oliveira, “Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions,” Fuel, vol. 261, p. 116420, Feb. 2020, doi: 10.1016/j.fuel.2019.116420. DANE - Departamento Administrativo Nacional de Estadística, “Cuenta ambiental y económica de flujos de energía,” Bogota, 2022. DANE - Departamento Administrativo Nacional de Estadística, “Cuenta Ambiental y Económica de Flujos de Materiales de Residuos Sólidos (CAEFM-RS) 2020 – 2021. ,” Bogota, 2023. D. R. Vardon et al., “Complete Utilization of Spent Coffee Grounds To Produce Biodiesel, Bio-Oil, and Biochar,” ACS Sustain Chem Eng, vol. 1, no. 10, pp. 1286–1294, Oct. 2013, doi: 10.1021/sc400145w. Enel, “Tarifario de energía eléctrica ($/kwh). Reguladas por la Comisión de Regulación de Energía y Gas (CREG) Enero 2025.,” Jan. 2025. Accessed: Mar. 31, 2025. [Online]. Available: https://www.enel.com.co/content/dam/enel-co/espa%C3%B1ol/personas/1-17-1/2025/Pliego%20Tarifario%20Enel%20ENERO_2025_15%2021,5x30%20(1).pdf E. R. Oviedo-Ocaña, “Las Hidroeléctricas: efectos en los ecosistemas y en la salud ambiental,” Revista de la Universidad Industrial de Santander. Salud, vol. 50, no. 3, pp. 191–192, Aug. 2018, doi: 10.18273/revsal.v50n3-2018003. Federación Nacional de Cafeteros de Colombia, “Informe de Gestión 2023,” 2024. Accessed: Sep. 03, 2024. [Online]. Available: https://federaciondecafeteros.org/app/uploads/2024/05/Informe-del-Gerente-2023.pdf F. Guilayn and G. Capson-Tojo, “Chapter 1. Anaerobic digestate management: an introduction.” G. C. Young, “Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons,” Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons, Apr. 2010, doi: 10.1002/9780470608616. G. Semaan, M. R. Atelge, R. Dune Cayetano, G. Kumar, and R. Kommedal, “Spent coffee grounds anaerobic digestion: Investigating substrate to inoculum ratio and dilute acid thermal pretreatment,” Fuel, vol. 331, p. 125598, Jan. 2023, doi: 10.1016/J.FUEL.2022.125598. H. A. Kibret, Y.-L. Kuo, T.-Y. Ke, and Y.-H. Tseng, “Gasification of spent coffee grounds in a semi-fluidized bed reactor using steam and CO2 gasification medium,” J Taiwan Inst Chem Eng, vol. 119, pp. 115–127, Feb. 2021, doi: 10.1016/j.jtice.2021.01.029. J. E. Correa Rodríguez, “Con residuos de café se generaría electricidad,” Periodico UNAL, May 2024, Accessed: Sep. 02, 2024. [Online]. Available: https://periodico.unal.edu.co/articulos/con-residuos-de-cafe-se-generaria-electricidad J. E. Park, G. B. Lee, C. J. Jeong, H. Kim, and C. G. Kim, “Determination of relationship between higher heating value and atomic ratio of hydrogen to carbon in spent coffee grounds by hydrothermal carbonization,” Energies (Basel), vol. 14, no. 20, Oct. 2021, doi: 10.3390/en14206551. L. Breukers and F. Puentes, “Tratamiento de residuos sólidos en el marco del servicio público de aseolombia,” Bogotá D.C, Aug. 2021. Accessed: Mar. 14, 2025. [Online]. Available: https://www.minvivienda.gov.co/sites/default/files/documentos/20210806-entregable-1-v5-definitiva_0.pdf L. Myllyvirta, A. Farrow, C. Fuentes, and A. Fernández, . “Impactos de las emisiones de las termoeléctricas a carbón en la calidad del aire en las comunas de Huasco y Puchuncaví. ,” Jan. 2020, Greenpeace. Accessed: Sep. 03, 2024. [Online]. Available: https://www.greenpeace.to/greenpeace/wp-content/uploads/2020/02/Informe-Emisiones_Rev_KAS_CHS_VF.pdf L. Sisti et al., “Monomers, Materials and Energy from Coffee By-Products: A Review,” Sustainability, vol. 13, no. 12, p. 6921, Jun. 2021, doi: 10.3390/SU13126921. M. A. Qamar, A. Javed, R. Liaquat, and M. Hassan, “Techno-economic modeling of biomass gasification plants for small industries in Pakistan,” Biomass Convers Biorefin, vol. 13, no. 10, pp. 8999–9009, Jul. 2023, doi: 10.1007/s13399-021-01767-5. M. Bressan, E. Campagnoli, C. G. Ferro, and V. Giaretto, “A Mass Balance-Based Method for the Anaerobic Digestion of Rice Straw,” Energies (Basel), vol. 16, no. 11, Jun. 2023, doi: 10.3390/en16114334. M. C. Acar, N. Ömer, H. Üniversitesi, and E. Böke, “Simulation of Biomass Gasification Process Using Aspen Plus,” in 14th International Combustion Symposium (INCOS2018), Apr. 2018, pp. 134–137. [Online]. Available: https://www.researchgate.net/publication/326377364 Ministerio de Minas y Energía, “Transición energética: un legado para el presente y el futuro de Colombia,” 2021. Accessed: Sep. 03, 2024. [Online]. Available: https://www.minenergia.gov.co/documents/5856/TRANSICION_ENERGETICA_COLOMBIA_BID-MINENERGIA-2403.pdf M. Garamendi Smith, “Evaluación medioambiental de la producción de biogás a partir de materia orgánica residual mediante análisis de ciclo de vida,” Universidad Pontificia Comillas, Madrid, 2023. Accessed: May 07, 2025. [Online]. Available: https://repositorio.comillas.edu/jspui/handle/11531/74270 M. M. Hossen, A. H. M. S. Rahman, A. S. Kabir, M. M. Faruque Hasan, and S. Ahmed, “Systematic assessment of the availability and utilization potential of biomass in Bangladesh,” 2017, doi: 10.1016/j.rser.2016.09.008. M. Rybaczewska-Błażejowska and D. Jezierski, “Comparison of ReCiPe 2016, ILCD 2011, CML-IA baseline and IMPACT 2002+ LCIA methods: a case study based on the electricity consumption mix in Europe,” International Journal of Life Cycle Assessment, Oct. 2024, doi: 10.1007/s11367-024-02326-6. N. Rodríguez Valencia, D. Antonio, and Z. Franco, “LOS SUBPRODUCTOS DEL CAFÉ: FUENTE DE ENERGÍA RENOVABLE,” Centro Nacional de Investigaciones de Café (Cenicafé), Mar. 2010, doi: 10.38141/10779/0393. P. Botsch Cellete Gómez, F. Puentes, D. Tavera Jiménez, and V. Vidyaranya, “Análisis de la viabilidad técnico-económica para el tratamiento in situ de residuos orgánicos. Enfoque en la Terminal de Transporte de Bogotá,” 2022. Accessed: Apr. 15, 2025. [Online]. Available: https://conversapolis.org/web/wp-content/uploads/2023/09/GIZ_Analisis-de-viabilidad-de-residuos-organicos-1.pdf P. Lestinsky and A. Palit, “Wood Pyrolysis Using Aspen Plus Simulation and Industrially Applicable Model,” GeoScience Engineering, vol. 62, no. 1, pp. 11–16, Aug. 2016, doi: 10.1515/gse-2016-0003. P. Poloche, “Informe de sostenibilidad Café Amor Perfecto,” Bogota, 2023. R. Timsina, R. K. Thapa, and M. S. Eikeland, “Aspen Plus simulation of biomass gasification for different types of biomass,” in Proceedings of The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden, Linköping University Electronic Press, Jan. 2020, pp. 151–157. doi: 10.3384/ecp20170151. S. Achinas and G. J. W. Euverink, “Theoretical analysis of biogas potential prediction from agricultural waste,” Resource-Efficient Technologies, vol. 2, no. 3, pp. 143–147, Sep. 2016, doi: 10.1016/j.reffit.2016.08.001. S. M. S. Rahman, A. Azeem, and F. Ahammed, “Selection of an appropriate waste-to-energy conversion technology for Dhaka City, Bangladesh,” International Journal of Sustainable Engineering, vol. 10, no. 2, pp. 99–104, Mar. 2017, doi: 10.1080/19397038.2016.1270368. S. S. Sadaka, A. E. Ghaly, and M. A. Sabbah, “Two-phase biomass air-steam gasification model for fluidized bed reactors: Part III - Model validation,” Biomass Bioenergy, vol. 22, no. 6, pp. 479–487, 2002, doi: 10.1016/S0961-9534(02)00025-9. T. P. T. Pham, R. Kaushik, G. K. Parshetti, R. Mahmood, and R. Balasubramanian, “Food waste-to-energy conversion technologies: Current status and future directions,” Waste Management, vol. 38, no. 1, pp. 399–408, Apr. 2015, doi: 10.1016/J.WASMAN.2014.12.004. T. Rafael de Oliveira and A. Carlos Luz Lisboa, “Simulation and techno-economic analysis of energy cane pyrolysis for bio-oil production using Aspen Plus,” Heliyon, vol. 11, no. 2, Jan. 2025, doi: 10.1016/j.heliyon.2025.e41642. T. Vítěz, T. Koutný, M. Šotnar, and J. Chovanec, “On the spent coffee grounds biogas production,” Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 64, no. 4, pp. 1279–1282, 2016, doi: 10.11118/actaun201664041279. W. Czekała et al., “Waste-to-energy: Biogas potential of waste from coffee production and consumption,” Energy, vol. 276, p. 127604, Aug. 2023, doi: 10.1016/j.energy.2023.127604. Y. Elhenawy et al., “Experimental analysis and numerical simulation of biomass pyrolysis,” J Therm Anal Calorim, vol. 149, pp. 10369–10383, Oct. 2024, doi: 10.1007/s10973-024-12987-y. Y. Zhang et al., “Numerical simulation analysis of biomass gasification and rich-H2 production process in a downdraft gasifier,” Journal of the Energy Institute, vol. 114, Jun. 2024, doi: 10.1016/j.joei.2024.101596. Z. Shi, P. He, H. Zhang, J. Qiu, and F. Lü, “Convert food waste into easily biodegradable liquid substrate: New insights into wet oxidation as a pretreatment for anaerobic digestion,” J Environ Chem Eng, vol. 12, no. 6, Dec. 2024, doi: 10.1016/j.jece.2024.114316. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/4682a7c0-c692-47c5-9585-5df7043f5df1/download https://repositorio.unbosque.edu.co/bitstreams/c4742a0f-4935-4b15-94f3-3e3d5e51839d/download https://repositorio.unbosque.edu.co/bitstreams/dd2c36ee-9c5e-465e-a22e-4478aff315da/download https://repositorio.unbosque.edu.co/bitstreams/36815dfe-b72e-4512-98e9-7489e1196f4e/download https://repositorio.unbosque.edu.co/bitstreams/aa4ebeac-5c44-44b8-9f29-98b1b42e2af1/download https://repositorio.unbosque.edu.co/bitstreams/97e55ae2-31a7-451c-b9b7-92dc5207d972/download https://repositorio.unbosque.edu.co/bitstreams/a358524e-3e74-4b9b-9e14-2320e93c8d7f/download https://repositorio.unbosque.edu.co/bitstreams/d84f858c-abe3-4275-93cc-8d33723f1408/download https://repositorio.unbosque.edu.co/bitstreams/ec92e403-727f-4b33-8653-8da7df9853cb/download https://repositorio.unbosque.edu.co/bitstreams/fe8fd80e-2ca1-49ac-a867-7805e37bfe71/download |
bitstream.checksum.fl_str_mv |
859226ea2c5ccc94d8c17662d5a09d8f d4979217289900529f885774643a8b5d 17cc15b951e7cc6b3728a574117320f9 8e63503d6f09fb51316433667764a490 9e3756c58e7e09ce5ae057cba6c12079 3b6ce8e9e36c89875e8cf39962fe8920 2f4ff3c2271ebcca24699665dfa1efbf 9bebf8dc9f3c7d256371038e0f8db3d8 85b4b28c6d7cf69091c83798dd138000 552a2095cff3032ff09487d4ceb5d72e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1836752017811308544 |
spelling |
Botello Suárez, Wilmar AlirioHerrera Calderón, Maria Danielahttps://orcid.org/0000-0001-8801-51242025-06-04T19:45:57Z2025-06-04T19:45:57Z2025-05https://hdl.handle.net/20.500.12495/14553instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl sector cafetero genera volúmenes significativos de residuos orgánicos, principalmente en forma de borra de café (BC), cuya valorización energética mediante tecnologías Waste-to-Energy (WTE) es clave para el desarrollo de una matriz energética más limpia y circular. La elección de la tecnología WTE más adecuada requiere un análisis complejo. En este estudio se compararon tres tecnologías: gasificación, pirólisis y digestión anaerobia (DA), aplicadas a la BC. Mediante simulaciones en Aspen Plus, la pirólisis a ~500 °C y la gasificación a 950–1000 °C mostraron potenciales energéticos de hasta 2.100 y ~2.000 kWh/ton BC, respectivamente. En contraste, el potencial teórico de metano calculado para la DA correspondió a 1.501 kWh/ton BC. En términos económicos, la DA con comercialización de digestato fue la alternativa más viable (VPN: USD 166.868; TIR: 40 %). A nivel ecológico, la DA presentó el mejor desempeño, con menores impactos en las categorías de calentamiento global, acidificación y eutrofización. Finalmente, una evaluación multicriterio mediante el método AHP identificó a la DA como la alternativa WTE óptima (46 % de prioridad), seguida por la pirólisis (30 %). Se concluye que la DA constituye la solución integralmente más sostenible, al ofrecer un balance óptimo entre los aspectos económicos, ecológicos y técnicos evaluados. La pirólisis podría ser considerada por su alto rendimiento energético, mientras que la gasificación podría ofrecer una menor barrera de inversión inicial. Este estudio apoya la toma de decisiones orientadas a la adopción de tecnologías WTE, promoviendo la gestión sostenible de residuos del café.Ingeniero AmbientalPregradoThe coffee sector generates significant volumes of organic waste, primarily in the form of coffee grounds (CW), whose energy recovery through waste-to-energy (WTE) technologies is key to developing a cleaner and more circular energy matrix. Selecting the most appropriate WTE technology requires a complex analysis. This study compared three technologies: gasification, pyrolysis, and anaerobic digestion (AD), applied to CW. Using Aspen Plus simulations, pyrolysis at ~500°C and gasification at 950–1000°C showed energy potentials of up to 2,100 and ~2,000 kWh/ton CW, respectively. In contrast, the theoretical methane potential calculated for AD was 1,501 kWh/ton CW. In economic terms, AD with digestate commercialization was the most viable alternative (NPV: USD 166,868; IRR: 40%). At the ecological level, AD presented the best performance, with the lowest impacts in the categories of global warming, acidification, and eutrophication. Finally, a multicriteria evaluation using the AHP method identified AD as the optimal WTE alternative (46% priority), followed by pyrolysis (30%). The conclusion is that AD constitutes the most comprehensively sustainable solution, offering an optimal balance between the economic, ecological, and technical aspects evaluated. Pyrolysis could be considered due to its high energy efficiency, while gasification could offer a lower initial investment barrier. This study supports decision-making aimed at adopting WTE technologies, promoting sustainable coffee waste management.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Análisis ambientalDigestión anaerobiaEnergía renovableGasificaciónPirólisisSimulación de procesos628Environmental analysisAnaerobic digestionRenewable energyGasificationPyrolysisProcess simulationValorización de la borra de café (Coffea arabica) mediante tecnologías de conversión energética: análisis técnico y ambientalValorization of coffee spent grounds (Coffea arabica) through waste to energy technologies: technical and environmental analysisIngeniería AmbientalUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aaA. Demirbaş, “Current technologies for the thermo-conversion of biomass into fuels and chemicals,” Energy Sources, vol. 26, no. 8, pp. 715–730, Jul. 2004, doi: 10.1080/00908310490445562.A. G. Adeniyi and J. O. Ighalo, “ASPEN Plus predictive simulation of soft and hard wood pyrolysis for bio-energy recovery,” Int. J. Environment and Waste Management, vol. 26, no. 2, pp. 234–244, 2020.A. G. Lane, “Anaerobic digestion of spent coffee grounds,” Biomass, vol. 3, no. 4, pp. 247–268, Jan. 1983, doi: 10.1016/0144-4565(83)90017-3.A. Gagliano, F. Nocera, and M. Bruno, “Simulation Models of Biomass Thermochemical Conversion Processes, Gasification and Pyrolysis, for the Prediction of the Energetic Potential,” Advances in Renewable Energies and Power Technologies, vol. 2, pp. 39–85, Feb. 2018, doi: 10.1016/B978-0-12-813185-5.00002-4.Agico Cement, “How Much Does It Cost To Build a Biomass Pyrolysis Plant?” Accessed: Mar. 31, 2025. [Online]. Available: https://rotarykilnsupplier.com/equipment-info/how-much-does-it-cost-to-build-a-biomass-pyrolysis-plant/A. M. Vargas Lazo, “Estudio de la producción de pellets a partir de borra de café,” Universidad Nacional de Colombia, Bogota, 2018. Accessed: Sep. 03, 2024. [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/68833/Tesis%20de%20maestr%C3%ADa.pdf?sequence=1&isAllowed=yASTM International, “Test Methods for Analysis of Wood Fuels,” Apr. 01, 2019, ASTM International, West Conshohocken, PA. doi: 10.1520/E0870-82R19.A. V. Bridgwater, “Review of fast pyrolysis of biomass and product upgrading,” Biomass Bioenergy, vol. 38, pp. 68–94, Mar. 2012, doi: 10.1016/j.biombioe.2011.01.048.A. Viscontiis, M. Miccio, and D. Juchelková, “An Aspen Plus® tool for simulation of lignocellulosic biomass pyrolysis via equilibrium and ranking of the main process variables,” INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, vol. 9, pp. 71–86, 2015.B. Aristizábal, E. Vanegas, J. P. Mariscal, and M. A. Camargo, “Digestión anaerobia de residuos de poda como alternativa para disminuir emisiones de gases de efecto invernadero en rellenos sanitarios,” Energética, vol. 46, pp. 29–36, Dec. 2015, Accessed: May 07, 2025. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.redalyc.org/pdf/1470/147043932005.pdfBuencafé, “SUSTAINABILITY REPORT GRI 2021 ,” 2021. Accessed: Mar. 09, 2025. [Online]. Available: https://www.buencafe.com/wp-content/uploads/2023/06/Report-GRI-2021-In-Buencafe.pdfC. Setter, F. A. Borges, C. R. Cardoso, R. F. Mendes, and T. J. P. Oliveira, “Energy quality of pellets produced from coffee residue: Characterization of the products obtained via slow pyrolysis,” Ind Crops Prod, vol. 154, p. 112731, Oct. 2020, doi: 10.1016/j.indcrop.2020.112731.C. Setter, F. T. M. Silva, M. R. Assis, C. H. Ataíde, P. F. Trugilho, and T. J. P. Oliveira, “Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions,” Fuel, vol. 261, p. 116420, Feb. 2020, doi: 10.1016/j.fuel.2019.116420.DANE - Departamento Administrativo Nacional de Estadística, “Cuenta ambiental y económica de flujos de energía,” Bogota, 2022.DANE - Departamento Administrativo Nacional de Estadística, “Cuenta Ambiental y Económica de Flujos de Materiales de Residuos Sólidos (CAEFM-RS) 2020 – 2021. ,” Bogota, 2023.D. R. Vardon et al., “Complete Utilization of Spent Coffee Grounds To Produce Biodiesel, Bio-Oil, and Biochar,” ACS Sustain Chem Eng, vol. 1, no. 10, pp. 1286–1294, Oct. 2013, doi: 10.1021/sc400145w.Enel, “Tarifario de energía eléctrica ($/kwh). Reguladas por la Comisión de Regulación de Energía y Gas (CREG) Enero 2025.,” Jan. 2025. Accessed: Mar. 31, 2025. [Online]. Available: https://www.enel.com.co/content/dam/enel-co/espa%C3%B1ol/personas/1-17-1/2025/Pliego%20Tarifario%20Enel%20ENERO_2025_15%2021,5x30%20(1).pdfE. R. Oviedo-Ocaña, “Las Hidroeléctricas: efectos en los ecosistemas y en la salud ambiental,” Revista de la Universidad Industrial de Santander. Salud, vol. 50, no. 3, pp. 191–192, Aug. 2018, doi: 10.18273/revsal.v50n3-2018003.Federación Nacional de Cafeteros de Colombia, “Informe de Gestión 2023,” 2024. Accessed: Sep. 03, 2024. [Online]. Available: https://federaciondecafeteros.org/app/uploads/2024/05/Informe-del-Gerente-2023.pdfF. Guilayn and G. Capson-Tojo, “Chapter 1. Anaerobic digestate management: an introduction.”G. C. Young, “Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons,” Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons, Apr. 2010, doi: 10.1002/9780470608616.G. Semaan, M. R. Atelge, R. Dune Cayetano, G. Kumar, and R. Kommedal, “Spent coffee grounds anaerobic digestion: Investigating substrate to inoculum ratio and dilute acid thermal pretreatment,” Fuel, vol. 331, p. 125598, Jan. 2023, doi: 10.1016/J.FUEL.2022.125598.H. A. Kibret, Y.-L. Kuo, T.-Y. Ke, and Y.-H. Tseng, “Gasification of spent coffee grounds in a semi-fluidized bed reactor using steam and CO2 gasification medium,” J Taiwan Inst Chem Eng, vol. 119, pp. 115–127, Feb. 2021, doi: 10.1016/j.jtice.2021.01.029.J. E. Correa Rodríguez, “Con residuos de café se generaría electricidad,” Periodico UNAL, May 2024, Accessed: Sep. 02, 2024. [Online]. Available: https://periodico.unal.edu.co/articulos/con-residuos-de-cafe-se-generaria-electricidadJ. E. Park, G. B. Lee, C. J. Jeong, H. Kim, and C. G. Kim, “Determination of relationship between higher heating value and atomic ratio of hydrogen to carbon in spent coffee grounds by hydrothermal carbonization,” Energies (Basel), vol. 14, no. 20, Oct. 2021, doi: 10.3390/en14206551.L. Breukers and F. Puentes, “Tratamiento de residuos sólidos en el marco del servicio público de aseolombia,” Bogotá D.C, Aug. 2021. Accessed: Mar. 14, 2025. [Online]. Available: https://www.minvivienda.gov.co/sites/default/files/documentos/20210806-entregable-1-v5-definitiva_0.pdfL. Myllyvirta, A. Farrow, C. Fuentes, and A. Fernández, . “Impactos de las emisiones de las termoeléctricas a carbón en la calidad del aire en las comunas de Huasco y Puchuncaví. ,” Jan. 2020, Greenpeace. Accessed: Sep. 03, 2024. [Online]. Available: https://www.greenpeace.to/greenpeace/wp-content/uploads/2020/02/Informe-Emisiones_Rev_KAS_CHS_VF.pdfL. Sisti et al., “Monomers, Materials and Energy from Coffee By-Products: A Review,” Sustainability, vol. 13, no. 12, p. 6921, Jun. 2021, doi: 10.3390/SU13126921.M. A. Qamar, A. Javed, R. Liaquat, and M. Hassan, “Techno-economic modeling of biomass gasification plants for small industries in Pakistan,” Biomass Convers Biorefin, vol. 13, no. 10, pp. 8999–9009, Jul. 2023, doi: 10.1007/s13399-021-01767-5.M. Bressan, E. Campagnoli, C. G. Ferro, and V. Giaretto, “A Mass Balance-Based Method for the Anaerobic Digestion of Rice Straw,” Energies (Basel), vol. 16, no. 11, Jun. 2023, doi: 10.3390/en16114334.M. C. Acar, N. Ömer, H. Üniversitesi, and E. Böke, “Simulation of Biomass Gasification Process Using Aspen Plus,” in 14th International Combustion Symposium (INCOS2018), Apr. 2018, pp. 134–137. [Online]. Available: https://www.researchgate.net/publication/326377364Ministerio de Minas y Energía, “Transición energética: un legado para el presente y el futuro de Colombia,” 2021. Accessed: Sep. 03, 2024. [Online]. Available: https://www.minenergia.gov.co/documents/5856/TRANSICION_ENERGETICA_COLOMBIA_BID-MINENERGIA-2403.pdfM. Garamendi Smith, “Evaluación medioambiental de la producción de biogás a partir de materia orgánica residual mediante análisis de ciclo de vida,” Universidad Pontificia Comillas, Madrid, 2023. Accessed: May 07, 2025. [Online]. Available: https://repositorio.comillas.edu/jspui/handle/11531/74270M. M. Hossen, A. H. M. S. Rahman, A. S. Kabir, M. M. Faruque Hasan, and S. Ahmed, “Systematic assessment of the availability and utilization potential of biomass in Bangladesh,” 2017, doi: 10.1016/j.rser.2016.09.008.M. Rybaczewska-Błażejowska and D. Jezierski, “Comparison of ReCiPe 2016, ILCD 2011, CML-IA baseline and IMPACT 2002+ LCIA methods: a case study based on the electricity consumption mix in Europe,” International Journal of Life Cycle Assessment, Oct. 2024, doi: 10.1007/s11367-024-02326-6.N. Rodríguez Valencia, D. Antonio, and Z. Franco, “LOS SUBPRODUCTOS DEL CAFÉ: FUENTE DE ENERGÍA RENOVABLE,” Centro Nacional de Investigaciones de Café (Cenicafé), Mar. 2010, doi: 10.38141/10779/0393.P. Botsch Cellete Gómez, F. Puentes, D. Tavera Jiménez, and V. Vidyaranya, “Análisis de la viabilidad técnico-económica para el tratamiento in situ de residuos orgánicos. Enfoque en la Terminal de Transporte de Bogotá,” 2022. Accessed: Apr. 15, 2025. [Online]. Available: https://conversapolis.org/web/wp-content/uploads/2023/09/GIZ_Analisis-de-viabilidad-de-residuos-organicos-1.pdfP. Lestinsky and A. Palit, “Wood Pyrolysis Using Aspen Plus Simulation and Industrially Applicable Model,” GeoScience Engineering, vol. 62, no. 1, pp. 11–16, Aug. 2016, doi: 10.1515/gse-2016-0003.P. Poloche, “Informe de sostenibilidad Café Amor Perfecto,” Bogota, 2023.R. Timsina, R. K. Thapa, and M. S. Eikeland, “Aspen Plus simulation of biomass gasification for different types of biomass,” in Proceedings of The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden, Linköping University Electronic Press, Jan. 2020, pp. 151–157. doi: 10.3384/ecp20170151.S. Achinas and G. J. W. Euverink, “Theoretical analysis of biogas potential prediction from agricultural waste,” Resource-Efficient Technologies, vol. 2, no. 3, pp. 143–147, Sep. 2016, doi: 10.1016/j.reffit.2016.08.001.S. M. S. Rahman, A. Azeem, and F. Ahammed, “Selection of an appropriate waste-to-energy conversion technology for Dhaka City, Bangladesh,” International Journal of Sustainable Engineering, vol. 10, no. 2, pp. 99–104, Mar. 2017, doi: 10.1080/19397038.2016.1270368.S. S. Sadaka, A. E. Ghaly, and M. A. Sabbah, “Two-phase biomass air-steam gasification model for fluidized bed reactors: Part III - Model validation,” Biomass Bioenergy, vol. 22, no. 6, pp. 479–487, 2002, doi: 10.1016/S0961-9534(02)00025-9.T. P. T. Pham, R. Kaushik, G. K. Parshetti, R. Mahmood, and R. Balasubramanian, “Food waste-to-energy conversion technologies: Current status and future directions,” Waste Management, vol. 38, no. 1, pp. 399–408, Apr. 2015, doi: 10.1016/J.WASMAN.2014.12.004.T. Rafael de Oliveira and A. Carlos Luz Lisboa, “Simulation and techno-economic analysis of energy cane pyrolysis for bio-oil production using Aspen Plus,” Heliyon, vol. 11, no. 2, Jan. 2025, doi: 10.1016/j.heliyon.2025.e41642.T. Vítěz, T. Koutný, M. Šotnar, and J. Chovanec, “On the spent coffee grounds biogas production,” Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 64, no. 4, pp. 1279–1282, 2016, doi: 10.11118/actaun201664041279.W. Czekała et al., “Waste-to-energy: Biogas potential of waste from coffee production and consumption,” Energy, vol. 276, p. 127604, Aug. 2023, doi: 10.1016/j.energy.2023.127604.Y. Elhenawy et al., “Experimental analysis and numerical simulation of biomass pyrolysis,” J Therm Anal Calorim, vol. 149, pp. 10369–10383, Oct. 2024, doi: 10.1007/s10973-024-12987-y.Y. Zhang et al., “Numerical simulation analysis of biomass gasification and rich-H2 production process in a downdraft gasifier,” Journal of the Energy Institute, vol. 114, Jun. 2024, doi: 10.1016/j.joei.2024.101596.Z. Shi, P. He, H. Zhang, J. Qiu, and F. Lü, “Convert food waste into easily biodegradable liquid substrate: New insights into wet oxidation as a pretreatment for anaerobic digestion,” J Environ Chem Eng, vol. 12, no. 6, Dec. 2024, doi: 10.1016/j.jece.2024.114316.spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf446914https://repositorio.unbosque.edu.co/bitstreams/4682a7c0-c692-47c5-9585-5df7043f5df1/download859226ea2c5ccc94d8c17662d5a09d8fMD52Anexo 2.pdfAnexo 2.pdfapplication/pdf515469https://repositorio.unbosque.edu.co/bitstreams/c4742a0f-4935-4b15-94f3-3e3d5e51839d/downloadd4979217289900529f885774643a8b5dMD56LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/dd2c36ee-9c5e-465e-a22e-4478aff315da/download17cc15b951e7cc6b3728a574117320f9MD55Carta de autorizacion.pdfapplication/pdf213614https://repositorio.unbosque.edu.co/bitstreams/36815dfe-b72e-4512-98e9-7489e1196f4e/download8e63503d6f09fb51316433667764a490MD58Anexo 1 acta de aprobacion.pdfapplication/pdf697226https://repositorio.unbosque.edu.co/bitstreams/aa4ebeac-5c44-44b8-9f29-98b1b42e2af1/download9e3756c58e7e09ce5ae057cba6c12079MD59CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/97e55ae2-31a7-451c-b9b7-92dc5207d972/download3b6ce8e9e36c89875e8cf39962fe8920MD57TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain71172https://repositorio.unbosque.edu.co/bitstreams/a358524e-3e74-4b9b-9e14-2320e93c8d7f/download2f4ff3c2271ebcca24699665dfa1efbfMD510Anexo 2.pdf.txtAnexo 2.pdf.txtExtracted texttext/plain23819https://repositorio.unbosque.edu.co/bitstreams/d84f858c-abe3-4275-93cc-8d33723f1408/download9bebf8dc9f3c7d256371038e0f8db3d8MD512THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg4336https://repositorio.unbosque.edu.co/bitstreams/ec92e403-727f-4b33-8653-8da7df9853cb/download85b4b28c6d7cf69091c83798dd138000MD511Anexo 2.pdf.jpgAnexo 2.pdf.jpgGenerated Thumbnailimage/jpeg5360https://repositorio.unbosque.edu.co/bitstreams/fe8fd80e-2ca1-49ac-a867-7805e37bfe71/download552a2095cff3032ff09487d4ceb5d72eMD51320.500.12495/14553oai:repositorio.unbosque.edu.co:20.500.12495/145532025-06-05 05:01:49.914http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalembargo2030-06-03https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |