Funcionalización y caracterización de nanotubos de carbón multipared asociados con paclitaxel: fase 1-funcionalización covalente y caracterización
Los nanotubos de carbón multipared (MWCNT) son estructuras cilíndricas compuestas por varias capas concéntricas de grafeno, que desde su descubrimiento han sido objeto de investigación a nivel mundial debido a su amplia gama de aplicaciones biológicas. Sin embargo, su superficie inerte y baja disper...
- Autores:
-
Torres Roa, Laura Daniela
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14350
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/14350
- Palabra clave:
- Nanotubos de carbón
Funcionalización covalente
Cáncer de mama
Paclitaxel
615.19
Carbon nanotubes
Covalent functionalization
Breast cancer
Paclitaxel
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
UNBOSQUE2_a050df9f56c92519eb58d6509564647b |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14350 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Funcionalización y caracterización de nanotubos de carbón multipared asociados con paclitaxel: fase 1-funcionalización covalente y caracterización |
dc.title.translated.none.fl_str_mv |
Functionalization and characterization of paclitaxel-associated multi-walled carbon nanotubes: phase 1-covalent functionalization and characterization |
title |
Funcionalización y caracterización de nanotubos de carbón multipared asociados con paclitaxel: fase 1-funcionalización covalente y caracterización |
spellingShingle |
Funcionalización y caracterización de nanotubos de carbón multipared asociados con paclitaxel: fase 1-funcionalización covalente y caracterización Nanotubos de carbón Funcionalización covalente Cáncer de mama Paclitaxel 615.19 Carbon nanotubes Covalent functionalization Breast cancer Paclitaxel |
title_short |
Funcionalización y caracterización de nanotubos de carbón multipared asociados con paclitaxel: fase 1-funcionalización covalente y caracterización |
title_full |
Funcionalización y caracterización de nanotubos de carbón multipared asociados con paclitaxel: fase 1-funcionalización covalente y caracterización |
title_fullStr |
Funcionalización y caracterización de nanotubos de carbón multipared asociados con paclitaxel: fase 1-funcionalización covalente y caracterización |
title_full_unstemmed |
Funcionalización y caracterización de nanotubos de carbón multipared asociados con paclitaxel: fase 1-funcionalización covalente y caracterización |
title_sort |
Funcionalización y caracterización de nanotubos de carbón multipared asociados con paclitaxel: fase 1-funcionalización covalente y caracterización |
dc.creator.fl_str_mv |
Torres Roa, Laura Daniela |
dc.contributor.advisor.none.fl_str_mv |
Chaparro Perilla, Alba Jihan Jiménez Cruz, Ronald Andrés |
dc.contributor.author.none.fl_str_mv |
Torres Roa, Laura Daniela |
dc.subject.none.fl_str_mv |
Nanotubos de carbón Funcionalización covalente Cáncer de mama Paclitaxel |
topic |
Nanotubos de carbón Funcionalización covalente Cáncer de mama Paclitaxel 615.19 Carbon nanotubes Covalent functionalization Breast cancer Paclitaxel |
dc.subject.ddc.none.fl_str_mv |
615.19 |
dc.subject.keywords.none.fl_str_mv |
Carbon nanotubes Covalent functionalization Breast cancer Paclitaxel |
description |
Los nanotubos de carbón multipared (MWCNT) son estructuras cilíndricas compuestas por varias capas concéntricas de grafeno, que desde su descubrimiento han sido objeto de investigación a nivel mundial debido a su amplia gama de aplicaciones biológicas. Sin embargo, su superficie inerte y baja dispersión en medios acuosos ha dificultado su aprovechamiento en sistemas biológicos; para superar estas limitaciones se ha recurrido a la funcionalización covalente, la cual es una estrategia que permite modificar químicamente la superficie de los MWCNT mediante la introducción de grupos funcionales oxigenados como carboxilos, hidroxilos, cetonas y ésteres. En este trabajo de investigación los MWCNT fueron funcionalizados teniendo en cuenta un diseño factorial 23 donde se evalúo el efecto de tres variables: tipo de agente oxidante HNO3 (+) /H2O2 (-), concentración del agente oxidante HNO3 (65% (+), 30% (-)), H2O2 (30% (+), 15% (-)) y temperatura de oxidación 100 °C (+) y 50 °C (-) en dos niveles superior (+) e inferior (-), evaluándose cuáles de las variables empleadas favorecieron la mayor introducción de grupos funcionales oxigenados sobre la superficie de los MWCNT. Los resultados obtenidos mediante microscopía electrónica de barrido (SEM) indicaron daños superficiales en los MWCNT tras su funcionalización; por medio del análisis realizado mediante espectroscopía infrarroja (IR) se logró identificar la presencia de grupos funcionales oxigenados (-OH, -COOH,-C=O, -COOR) sobre la superficie de los MWCNT y el análisis elemental realizado mediante espectroscopía de energía dispersiva (EDS) reveló el aumento estimado de oxígeno en los MWCNT tras su funcionalización. Por su parte, los valores bajos de conductividad obtenidos demostraron la pérdida de la integridad estructural y efectos en la red conjugada de electrones π de los MWCNT tras su funcionalización y, luego del análisis de potencial zeta, fue posible notar cómo aumentó la estabilidad y la dispersión de los MWCNT tras su oxidación; por otra parte, tras el ensayo de viabilidad celular, los MWCNT prístinos y oxidados mostraron un porcentaje de células viables superior al 70%, lo que indicó que no tuvieron un efecto citotóxico. Finalmente, cabe resaltar que, teniendo en cuenta los resultados obtenidos, las variables que favorecieron la funcionalización covalente de los MWCNT fueron una temperatura de 100 °C y el ácido nítrico como tipo de agente oxidante, y aunque no se evidenciaron diferencias estadísticamente significativas entre los experimentos tras la realización de un ANOVA factorial, el cálculo de los efectos principales permitió identificar tendencias claras de cómo ciertas variables ejercieron un mayor efecto en los resultados obtenidos. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-05-15T15:35:39Z |
dc.date.available.none.fl_str_mv |
2025-05-15T15:35:39Z |
dc.date.issued.none.fl_str_mv |
2025-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14350 |
dc.identifier.instname.spa.fl_str_mv |
Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14350 |
identifier_str_mv |
Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
1. Basheer, B. V.; George, J.J.; Siengchin, S.; Parameswaranpillai, J. Polymer Grafted Carbon Nanotubes—Synthesis, Properties, and Applications: A Review. Nano-Structures & Nano-Objects 2020, 22, 100429, doi:10.1016/J.NANOSO.2020.100429. 2. Ferreira, F.V.; Cividanes, L.D.S.; Brito, F.S.; de Menezes, B.R.C.; Franceschi, W.; Simonetti, E.A.N.; Thim, G.P. Functionalization of Carbon Nanotube and Applications. SpringerBriefs in Applied Sciences and Technology 2016, 31–61, doi:10.1007/978-3-319-35110-0_2. 3. Debnath, S.K.; Srivastava, R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Frontiers in Nanotechnology 2021, 3, 644564, doi:10.3389/FNANO.2021.644564/PDF. 4. Bepete, G.; Coleman, K.S. Carbon Nanotubes: Electronic Structure and Spectroscopy; Second Edition.; Elsevier: Glasgow, United Kingdom, 2019; Vol. 1;. 5. Fujisawa, K.; Kim, H.J.; Go, S.H.; Muramatsu, H.; Hayashi, T.; Endo, M.; Hirschmann, T.C.; Dresselhaus, M.S.; Kim, Y.A.; Araujo, P.T. A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications. Applied Sciences 2016, Vol. 6, Page 109 2016, 6, 109, doi:10.3390/APP6040109. 6. Ganji, D.D.; Kachapi, S.H.H. Semi Nonlinear Analysis in Carbon Nanotube. Application of Nonlinear Systems in Nanomechanics and Nanofluids 2015, 13–70, doi:10.1016/B978-0-323-35237-6.00002-9. 7. Jacobsen, N.R.; Møller, P.; Clausen, P.A.; Saber, A.T.; Micheletti, C.; Jensen, K.A.; Wallin, H.; Vogel, U. Biodistribution of Carbon Nanotubes in Animal Models. Basic Clin Pharmacol Toxicol 2017, 121, 30–43, doi:10.1111/BCPT.12705. 8. Dubey, R.; Dutta, D.; Sarkar, A.; Chattopadhyay, P. Functionalized Carbon Nanotubes: Synthesis, Properties and Applications in Water Purification, Drug Delivery, and Material and Biomedical Sciences. Nanoscale Adv 2021, 3, 5722–5744, doi:10.1039/D1NA00293G. 9. Noordadi, M.; Mehrnejad, F.; Sajedi, R.H.; Jafari, M.; Ranjbar, B. The Potential Impact of Carboxylic-Functionalized Multi-Walled Carbon Nanotubes on Trypsin: A Comprehensive Spectroscopic and Molecular Dynamics Simulation Study. PLoS One 2018, 13, e0198519, doi:10.1371/JOURNAL.PONE.0198519. 10. Matiyani, M.; Pathak, M.; Bohra, B.S.; Sahoo, N.G. Noncovalent Functionalization of Carbon Nanotubes. Handbook of Carbon Nanotubes 2022, 421–448, doi:10.1007/978-3-030-91346-5_66. 11. Tomova, A.; Gentile, G.; Grozdanov, A.; Errico, M.E.; Paunovic, P.; Avella, M.; Dimitrov, A.T. Functionalization and Characterization of MWCNT Produced by Different Methods (Acta Physica Polonica A 129, 405 (2016)), ERRATUM. Acta Phys Pol A 2016, 129, 1265, doi:10.12693/APHYSPOLA.129.1265. 12. Van Hau, T.; Van Trinh, P.; Phuong Hoai Nam, N.; -, al; Chen, H.; Luo, K.; Li, K.; Wulandari, S.A.; Widiyandari, H.; Subagio, A. Synthesis and Characterization Carboxyl Functionalized Multi-Walled Carbon Nanotubes (MWCNT-COOH) and NH2 Functionalized Multi-Walled Carbon Nanotubes (MWCNTNH2). J Phys Conf Ser 2018, 1025, 012005, doi:10.1088/1742-6596/1025/1/012005. 13. Singer, G.; Siedlaczek, P.; Sinn, G.; Rennhofer, H.; Mičušík, M.; Omastová, M.; Unterlass, M.M.; Wendrinsky, J.; Milotti, V.; Fedi, F.; et al. Acid Free Oxidation and Simple Dispersion Method of MWCNT for High-Performance CFRP. Nanomaterials 2018, Vol. 8, Page 912 2018, 8, 912, doi:10.3390/NANO8110912. 14. Sezer, N.; Koç, M. Oxidative Acid Treatment of Carbon Nanotubes. Surfaces and Interfaces 2019, 14, 1–8, doi:10.1016/J.SURFIN.2018.11.001. 15. Loos, M.R.; Schulte, K. Is It Worth the Effort to Reinforce Polymers With Carbon Nanotubes? Macromol Theory Simul 2011, 20, 350–362, doi:10.1002/MATS.201100007. 16. Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T.J.; Hamblin, M.R.; Mostafavi, E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine 2021, 16, 1681–1706, doi:10.2147/IJN.S299448. 17. Karimi, M.; Solati, N.; Amiri, M.; Mirshekari, H.; Mohamed, E.; Taheri, M.; Hashemkhani, M.; Saeidi, A.; Estiar, M.A.; Kiani, P.; et al. Carbon Nanotubes Part I: Preparation of a Novel and Versatile Drug-Delivery Vehicle. Expert Opin Drug Deliv 2015, 12, 1071–1087, doi:10.1517/17425247.2015.1003806. 18. Martín, M.; Herrero, A.; Echavarría, I. El Cáncer de Mama. Arbor 2015, 191, a234–a234, doi:10.3989/ARBOR.2015.773N3004. 19. Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes Dis 2023, 10, 1367–1401, doi:10.1016/J.GENDIS.2022.02.007. 20. Talib, W.H.; Alsayed, A.R.; Barakat, M.; Abu-Taha, M.I.; Mahmod, A.I. Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021, Vol. 9, Page 1353 2021, 9, 1353, doi:10.3390/BIOMEDICINES9101353. 21. Son, K.H.; Hong, J.H.; Lee, J.W. Carbon Nanotubes as Cancer Therapeutic Carriers and Mediators. Int J Nanomedicine 2016, 11, 5163–5185, doi:10.2147/IJN.S112660;JOURNAL:JOURNAL:DIJN20;WGROUP:STRING:PUBLICATION. 22. Simon, J.; Flahaut, E.; Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials 2019, Vol. 12, Page 624 2019, 12, 624, doi:10.3390/MA12040624. 23. Khan, A.; Alamry, K.A. Surface Modified Carbon Nanotubes: An Introduction. ACS Symposium Series 2022, 1424, 1–25, doi:10.1021/BK-2022-1424.CH001/ASSET/IMAGES/LARGE/BK-2022-00193M_G006.JPEG. 24. Komane, P.P.; Kumar, P.; Choonara, Y.E.; Pillay, V. Functionalized, Vertically Super-Aligned Multiwalled Carbon Nanotubes for Potential Biomedical Applications. International Journal of Molecular Sciences 2020, Vol. 21, Page 2276 2020, 21, 2276, doi:10.3390/IJMS21072276. 25. Elsehly, E.M.; Chechenin, N.G.; Makunin, A. V.; Motaweh, H.A.; Vorobyeva, E.A.; Bukunov, K.A.; Leksina, E.G.; Priselkova, A.B. Characterization of Functionalized Multiwalled Carbon Nanotubes and Application as an Effective Filter for Heavy Metal Removal from Aqueous Solutions. Chin J Chem Eng 2016, 24, 1695–1702, doi:10.1016/J.CJCHE.2016.05.017. 26. Jiménez, R.A.; Millán, D.; Sosnik, A.; Fontanilla, M.R. Aloe Vera–Eluting Collagen I Microgels: Physicochemical Characterization and in Vitro Biological Performance. Mater Today Chem 2022, 23, 100722, doi:10.1016/J.MTCHEM.2021.100722. 27. Komane, P.P.; Kumar, P.; Marimuthu, T.; du Toit, L.C.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. Dexamethasone-Loaded, PEGylated, Vertically Aligned, Multiwalled Carbon Nanotubes for Potential Ischemic Stroke Intervention. Molecules 2018, Vol. 23, Page 1406 2018, 23, 1406, doi:10.3390/MOLECULES23061406. 28. Miessler, G.L.; Fischer, P.J.; Tart, D.A. Química Inorgánica; 6th ed.; Pearson Educación de México, 2020; 29. McMurry, J. Química Orgánica; Cervantes, Sergio.R., Eliosa, T., Eds.; 8th ed.; Brooks/Cole: México D.F, 2012; 30. Goyal, R.; Singh, O.; Agrawal, A.; Samanta, C.; Sarkar, B. Advantages and Limitations of Catalytic Oxidation with Hydrogen Peroxide: From Bulk Chemicals to Lab Scale Process. Catalysis Reviews 2022, 64, 229–285, doi:10.1080/01614940.2020.1796190. 31. Norizan, M.N.; Moklis, M.H.; Ngah Demon, S.Z.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon Nanotubes: Functionalisation and Their Application in Chemical Sensors. RSC Adv 2020, 10, 43704–43732, doi:10.1039/D0RA09438B. 32. Xiong, L.; Shuai, J.; Hou, Z.; Zhu, L.; Interface, W.L.-J. of C. and; 2017, undefined Functionalization of Super-Aligned Carbon Nanotube Film Using Hydrogen Peroxide Solution and Its Application in Copper Electrodeposition. ElsevierL Xiong, J Shuai, Z Hou, L Zhu, W LiJournal of Colloid and Interface Science, 2017•Elsevier. 33. Thi Mai Hoa, L.; Trung Ward, L.; Duc District, T.; Chi Minh City, H.; Mai Hoa, T. Characterization of Multi-Walled Carbon Nanotubes Functionalized by a Mixture of HNO3/H2SO4. researchgate.netLTM HoaDiam. Relat. Mater, 2018•researchgate.net 2018, #pagerange#, doi:10.1016/j.diamond.2018.08.008. 34. Miranda, J. Síntesis y Caracterización de Nanocompósitos de Polipropileno Hetefásico y Nanotubos de Carbono Multipared, Santiago, Chile, 2010. 35. Adil, S.; Kim, W.S.; Kim, T.H.; Lee, S.; Hong, S.W.; Kim, E.J. Defective, Oxygen-Functionalized Multi-Walled Carbon Nanotubes as an Efficient Peroxymonosulfate Activator for Degradation of Organic Pollutants. J Hazard Mater 2020, 396, 122757, doi:10.1016/J.JHAZMAT.2020.122757. 36. Chowdhry, A.; Kaur, J.; Khatri, M.; Puri, V.; Tuli, R.; Puri, S. Characterization of Functionalized Multiwalled Carbon Nanotubes and Comparison of Their Cellular Toxicity between HEK 293 Cells and Zebra Fish in Vivo. Heliyon 2019, 5, e02605, doi:10.1016/J.HELIYON.2019.E02605. 37. Carriço, A.; Bogas, J.A.; Hawreen, A.; Guedes, M. Durability of Multi-Walled Carbon Nanotube Reinforced Concrete. Constr Build Mater 2018, 164, 121–133, doi:10.1016/J.CONBUILDMAT.2017.12.221. 38. S. A. Wulandari; Hendri Widiyandari; Agus Subagio Synthesis and Characterization Carboxyl Functionalized Multi-Walled Carbon Nanotubes (MWCNT-COOH) and NH2 Functionalized Multi-Walled Carbon Nanotubes (MWCNTNH2). J Phys Conf Ser 2018, 1025, 012005, doi:10.1088/1742-6596/1025/1/012005. 39. Żarska, S.; Szukiewicz, R.; Coseri, S.; Pavlyuk, V.; Krasowska, D.; Ciesielski, W. Synthesis and Structural Studies of New Selenium Derivatives Based on Covalent Functionalization of MWCNTs. International Journal of Molecular Sciences 2023, Vol. 24, Page 3299 2023, 24, 3299, doi:10.3390/IJMS24043299. 40. Frankowiak, J.C.; Bello, R.H.; Coelho, L.A.F. Oxidation Time Effects of Multiwalled Carbon Nanotubes on Thermal, Mechanical, and Cure Kinetics of Epoxy-Based Nanocomposites. Polym Compos 2020, 41, 3966–3984, doi:10.1002/PC.25685. 41. Liu, H.; Wang, J.; Wang, J.; Cui, S. Sulfonitric Treatment of Multiwalled Carbon Nanotubes and Their Dispersibility in Water. Materials 2018, Vol. 11, Page 2442 2018, 11, 2442, doi:10.3390/MA11122442. 42. Larasati, F.; Kusumastuti, Y.; Mindaryani, A.; Handayani, M. Surface Modification of Multi-Walled Carbon Nanotubes with Polysaccharides. ASEAN Journal of Chemical Engineering 2022, 82–92, doi:10.22146/ajche.69866. 43. Armstrong, R.A. When to Use the Bonferroni Correction. Ophthalmic Physiol Opt 2014, 34, 502–508, doi:10.1111/OPO.12131. 44. Tserengombo, B.; Jeong, H.; Dolgor, E.; Delgado, A.; Kim, S. Effects of Functionalization in Different Conditions and Ball Milling on the Dispersion and Thermal and Electrical Conductivity of MWCNTs in Aqueous Solution. Nanomaterials 2021, Vol. 11, Page 1323 2021, 11, 1323, doi:10.3390/NANO11051323. 45. Skwarek, E.; Bolbukh, Y.; Tertykh, V.; Janusz, W. Electrokinetic Properties of the Pristine and Oxidized MWCNT Depending on the Electrolyte Type and Concentration. Nanoscale Res Lett 2016, 11, 1–17, doi:10.1186/S11671-016-1367-Z/FIGURES/9. 46. Benko, A.; Duch, J.; Gajewska, M.; Marzec, M.; Bernasik, A.; Nocuń, M.; Piskorz, W.; Kotarba, A. Covalently Bonded Surface Functional Groups on Carbon Nanotubes: From Molecular Modeling to Practical Applications. Nanoscale 2021, 13, 10152–10166, doi:10.1039/D0NR09057C. 47. Alian, A.R.; Meguid, S.A. Molecular Dynamics Simulations of the Effect of Waviness and Agglomeration of CNTs on Interface Strength of Thermoset Nanocomposites. Physical Chemistry Chemical Physics 2017, 19, 4426–4434, doi:10.1039/C6CP07464B. 48. Van Trinh, P.; Anh, N.N.; Tam, N.T.; Hong, N.T.; Hong, P.N.; Minh, P.N.; Thang, B.H. Influence of Defects Induced by Chemical Treatment on the Electrical and Thermal Conductivity of Nanofluids Containing Carboxyl-Functionalized Multi-Walled Carbon Nanotubes. RSC Adv 2017, 7, 49937–49946, doi:10.1039/C7RA08552D. 49. Tserengombo, B.; Jeong, H.; Dolgor, E.; Delgado, A.; Kim, S. Effects of Functionalization in Different Conditions and Ball Milling on the Dispersion and Thermal and Electrical Conductivity of MWCNTs in Aqueous Solution. Nanomaterials 2021, Vol. 11, Page 1323 2021, 11, 1323, doi:10.3390/NANO11051323. 50. Nayini, M.M.R.; Ranjbar, Z. Carbon Nanotubes: Dispersion Challenge and How to Overcome It. Handbook of Carbon Nanotubes 2022, 341–392, doi:10.1007/978-3-030-91346-5_64. 51. Moreno Marcelino, J.E.; Vigueras Santiago, E.; López Téllez, G.; Hernández López, S. Chemical Functionalization of Carbon Nanotubes and Its Effects on Electrical Conductivity. Journal of Nano Research 2014, 28, 51–61, doi:10.4028/WWW.SCIENTIFIC.NET/JNANOR.28.51. 52. Williams, T.S.; Orloff, N.D.; Baker, J.S.; Miller, S.G.; Natarajan, B.; Obrzut, J.; McCorkle, L.S.; Lebron-Colón, M.; Gaier, J.; Meador, M.A.; et al. Trade-off between the Mechanical Strength and Microwave Electrical Properties of Functionalized and Irradiated Carbon Nanotube Sheets. ACS Appl Mater Interfaces 2016, 8, 9327–9334, doi:10.1021/ACSAMI.5B12303/SUPPL_FILE/AM5B12303_SI_001.PDF. 53. Karousis, N.; Suarez-Martinez, I.; Ewels, C.P.; Tagmatarchis, N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev 2016, 116, 4850–4883, doi:10.1021/ACS.CHEMREV.5B00611/ASSET/IMAGES/MEDIUM/CR-2015-00611H_0047.GIF. 54. Gao, C.; Guo, M.; Liu, Y.; Zhang, D.; Gao, F.; Sun, L.; Li, J.; Chen, X.; Terrones, M.; Wang, Y. Surface Modification Methods and Mechanisms in Carbon Nanotubes Dispersion. Carbon N Y 2023, 212, 118133, doi:10.1016/J.CARBON.2023.118133. 55. Costa, P.M.; Bourgognon, M.; Wang, J.T.W.; Al-Jamal, K.T. Functionalised Carbon Nanotubes: From Intracellular Uptake and Cell-Related Toxicity to Systemic Brain Delivery. Journal of Controlled Release 2016, 241, 200–219, doi:10.1016/J.JCONREL.2016.09.033. 56. Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, Vol. 10, Page 57 2018, 10, 57, doi:10.3390/PHARMACEUTICS10020057. 57. Won, S.; Id, K. Effect of Particle Size on Carbon Nanotube Aggregates Behavior in Dilute Phase of a Fluidized Bed. Processes 2018, Vol. 6, Page 121 2018, 6, 121, doi:10.3390/PR6080121. 58. Hou, J.; Du, W.; Meng, F.; Zhao, C.; interface, X.D.-J. of colloid and; 2018, undefined Effective Dispersion of Multi-Walled Carbon Nanotubes in Aqueous Solution Using an Ionic-Gemini Dispersant. ElsevierJ Hou, W Du, F Meng, C Zhao, X DuJournal of colloid and interface science, 2018•Elsevier. 59. Hamilton, R.F.; Wu, Z.; Mitra, S.; Shaw, P.K.; Holian, A. Effect of MWCNT Size, Carboxylation, and Purification on in Vitro and in Vivo Toxicity, Inflammation and Lung Pathology. Part Fibre Toxicol 2013, 10, 1–17, doi:10.1186/1743-8977-10-57/FIGURES/12. 60. Yadav, P.; Gupta, S.M.; Sharma, S.K. A Review on Stabilization of Carbon Nanotube Nanofluid. Journal of Thermal Analysis and Calorimetry 2021 147:12 2021, 147, 6537–6561, doi:10.1007/S10973-021-10999-6. 61. Chernyak, S.A.; Ivanov, A.S.; Strokova, N.E.; Maslakov, K.I.; Savilov, S. V.; Lunin, V. V. Mechanism of Thermal Defunctionalization of Oxidized Carbon Nanotubes. Journal of Physical Chemistry C 2016, 120, 17465–17474, doi:10.1021/ACS.JPCC.6B05178/SUPPL_FILE/JP6B05178_SI_001.PDF. 62. Zhou, L.; Forman, H.J.; Ge, Y.; Lunec, J. Multi-Walled Carbon Nanotubes: A Cytotoxicity Study in Relation to Functionalization, Dose and Dispersion. Toxicology in Vitro 2017, 42, 292–298, doi:10.1016/J.TIV.2017.04.027. 63. Benko, A.; Frączek-Szczypta, A.; Menaszek, E.; Wyrwa, J.; Nocuń, M.; Błażewicz, M. On the Influence of Various Physicochemical Properties of the CNTs Based Implantable Devices on the Fibroblasts’ Reaction in Vitro. J Mater Sci Mater Med 2015, 26, 1–13, doi:10.1007/S10856-015-5597-X/FIGURES/9. 64. Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of Apoptosis Signalling Pathways by Reactive Oxygen Species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2016, 1863, 2977–2992, doi:10.1016/J.BBAMCR.2016.09.012. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Química Farmacéutica |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/bfc27557-bcf7-4693-bfc5-1ea662fe12af/download https://repositorio.unbosque.edu.co/bitstreams/606cf19d-0fe8-46c3-8c21-f0fab6eeb135/download https://repositorio.unbosque.edu.co/bitstreams/190b136e-b4dc-45a2-962f-5148b1279e88/download https://repositorio.unbosque.edu.co/bitstreams/20d0d494-a0bc-4b08-80ec-67fddc67e568/download https://repositorio.unbosque.edu.co/bitstreams/94337743-35d6-4ebf-96c0-16b974c11639/download https://repositorio.unbosque.edu.co/bitstreams/e473c207-cead-4791-8b7c-34795467f48e/download https://repositorio.unbosque.edu.co/bitstreams/e5deabbb-7f75-491a-abe8-0d483ff2d6a3/download https://repositorio.unbosque.edu.co/bitstreams/58ff86e5-4b7e-4422-9893-c6516ebc8844/download https://repositorio.unbosque.edu.co/bitstreams/7d0bad22-0fa3-4cea-8612-e6030327fb22/download https://repositorio.unbosque.edu.co/bitstreams/20996bd0-c813-4c45-9db7-ab3a1023ab56/download |
bitstream.checksum.fl_str_mv |
730912671a1f229ebb2f505b5914173b 5a1f77656d85d260db3c042787192085 17cc15b951e7cc6b3728a574117320f9 c91c289739b94b525d59e82ae49fca5e b671d5ab2435ce57a8ac1dadbe546444 5643bfd9bcf29d560eeec56d584edaa9 3870e05406472e170d3fd43a5853a45c 4104cbb939e0815aa6017a2c21a1f4af bac2793febd1ca1c14b28f44dffbe3ac 802e47cd9e3cfb97806e696fc107e4b9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1834107900885204992 |
spelling |
Chaparro Perilla, Alba JihanJiménez Cruz, Ronald AndrésTorres Roa, Laura Daniela2025-05-15T15:35:39Z2025-05-15T15:35:39Z2025-05https://hdl.handle.net/20.500.12495/14350Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLos nanotubos de carbón multipared (MWCNT) son estructuras cilíndricas compuestas por varias capas concéntricas de grafeno, que desde su descubrimiento han sido objeto de investigación a nivel mundial debido a su amplia gama de aplicaciones biológicas. Sin embargo, su superficie inerte y baja dispersión en medios acuosos ha dificultado su aprovechamiento en sistemas biológicos; para superar estas limitaciones se ha recurrido a la funcionalización covalente, la cual es una estrategia que permite modificar químicamente la superficie de los MWCNT mediante la introducción de grupos funcionales oxigenados como carboxilos, hidroxilos, cetonas y ésteres. En este trabajo de investigación los MWCNT fueron funcionalizados teniendo en cuenta un diseño factorial 23 donde se evalúo el efecto de tres variables: tipo de agente oxidante HNO3 (+) /H2O2 (-), concentración del agente oxidante HNO3 (65% (+), 30% (-)), H2O2 (30% (+), 15% (-)) y temperatura de oxidación 100 °C (+) y 50 °C (-) en dos niveles superior (+) e inferior (-), evaluándose cuáles de las variables empleadas favorecieron la mayor introducción de grupos funcionales oxigenados sobre la superficie de los MWCNT. Los resultados obtenidos mediante microscopía electrónica de barrido (SEM) indicaron daños superficiales en los MWCNT tras su funcionalización; por medio del análisis realizado mediante espectroscopía infrarroja (IR) se logró identificar la presencia de grupos funcionales oxigenados (-OH, -COOH,-C=O, -COOR) sobre la superficie de los MWCNT y el análisis elemental realizado mediante espectroscopía de energía dispersiva (EDS) reveló el aumento estimado de oxígeno en los MWCNT tras su funcionalización. Por su parte, los valores bajos de conductividad obtenidos demostraron la pérdida de la integridad estructural y efectos en la red conjugada de electrones π de los MWCNT tras su funcionalización y, luego del análisis de potencial zeta, fue posible notar cómo aumentó la estabilidad y la dispersión de los MWCNT tras su oxidación; por otra parte, tras el ensayo de viabilidad celular, los MWCNT prístinos y oxidados mostraron un porcentaje de células viables superior al 70%, lo que indicó que no tuvieron un efecto citotóxico. Finalmente, cabe resaltar que, teniendo en cuenta los resultados obtenidos, las variables que favorecieron la funcionalización covalente de los MWCNT fueron una temperatura de 100 °C y el ácido nítrico como tipo de agente oxidante, y aunque no se evidenciaron diferencias estadísticamente significativas entre los experimentos tras la realización de un ANOVA factorial, el cálculo de los efectos principales permitió identificar tendencias claras de cómo ciertas variables ejercieron un mayor efecto en los resultados obtenidos.Universidad de los AndesPregradoQuímico FarmacéuticoMulti-walled carbon nanotubes (MWCNTs) are cylindrical structures composed of several concentric layers of graphene, which since their discovery have been the subject of worldwide research due to their wide range of biological applications. However, their inert surface and low dispersion in aqueous media has hindered their exploitation in biological systems; to overcome these limitations, covalent functionalization has been used, which is a strategy that allows to chemically modify the surface of MWCNTs by introducing oxygenated functional groups such as carboxyls, hydroxyls, ketones and esters. In this research work the MWCNTs were functionalized taking into account a factorial design 23 where the effect of three variables was evaluated: type of oxidizing agent HNO3 (+) /H2O2 (-), concentration of the oxidizing agent HNO3 (65% (+), 30% (-)), H2O2 (30% (+), 15% (-)) and oxidation temperature 100 °C (+) and 50 °C (-) in two levels upper (+) and lower (-), evaluating which of the variables used favored the greater introduction of oxygenated functional groups on the surface of MWCNTs. The results obtained by scanning electron microscopy (SEM) indicated surface damage on the MWCNTs after their functionalization; by means of the analysis performed by infrared spectroscopy (IR) it was possible to identify the presence of oxygenated functional groups (-OH, -COOH,-C=O, -COOR) on the MWCNTs surface and the elemental analysis performed by energy dispersive spectroscopy (EDS) revealed the estimated increase of oxygen on the MWCNTs after their functionalization. On the other hand, the low conductivity values obtained demonstrated the loss of structural integrity and effects on the conjugated π-electron network of MWCNTs after functionalization and, after zeta potential analysis, it was possible to notice how the stability and dispersion of MWCNTs increased after oxidation; on the other hand, after the cell viability assay, pristine and oxidized MWCNTs showed a percentage of viable cells higher than 70%, which indicated that they did not have a cytotoxic effect. Finally, it should be emphasized that, taking into account the results obtained, the variables that favored the covalent functionalization of MWCNTs were a temperature of 100 °C and nitric acid as the type of oxidizing agent, and although no statistically significant differences were evident between experiments after performing a factorial ANOVA, the calculation of the main effects allowed identifying clear trends of how certain variables exerted a greater effect on the results obtained.application/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Nanotubos de carbónFuncionalización covalenteCáncer de mamaPaclitaxel615.19Carbon nanotubesCovalent functionalizationBreast cancerPaclitaxelFuncionalización y caracterización de nanotubos de carbón multipared asociados con paclitaxel: fase 1-funcionalización covalente y caracterizaciónFunctionalization and characterization of paclitaxel-associated multi-walled carbon nanotubes: phase 1-covalent functionalization and characterizationQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. Basheer, B. V.; George, J.J.; Siengchin, S.; Parameswaranpillai, J. Polymer Grafted Carbon Nanotubes—Synthesis, Properties, and Applications: A Review. Nano-Structures & Nano-Objects 2020, 22, 100429, doi:10.1016/J.NANOSO.2020.100429.2. Ferreira, F.V.; Cividanes, L.D.S.; Brito, F.S.; de Menezes, B.R.C.; Franceschi, W.; Simonetti, E.A.N.; Thim, G.P. Functionalization of Carbon Nanotube and Applications. SpringerBriefs in Applied Sciences and Technology 2016, 31–61, doi:10.1007/978-3-319-35110-0_2.3. Debnath, S.K.; Srivastava, R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Frontiers in Nanotechnology 2021, 3, 644564, doi:10.3389/FNANO.2021.644564/PDF.4. Bepete, G.; Coleman, K.S. Carbon Nanotubes: Electronic Structure and Spectroscopy; Second Edition.; Elsevier: Glasgow, United Kingdom, 2019; Vol. 1;.5. Fujisawa, K.; Kim, H.J.; Go, S.H.; Muramatsu, H.; Hayashi, T.; Endo, M.; Hirschmann, T.C.; Dresselhaus, M.S.; Kim, Y.A.; Araujo, P.T. A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications. Applied Sciences 2016, Vol. 6, Page 109 2016, 6, 109, doi:10.3390/APP6040109.6. Ganji, D.D.; Kachapi, S.H.H. Semi Nonlinear Analysis in Carbon Nanotube. Application of Nonlinear Systems in Nanomechanics and Nanofluids 2015, 13–70, doi:10.1016/B978-0-323-35237-6.00002-9.7. Jacobsen, N.R.; Møller, P.; Clausen, P.A.; Saber, A.T.; Micheletti, C.; Jensen, K.A.; Wallin, H.; Vogel, U. Biodistribution of Carbon Nanotubes in Animal Models. Basic Clin Pharmacol Toxicol 2017, 121, 30–43, doi:10.1111/BCPT.12705.8. Dubey, R.; Dutta, D.; Sarkar, A.; Chattopadhyay, P. Functionalized Carbon Nanotubes: Synthesis, Properties and Applications in Water Purification, Drug Delivery, and Material and Biomedical Sciences. Nanoscale Adv 2021, 3, 5722–5744, doi:10.1039/D1NA00293G.9. Noordadi, M.; Mehrnejad, F.; Sajedi, R.H.; Jafari, M.; Ranjbar, B. The Potential Impact of Carboxylic-Functionalized Multi-Walled Carbon Nanotubes on Trypsin: A Comprehensive Spectroscopic and Molecular Dynamics Simulation Study. PLoS One 2018, 13, e0198519, doi:10.1371/JOURNAL.PONE.0198519.10. Matiyani, M.; Pathak, M.; Bohra, B.S.; Sahoo, N.G. Noncovalent Functionalization of Carbon Nanotubes. Handbook of Carbon Nanotubes 2022, 421–448, doi:10.1007/978-3-030-91346-5_66.11. Tomova, A.; Gentile, G.; Grozdanov, A.; Errico, M.E.; Paunovic, P.; Avella, M.; Dimitrov, A.T. Functionalization and Characterization of MWCNT Produced by Different Methods (Acta Physica Polonica A 129, 405 (2016)), ERRATUM. Acta Phys Pol A 2016, 129, 1265, doi:10.12693/APHYSPOLA.129.1265.12. Van Hau, T.; Van Trinh, P.; Phuong Hoai Nam, N.; -, al; Chen, H.; Luo, K.; Li, K.; Wulandari, S.A.; Widiyandari, H.; Subagio, A. Synthesis and Characterization Carboxyl Functionalized Multi-Walled Carbon Nanotubes (MWCNT-COOH) and NH2 Functionalized Multi-Walled Carbon Nanotubes (MWCNTNH2). J Phys Conf Ser 2018, 1025, 012005, doi:10.1088/1742-6596/1025/1/012005.13. Singer, G.; Siedlaczek, P.; Sinn, G.; Rennhofer, H.; Mičušík, M.; Omastová, M.; Unterlass, M.M.; Wendrinsky, J.; Milotti, V.; Fedi, F.; et al. Acid Free Oxidation and Simple Dispersion Method of MWCNT for High-Performance CFRP. Nanomaterials 2018, Vol. 8, Page 912 2018, 8, 912, doi:10.3390/NANO8110912.14. Sezer, N.; Koç, M. Oxidative Acid Treatment of Carbon Nanotubes. Surfaces and Interfaces 2019, 14, 1–8, doi:10.1016/J.SURFIN.2018.11.001.15. Loos, M.R.; Schulte, K. Is It Worth the Effort to Reinforce Polymers With Carbon Nanotubes? Macromol Theory Simul 2011, 20, 350–362, doi:10.1002/MATS.201100007.16. Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T.J.; Hamblin, M.R.; Mostafavi, E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine 2021, 16, 1681–1706, doi:10.2147/IJN.S299448.17. Karimi, M.; Solati, N.; Amiri, M.; Mirshekari, H.; Mohamed, E.; Taheri, M.; Hashemkhani, M.; Saeidi, A.; Estiar, M.A.; Kiani, P.; et al. Carbon Nanotubes Part I: Preparation of a Novel and Versatile Drug-Delivery Vehicle. Expert Opin Drug Deliv 2015, 12, 1071–1087, doi:10.1517/17425247.2015.1003806.18. Martín, M.; Herrero, A.; Echavarría, I. El Cáncer de Mama. Arbor 2015, 191, a234–a234, doi:10.3989/ARBOR.2015.773N3004.19. Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes Dis 2023, 10, 1367–1401, doi:10.1016/J.GENDIS.2022.02.007.20. Talib, W.H.; Alsayed, A.R.; Barakat, M.; Abu-Taha, M.I.; Mahmod, A.I. Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021, Vol. 9, Page 1353 2021, 9, 1353, doi:10.3390/BIOMEDICINES9101353.21. Son, K.H.; Hong, J.H.; Lee, J.W. Carbon Nanotubes as Cancer Therapeutic Carriers and Mediators. Int J Nanomedicine 2016, 11, 5163–5185, doi:10.2147/IJN.S112660;JOURNAL:JOURNAL:DIJN20;WGROUP:STRING:PUBLICATION.22. Simon, J.; Flahaut, E.; Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials 2019, Vol. 12, Page 624 2019, 12, 624, doi:10.3390/MA12040624.23. Khan, A.; Alamry, K.A. Surface Modified Carbon Nanotubes: An Introduction. ACS Symposium Series 2022, 1424, 1–25, doi:10.1021/BK-2022-1424.CH001/ASSET/IMAGES/LARGE/BK-2022-00193M_G006.JPEG.24. Komane, P.P.; Kumar, P.; Choonara, Y.E.; Pillay, V. Functionalized, Vertically Super-Aligned Multiwalled Carbon Nanotubes for Potential Biomedical Applications. International Journal of Molecular Sciences 2020, Vol. 21, Page 2276 2020, 21, 2276, doi:10.3390/IJMS21072276.25. Elsehly, E.M.; Chechenin, N.G.; Makunin, A. V.; Motaweh, H.A.; Vorobyeva, E.A.; Bukunov, K.A.; Leksina, E.G.; Priselkova, A.B. Characterization of Functionalized Multiwalled Carbon Nanotubes and Application as an Effective Filter for Heavy Metal Removal from Aqueous Solutions. Chin J Chem Eng 2016, 24, 1695–1702, doi:10.1016/J.CJCHE.2016.05.017.26. Jiménez, R.A.; Millán, D.; Sosnik, A.; Fontanilla, M.R. Aloe Vera–Eluting Collagen I Microgels: Physicochemical Characterization and in Vitro Biological Performance. Mater Today Chem 2022, 23, 100722, doi:10.1016/J.MTCHEM.2021.100722.27. Komane, P.P.; Kumar, P.; Marimuthu, T.; du Toit, L.C.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. Dexamethasone-Loaded, PEGylated, Vertically Aligned, Multiwalled Carbon Nanotubes for Potential Ischemic Stroke Intervention. Molecules 2018, Vol. 23, Page 1406 2018, 23, 1406, doi:10.3390/MOLECULES23061406.28. Miessler, G.L.; Fischer, P.J.; Tart, D.A. Química Inorgánica; 6th ed.; Pearson Educación de México, 2020;29. McMurry, J. Química Orgánica; Cervantes, Sergio.R., Eliosa, T., Eds.; 8th ed.; Brooks/Cole: México D.F, 2012;30. Goyal, R.; Singh, O.; Agrawal, A.; Samanta, C.; Sarkar, B. Advantages and Limitations of Catalytic Oxidation with Hydrogen Peroxide: From Bulk Chemicals to Lab Scale Process. Catalysis Reviews 2022, 64, 229–285, doi:10.1080/01614940.2020.1796190.31. Norizan, M.N.; Moklis, M.H.; Ngah Demon, S.Z.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon Nanotubes: Functionalisation and Their Application in Chemical Sensors. RSC Adv 2020, 10, 43704–43732, doi:10.1039/D0RA09438B.32. Xiong, L.; Shuai, J.; Hou, Z.; Zhu, L.; Interface, W.L.-J. of C. and; 2017, undefined Functionalization of Super-Aligned Carbon Nanotube Film Using Hydrogen Peroxide Solution and Its Application in Copper Electrodeposition. ElsevierL Xiong, J Shuai, Z Hou, L Zhu, W LiJournal of Colloid and Interface Science, 2017•Elsevier.33. Thi Mai Hoa, L.; Trung Ward, L.; Duc District, T.; Chi Minh City, H.; Mai Hoa, T. Characterization of Multi-Walled Carbon Nanotubes Functionalized by a Mixture of HNO3/H2SO4. researchgate.netLTM HoaDiam. Relat. Mater, 2018•researchgate.net 2018, #pagerange#, doi:10.1016/j.diamond.2018.08.008.34. Miranda, J. Síntesis y Caracterización de Nanocompósitos de Polipropileno Hetefásico y Nanotubos de Carbono Multipared, Santiago, Chile, 2010.35. Adil, S.; Kim, W.S.; Kim, T.H.; Lee, S.; Hong, S.W.; Kim, E.J. Defective, Oxygen-Functionalized Multi-Walled Carbon Nanotubes as an Efficient Peroxymonosulfate Activator for Degradation of Organic Pollutants. J Hazard Mater 2020, 396, 122757, doi:10.1016/J.JHAZMAT.2020.122757.36. Chowdhry, A.; Kaur, J.; Khatri, M.; Puri, V.; Tuli, R.; Puri, S. Characterization of Functionalized Multiwalled Carbon Nanotubes and Comparison of Their Cellular Toxicity between HEK 293 Cells and Zebra Fish in Vivo. Heliyon 2019, 5, e02605, doi:10.1016/J.HELIYON.2019.E02605.37. Carriço, A.; Bogas, J.A.; Hawreen, A.; Guedes, M. Durability of Multi-Walled Carbon Nanotube Reinforced Concrete. Constr Build Mater 2018, 164, 121–133, doi:10.1016/J.CONBUILDMAT.2017.12.221.38. S. A. Wulandari; Hendri Widiyandari; Agus Subagio Synthesis and Characterization Carboxyl Functionalized Multi-Walled Carbon Nanotubes (MWCNT-COOH) and NH2 Functionalized Multi-Walled Carbon Nanotubes (MWCNTNH2). J Phys Conf Ser 2018, 1025, 012005, doi:10.1088/1742-6596/1025/1/012005.39. Żarska, S.; Szukiewicz, R.; Coseri, S.; Pavlyuk, V.; Krasowska, D.; Ciesielski, W. Synthesis and Structural Studies of New Selenium Derivatives Based on Covalent Functionalization of MWCNTs. International Journal of Molecular Sciences 2023, Vol. 24, Page 3299 2023, 24, 3299, doi:10.3390/IJMS24043299.40. Frankowiak, J.C.; Bello, R.H.; Coelho, L.A.F. Oxidation Time Effects of Multiwalled Carbon Nanotubes on Thermal, Mechanical, and Cure Kinetics of Epoxy-Based Nanocomposites. Polym Compos 2020, 41, 3966–3984, doi:10.1002/PC.25685.41. Liu, H.; Wang, J.; Wang, J.; Cui, S. Sulfonitric Treatment of Multiwalled Carbon Nanotubes and Their Dispersibility in Water. Materials 2018, Vol. 11, Page 2442 2018, 11, 2442, doi:10.3390/MA11122442.42. Larasati, F.; Kusumastuti, Y.; Mindaryani, A.; Handayani, M. Surface Modification of Multi-Walled Carbon Nanotubes with Polysaccharides. ASEAN Journal of Chemical Engineering 2022, 82–92, doi:10.22146/ajche.69866.43. Armstrong, R.A. When to Use the Bonferroni Correction. Ophthalmic Physiol Opt 2014, 34, 502–508, doi:10.1111/OPO.12131.44. Tserengombo, B.; Jeong, H.; Dolgor, E.; Delgado, A.; Kim, S. Effects of Functionalization in Different Conditions and Ball Milling on the Dispersion and Thermal and Electrical Conductivity of MWCNTs in Aqueous Solution. Nanomaterials 2021, Vol. 11, Page 1323 2021, 11, 1323, doi:10.3390/NANO11051323.45. Skwarek, E.; Bolbukh, Y.; Tertykh, V.; Janusz, W. Electrokinetic Properties of the Pristine and Oxidized MWCNT Depending on the Electrolyte Type and Concentration. Nanoscale Res Lett 2016, 11, 1–17, doi:10.1186/S11671-016-1367-Z/FIGURES/9.46. Benko, A.; Duch, J.; Gajewska, M.; Marzec, M.; Bernasik, A.; Nocuń, M.; Piskorz, W.; Kotarba, A. Covalently Bonded Surface Functional Groups on Carbon Nanotubes: From Molecular Modeling to Practical Applications. Nanoscale 2021, 13, 10152–10166, doi:10.1039/D0NR09057C.47. Alian, A.R.; Meguid, S.A. Molecular Dynamics Simulations of the Effect of Waviness and Agglomeration of CNTs on Interface Strength of Thermoset Nanocomposites. Physical Chemistry Chemical Physics 2017, 19, 4426–4434, doi:10.1039/C6CP07464B.48. Van Trinh, P.; Anh, N.N.; Tam, N.T.; Hong, N.T.; Hong, P.N.; Minh, P.N.; Thang, B.H. Influence of Defects Induced by Chemical Treatment on the Electrical and Thermal Conductivity of Nanofluids Containing Carboxyl-Functionalized Multi-Walled Carbon Nanotubes. RSC Adv 2017, 7, 49937–49946, doi:10.1039/C7RA08552D.49. Tserengombo, B.; Jeong, H.; Dolgor, E.; Delgado, A.; Kim, S. Effects of Functionalization in Different Conditions and Ball Milling on the Dispersion and Thermal and Electrical Conductivity of MWCNTs in Aqueous Solution. Nanomaterials 2021, Vol. 11, Page 1323 2021, 11, 1323, doi:10.3390/NANO11051323.50. Nayini, M.M.R.; Ranjbar, Z. Carbon Nanotubes: Dispersion Challenge and How to Overcome It. Handbook of Carbon Nanotubes 2022, 341–392, doi:10.1007/978-3-030-91346-5_64.51. Moreno Marcelino, J.E.; Vigueras Santiago, E.; López Téllez, G.; Hernández López, S. Chemical Functionalization of Carbon Nanotubes and Its Effects on Electrical Conductivity. Journal of Nano Research 2014, 28, 51–61, doi:10.4028/WWW.SCIENTIFIC.NET/JNANOR.28.51.52. Williams, T.S.; Orloff, N.D.; Baker, J.S.; Miller, S.G.; Natarajan, B.; Obrzut, J.; McCorkle, L.S.; Lebron-Colón, M.; Gaier, J.; Meador, M.A.; et al. Trade-off between the Mechanical Strength and Microwave Electrical Properties of Functionalized and Irradiated Carbon Nanotube Sheets. ACS Appl Mater Interfaces 2016, 8, 9327–9334, doi:10.1021/ACSAMI.5B12303/SUPPL_FILE/AM5B12303_SI_001.PDF.53. Karousis, N.; Suarez-Martinez, I.; Ewels, C.P.; Tagmatarchis, N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev 2016, 116, 4850–4883, doi:10.1021/ACS.CHEMREV.5B00611/ASSET/IMAGES/MEDIUM/CR-2015-00611H_0047.GIF.54. Gao, C.; Guo, M.; Liu, Y.; Zhang, D.; Gao, F.; Sun, L.; Li, J.; Chen, X.; Terrones, M.; Wang, Y. Surface Modification Methods and Mechanisms in Carbon Nanotubes Dispersion. Carbon N Y 2023, 212, 118133, doi:10.1016/J.CARBON.2023.118133.55. Costa, P.M.; Bourgognon, M.; Wang, J.T.W.; Al-Jamal, K.T. Functionalised Carbon Nanotubes: From Intracellular Uptake and Cell-Related Toxicity to Systemic Brain Delivery. Journal of Controlled Release 2016, 241, 200–219, doi:10.1016/J.JCONREL.2016.09.033.56. Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, Vol. 10, Page 57 2018, 10, 57, doi:10.3390/PHARMACEUTICS10020057.57. Won, S.; Id, K. Effect of Particle Size on Carbon Nanotube Aggregates Behavior in Dilute Phase of a Fluidized Bed. Processes 2018, Vol. 6, Page 121 2018, 6, 121, doi:10.3390/PR6080121.58. Hou, J.; Du, W.; Meng, F.; Zhao, C.; interface, X.D.-J. of colloid and; 2018, undefined Effective Dispersion of Multi-Walled Carbon Nanotubes in Aqueous Solution Using an Ionic-Gemini Dispersant. ElsevierJ Hou, W Du, F Meng, C Zhao, X DuJournal of colloid and interface science, 2018•Elsevier.59. Hamilton, R.F.; Wu, Z.; Mitra, S.; Shaw, P.K.; Holian, A. Effect of MWCNT Size, Carboxylation, and Purification on in Vitro and in Vivo Toxicity, Inflammation and Lung Pathology. Part Fibre Toxicol 2013, 10, 1–17, doi:10.1186/1743-8977-10-57/FIGURES/12.60. Yadav, P.; Gupta, S.M.; Sharma, S.K. A Review on Stabilization of Carbon Nanotube Nanofluid. Journal of Thermal Analysis and Calorimetry 2021 147:12 2021, 147, 6537–6561, doi:10.1007/S10973-021-10999-6.61. Chernyak, S.A.; Ivanov, A.S.; Strokova, N.E.; Maslakov, K.I.; Savilov, S. V.; Lunin, V. V. Mechanism of Thermal Defunctionalization of Oxidized Carbon Nanotubes. Journal of Physical Chemistry C 2016, 120, 17465–17474, doi:10.1021/ACS.JPCC.6B05178/SUPPL_FILE/JP6B05178_SI_001.PDF.62. Zhou, L.; Forman, H.J.; Ge, Y.; Lunec, J. Multi-Walled Carbon Nanotubes: A Cytotoxicity Study in Relation to Functionalization, Dose and Dispersion. Toxicology in Vitro 2017, 42, 292–298, doi:10.1016/J.TIV.2017.04.027.63. Benko, A.; Frączek-Szczypta, A.; Menaszek, E.; Wyrwa, J.; Nocuń, M.; Błażewicz, M. On the Influence of Various Physicochemical Properties of the CNTs Based Implantable Devices on the Fibroblasts’ Reaction in Vitro. J Mater Sci Mater Med 2015, 26, 1–13, doi:10.1007/S10856-015-5597-X/FIGURES/9.64. Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of Apoptosis Signalling Pathways by Reactive Oxygen Species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2016, 1863, 2977–2992, doi:10.1016/J.BBAMCR.2016.09.012.spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1309702https://repositorio.unbosque.edu.co/bitstreams/bfc27557-bcf7-4693-bfc5-1ea662fe12af/download730912671a1f229ebb2f505b5914173bMD51Anexo 2.pdfAnexo 2.pdfapplication/pdf547894https://repositorio.unbosque.edu.co/bitstreams/606cf19d-0fe8-46c3-8c21-f0fab6eeb135/download5a1f77656d85d260db3c042787192085MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/190b136e-b4dc-45a2-962f-5148b1279e88/download17cc15b951e7cc6b3728a574117320f9MD56Carta de autorizacion.pdfapplication/pdf2420892https://repositorio.unbosque.edu.co/bitstreams/20d0d494-a0bc-4b08-80ec-67fddc67e568/downloadc91c289739b94b525d59e82ae49fca5eMD58Anexo 1 Acta de aprobacion.pdfapplication/pdf3624360https://repositorio.unbosque.edu.co/bitstreams/94337743-35d6-4ebf-96c0-16b974c11639/downloadb671d5ab2435ce57a8ac1dadbe546444MD59CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repositorio.unbosque.edu.co/bitstreams/e473c207-cead-4791-8b7c-34795467f48e/download5643bfd9bcf29d560eeec56d584edaa9MD57TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain101709https://repositorio.unbosque.edu.co/bitstreams/e5deabbb-7f75-491a-abe8-0d483ff2d6a3/download3870e05406472e170d3fd43a5853a45cMD510Anexo 2.pdf.txtAnexo 2.pdf.txtExtracted texttext/plain11507https://repositorio.unbosque.edu.co/bitstreams/58ff86e5-4b7e-4422-9893-c6516ebc8844/download4104cbb939e0815aa6017a2c21a1f4afMD512THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5092https://repositorio.unbosque.edu.co/bitstreams/7d0bad22-0fa3-4cea-8612-e6030327fb22/downloadbac2793febd1ca1c14b28f44dffbe3acMD511Anexo 2.pdf.jpgAnexo 2.pdf.jpgGenerated Thumbnailimage/jpeg5865https://repositorio.unbosque.edu.co/bitstreams/20996bd0-c813-4c45-9db7-ab3a1023ab56/download802e47cd9e3cfb97806e696fc107e4b9MD51320.500.12495/14350oai:repositorio.unbosque.edu.co:20.500.12495/143502025-05-16 05:03:27.886http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |