Descubriendo los vínculos genéticos entre la esclerosis múltiple y el glaucoma

La esclerosis múltiple (MS) es una enfermedad neurodegenerativa que afecta al sistema nervioso central, es una enfermedad compleja, es decir, presenta una gran poligenicidad. Actualmente no existe una prueba que permita su detección temprana, lo que implica que al momento de su diagnosis ya se puede...

Full description

Autores:
Valero Puentes, Sebastian David
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/17978
Acceso en línea:
https://hdl.handle.net/20.500.12495/17978
Palabra clave:
Glaucoma
Esclerosis múltiple
Glaucoma Primario de Ángulo Abierto
Capa de Fibras Nerviosas de la Retina
Capa Plexiforme Interna de Células Ganglionares
570
Glaucoma
Multiple Sclerosis
Primary Open-Angle Glaucoma
Retinal Nerve Fiber Layer
Ganglion Cell–Inner Plexiform Layer
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id UNBOSQUE2_9c288f46ddd1cbabd7ed4b1acc0536a3
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/17978
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Descubriendo los vínculos genéticos entre la esclerosis múltiple y el glaucoma
dc.title.translated.none.fl_str_mv Discovering the genetic links between multiple sclerosis and glaucoma
title Descubriendo los vínculos genéticos entre la esclerosis múltiple y el glaucoma
spellingShingle Descubriendo los vínculos genéticos entre la esclerosis múltiple y el glaucoma
Glaucoma
Esclerosis múltiple
Glaucoma Primario de Ángulo Abierto
Capa de Fibras Nerviosas de la Retina
Capa Plexiforme Interna de Células Ganglionares
570
Glaucoma
Multiple Sclerosis
Primary Open-Angle Glaucoma
Retinal Nerve Fiber Layer
Ganglion Cell–Inner Plexiform Layer
title_short Descubriendo los vínculos genéticos entre la esclerosis múltiple y el glaucoma
title_full Descubriendo los vínculos genéticos entre la esclerosis múltiple y el glaucoma
title_fullStr Descubriendo los vínculos genéticos entre la esclerosis múltiple y el glaucoma
title_full_unstemmed Descubriendo los vínculos genéticos entre la esclerosis múltiple y el glaucoma
title_sort Descubriendo los vínculos genéticos entre la esclerosis múltiple y el glaucoma
dc.creator.fl_str_mv Valero Puentes, Sebastian David
dc.contributor.advisor.none.fl_str_mv Diaz Torres, Santiago
dc.contributor.author.none.fl_str_mv Valero Puentes, Sebastian David
dc.contributor.orcid.none.fl_str_mv Valero Puentes, Sebastian David [0000-0001-7942-2641]
dc.subject.none.fl_str_mv Glaucoma
Esclerosis múltiple
Glaucoma Primario de Ángulo Abierto
Capa de Fibras Nerviosas de la Retina
Capa Plexiforme Interna de Células Ganglionares
topic Glaucoma
Esclerosis múltiple
Glaucoma Primario de Ángulo Abierto
Capa de Fibras Nerviosas de la Retina
Capa Plexiforme Interna de Células Ganglionares
570
Glaucoma
Multiple Sclerosis
Primary Open-Angle Glaucoma
Retinal Nerve Fiber Layer
Ganglion Cell–Inner Plexiform Layer
dc.subject.ddc.none.fl_str_mv 570
dc.subject.keywords.none.fl_str_mv Glaucoma
Multiple Sclerosis
Primary Open-Angle Glaucoma
Retinal Nerve Fiber Layer
Ganglion Cell–Inner Plexiform Layer
description La esclerosis múltiple (MS) es una enfermedad neurodegenerativa que afecta al sistema nervioso central, es una enfermedad compleja, es decir, presenta una gran poligenicidad. Actualmente no existe una prueba que permita su detección temprana, lo que implica que al momento de su diagnosis ya se pueden haber desarrollado síntomas como la neuritis óptica. Por su parte, el glaucoma (GC) corresponde a una neuropatía óptica que puede presentarse como una comorbilidad de MS, provocando defectos en el campo visual debido a la pérdida progresiva de células ganglionares en la capa de fibras nerviosas de la retina (RNFL). Se desconoce si existe una relación genética causal entre las dos condiciones y la dirección de su asociación, aun cuando estudios observacionales han demostrado que los pacientes diagnosticados con MS pueden presentar GC con una prevalencia mayor al 15%. El presente trabajo evaluó los vínculos genéticos presentes entre estas dos afecciones, mediante el análisis de la influencia del riesgo genético de MS en marcadores clínicos de neuropatía óptica. Tales como RNFL y el grosor de la capa plexiforme interna de células ganglionares (GCIPL). Para tal efecto, se llevaron a cabo análisis de aleatorización mendeliana (MR) y el puntaje de riesgo poligénico (PRS). Encontrando que la aparente relación causal entre MS y el glaucoma primario de ángulo abierto (POAG) se encuentra mediada por la RNFL a través de mecanismos pleiotrópicos entre las enfermedades, siendo consistente con los resultados de correlación genética y colocalización entre los dos fenotipos (MS y POAG). Finalmente, se identificó el potencial de modelos de predicción que combinen el puntaje de riesgo poligénico de RNFL y MS como una herramienta para identificar pacientes con riesgo de desarrollar MS a una edad más temprana. Facilitando el desarrollo de estrategias que propicien una detección temprana de la condición, previniendo así la degeneración del nervio óptico.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-05
dc.date.accessioned.none.fl_str_mv 2025-10-17T15:19:01Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/17978
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/17978
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Bazelier MT, Mueller-Schotte S, Leufkens HG, Uitdehaag BM, van Staa T, de Vries F. Risk of cataract and glaucoma in patients with multiple sclerosis. Multiple Sclerosis Journal. 2012 May 24;18(5):628–38.
Domínguez Moreno R, Morales Esponda M, Rossiere Echazarreta NL, Olan Triano R, Gutiérrez Morales LJ. Esclerosis múltiple: revisión de la literatura médica. Revista de la Facultas de Medicina de la UNAM. 2012;55(5):27–35.
Ruz C, Alcantud JL, Vives Montero F, Duran R, Bandres-Ciga S. Proteotoxicity and Neurodegenerative Diseases. Int J Mol Sci. 2020 Aug 6;21(16):5646.
Nabizadeh F, Sardaripour A, Azami M. Glaucoma and Cataract in Multiple Sclerosis. Arch Neurosci. 2022 Aug 12;9(3).
Navarro Castro CE. Estudio de costo-utilidad de ocrelizumab vs rituximab en el tratamiento de la esclerosis múltiple recaída-remisión en Colombia [Magíster]. [Bogotá D.C.]: Universidad El Bosque; 2022.
Dahham J, Rizk R, Kremer I, Evers SMAA, Hiligsmann M. Economic Burden of Multiple Sclerosis in Low- and Middle‐Income Countries: A Systematic Review. Pharmacoeconomics. 2021 Jul 6;39(7):789–807.
Dirani M, Crowston JG, Taylor PS, Moore PT, Rogers S, Pezzullo ML, et al. Economic impact of primary open-angle glaucoma in Australia. Clin Exp Ophthalmol. 2011 Sep;39(7):623–32.
Palmer AJ, Colman S, O’Leary B, Taylor B V, Simmons RD. The economic impact of multiple sclerosis in Australia in 2010. Multiple Sclerosis Journal. 2013 Oct 7;19(12):1640–6.
Varma R, Lee PP, Goldberg I, Kotak S. An Assessment of the Health and Economic Burdens of Glaucoma. Am J Ophthalmol. 2011 Oct;152(4):515–22.
Platero Armero JL. Impacto en el estado de inflamación de pacientes con esclerosis múltiple, tras tratamiento con epigalocatequina galato y aceite de coco. Disminución del riesgo cardiaco [Tesis Doctoral]. [Valencia]: Universidad Católica de Valencia San Vicente Mártir; 2022.
Gu W, Tagg NT, Panchal NL, Brown-Bickerstaff CA, Nyman JM, Reynolds ME. Incidence of Optic Neuritis and the Associated Risk of Multiple Sclerosis for Service Members of U.S. Armed Forces. Mil Med. 2023 Mar 20;188(3–4):e697–702.
Milo R, Kahana E. Multiple sclerosis: Geoepidemiology, genetics and the environment. Autoimmun Rev. 2010 Mar;9(5):A387–94.
Berge T, Leikfoss I, Harbo H. From Identification to Characterization of the Multiple Sclerosis Susceptibility Gene CLEC16A. Int J Mol Sci. 2013 Feb 25;14(3):4476–97.
Rubio JP, Stankovich J, Field J, Tubridy N, Marriott M, Chapman C, et al. Replication of KIAA0350, IL2RA, RPL5 and CD58 as multiple sclerosis susceptibility genes in Australians. Genes Immun. 2008 Oct 24;9(7):624–30.
Kurtzke JF. Epidemiology and Etiology of Multiple Sclerosis. Phys Med Rehabil Clin N Am. 2005 May;16(2):327–49.
Sawcer S, Franklin RJM, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014 Jul;13(7):700–9.
The International Multiple Sclerosis Genetics Consortium (IMSGC). IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci. Genes Immun. 2010 Jul 17;11(5):397–405.
Leikfoss IS, Mero IL, Dahle MK, Lie BA, Harbo HF, Spurkland A, et al. Multiple sclerosis-associated single-nucleotide polymorphisms in CLEC16A correlate with reduced SOCS1 and DEXI expression in the thymus. Genes Immun. 2013 Jan 15;14(1):62–6.
Zoledziewska M, Costa G, Pitzalis M, Cocco E, Melis C, Moi L, et al. Variation within the CLEC16A gene shows consistent disease association with both multiple sclerosis and type 1 diabetes in Sardinia. Genes Immun. 2009;10(1):15–7.
van Luijn MM, Kreft KL, Jongsma ML, Mes SW, Wierenga-Wolf AF, van Meurs M, et al. Multiple sclerosis-associated CLEC16A controls HLA class II expression via late endosome biogenesis. Brain. 2015 Jun;138(6):1531–47.
Eriksson AM, Leikfoss IS, Abrahamsen G, Sundvold V, Isom MM, Keshari PK, et al. Exploring the role of the multiple sclerosis susceptibility gene CLEC16A in T cells. Scand J Immunol. 2021 Jul 20;94(1).
Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. 2016 Feb;15(2):198–209.
Pisapia L, Cerillo I, Farina F, Zimbardo A, Barba P, Orefice G, et al. The HLA‐DRB1 risk alleles for multiple sclerosis are differentially expressed in blood cells of patients from Southern Italy. Int J Immunogenet. 2019 Dec 17;46(6):479–84.
Jones-Odeh E, Hammond CJ. How strong is the relationship between glaucoma, the retinal nerve fibre layer, and neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis? Eye. 2015 Oct 4;29(10):1270–84.
Wiggs JL, Aboobakar IF. The genetics of glaucoma: Disease associations, personalised risk assessment and therapeutic opportunities‐A review. Clin Exp Ophthalmol. 2022 Mar 17;50(2):143–62.
Miller MA, Fingert JH, Bettis DI. Genetics and genetic testing for glaucoma. Curr Opin Ophthalmol. 2017 Mar;28(2):133–8.
Wiggs JL, Pasquale LR. Genetics of glaucoma. Hum Mol Genet. 2017 Aug 1;26(R1):R21–7.
Michels TC, Oana I. Glaucoma: Diagnosis and Management. Am Fam Physician [Internet]. 2023 Mar;107(3):253–62. Available from: https://login.ezproxy.unbosque.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&AN=36920817&lang=es&site=eds-live&scope=site
Bailey JNC, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet. 2016 Feb 11;48(2):189–94.
Liu Y, Allingham RR. Molecular genetics in glaucoma. Exp Eye Res. 2011 Oct;93(4):331–9.
Zepeda EM, Branham K, Moroi SE, Bohnsack BL. Surgical outcomes of Glaucoma associated with Axenfeld-Rieger syndrome. BMC Ophthalmol. 2020 Dec 1;20(1):172.
Rodrigues TAR, de Souza BB, Bertozzo V de H e, de Castro JNP, Camargo ACL, Costa FF, et al. Association of variants in the ATXN2 (rs7137828), FOXC1 (rs2745572) and TXNRD2 (rs35934224) genes as risk factors for primary open-angle glaucoma development in a Brazilian cohort. Ophthalmic Genet. 2023 May 4;44(3):246–52.
Or L, Barkana Y, Hecht I, Weiner C, Einan-Lifshitz A, Pras E. FOXC1 variant in a family with anterior segment dysgenesis and normal-tension glaucoma. Exp Eye Res. 2020 Nov;200:108220.
Xu J, Fu C, Sun Y, Wen X, Chen CB, Huang C, et al. Untargeted and Oxylipin-Targeted Metabolomics Study on the Plasma Samples of Primary Open-Angle Glaucoma Patients. Biomolecules. 2024 Mar 5;14(3):307.
Zahra W, Rai SN, Birla H, Singh S Sen, Dilnashin H, Rathore AS, et al. The Global Economic Impact of Neurodegenerative Diseases: Opportunities and Challenges. In: Bioeconomy for Sustainable Development. Singapore: Springer Singapore; 2020. p. 333–45.
Botello-Marabotto M, Martínez-Bisbal MC, Pinazo-Durán MD, Martínez-Máñez R. Tear metabolomics for the diagnosis of primary open-angle glaucoma. Talanta. 2024 Jun;273:125826.
Verma SS, Gudiseva H V., Chavali VRM, Salowe RJ, Bradford Y, Guare L, et al. A multi-cohort genome-wide association study in African ancestry individuals reveals risk loci for primary open-angle glaucoma. Cell. 2024 Jan;187(2):464-480.e10.
Gutiérrez Martín LC. Update on the diagnosis and treatment of normotensive glaucoma. Arch Soc Esp Oftalmol. 2023 Jun;98(6):344–50.
Glannon W. Key Concepts: Endophenotypes. Philosophy, Psychiatry, & Psychology. 2003 Sep;10(3):277–84.
Gao XR, Wu F, Yuhas PT, Rasel RK, Chiariglione M. Automated vertical cup-to-disc ratio determination from fundus images for glaucoma detection. Sci Rep. 2024 Feb 24;14(1):4494.
Han X, Gharahkhani P, Hamel AR, Ong JS, Rentería ME, Mehta P, et al. Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. Nat Genet. 2023 Jul 29;55(7):1116–25.
Avasarala JR, Jones JR, Rogers CR. Forkhead box C1 gene variant causing glaucoma and small vessel angiopathy can mimic multiple sclerosis. Mult Scler Relat Disord. 2018 May;22:157–60.
Sitinjak BDP, Murdaya N, Rachman TA, Zakiyah N, Barliana MI. The Potential of Single Nucleotide Polymorphisms (SNPs) as Biomarkers and Their Association with the Increased Risk of Coronary Heart Disease: A Systematic Review. Vasc Health Risk Manag. 2023 May;Volume 19:289–301.
Smith GD. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004 Feb 1;33(1):30–42.
Sanderson E, Glymour MM, Holmes M V., Kang H, Morrison J, Munafò MR, et al. Mendelian randomization. Nature Reviews Methods Primers. 2022 Feb 10;2(1):6.
Boehm FJ, Zhou X. Statistical methods for Mendelian randomization in genome-wide association studies: A review. Comput Struct Biotechnol J. 2022;20:2338–51.
Hartley AE, Power GM, Sanderson E, Smith GD. A Guide for Understanding and Designing Mendelian Randomization Studies in the Musculoskeletal Field. JBMR Plus. 2022 Oct 20;6(10).
Richmond RC, Davey Smith G. Mendelian Randomization: Concepts and Scope. Cold Spring Harb Perspect Med. 2022 Jan;12(1):a040501.
Grant AJ, Burgess S. Pleiotropy robust methods for multivariable Mendelian randomization. Stat Med. 2021 Nov 20;40(26):5813–30.
Burgess S, Thompson SG. Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects. Am J Epidemiol. 2015 Feb 15;181(4):251–60.
Privé F, Vilhjálmsson BJ, Aschard H, Blum MGB. Making the Most of Clumping and Thresholding for Polygenic Scores. The American Journal of Human Genetics. 2019 Dec;105(6):1213–21.
Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet. 2018 Aug 29;19(8):491–504.
Allegrini AG, Baldwin JR, Barkhuizen W, Pingault J. Research Review: A guide to computing and implementing polygenic scores in developmental research. Journal of Child Psychology and Psychiatry. 2022 Oct 30;63(10):1111–24.
Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015 Mar 2;47(3):291–5.
Platt A, Vilhjálmsson BJ, Nordborg M. Conditions Under Which Genome-Wide Association Studies Will be Positively Misleading. Genetics. 2010 Nov 1;186(3):1045–52.
Pettit RW, Amos CI. Linkage Disequilibrium Score Statistic Regression for Identifying Novel Trait Associations. Curr Epidemiol Rep. 2022 Jun 24;9(3):190–9.
Cheng B, Liang C, Li P, Liu L, Cheng S, Ma M, et al. Evaluating the Genetic Correlations Between Left-Handedness and Mental Disorder Using Linkage Disequilibrium Score Regression and Transcriptome-Wide Association Study. Biochem Genet. 2020 Apr 25;58(2):348–58.
Wand H, Lambert SA, Tamburro C, Iacocca MA, O’Sullivan JW, Sillari C, et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature. 2021 Mar 11;591(7849):211–9.
Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020 Dec 18;12(1):44.
Slunecka JL, van der Zee MD, Beck JJ, Johnson BN, Finnicum CT, Pool R, et al. Implementation and implications for polygenic risk scores in healthcare. Hum Genomics. 2021 Dec 20;15(1):46.
Wand H, Lambert SA, Tamburro C, Iacocca MA, O’Sullivan JW, Sillari C, et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature. 2021 Mar 11;591(7849):211–9.
Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016 Jul 16;48(7):709–17.
Werme J, van der Sluis S, Posthuma D, de Leeuw CA. An integrated framework for local genetic correlation analysis. Nat Genet. 2022 Mar 14;54(3):274–82.
Patsopoulos NA, Baranzini SE, Santaniello A, Shoostari P, Cotsapas C, Wong G, et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science (1979). 2019 Sep 27;365(6460).
Gharahkhani P, Jorgenson E, Hysi P, Khawaja AP, Pendergrass S, Han X, et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat Commun. 2021 Feb 24;12(1):1258.
Han X, Steven K, Qassim A, Marshall HN, Bean C, Tremeer M, et al. Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA. The American Journal of Human Genetics. 2021 Jul;108(7):1204–16.
MacGregor S, Ong JS, An J, Han X, Zhou T, Siggs OM, et al. Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. Nat Genet. 2018 Aug 27;50(8):1067–71.
Currant H, Hysi P, Fitzgerald TW, Gharahkhani P, Bonnemaijer PWM, Senabouth A, et al. Genetic variation affects morphological retinal phenotypes extracted from UK Biobank optical coherence tomography images. PLoS Genet. 2021 May 12;17(5):e1009497.
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018 Oct 10;562(7726):203–9.
McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood A, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016 Oct 22;48(10):1279–83.
Walter K, Min JL, Huang J, Crooks L, Memari Y, McCarthy S, et al. The UK10K project identifies rare variants in health and disease. Nature. 2015 Oct 1;526(7571):82–90.
Han X, Steven K, Qassim A, Marshall HN, Bean C, Tremeer M, et al. Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA. The American Journal of Human Genetics. 2021 Jul;108(7):1204–16.
McKnight CM, Newnham JP, Stanley FJ, Mountain JA, Landau LI, Beilin LJ, et al. Birth of a cohort — the first 20 years of the Raine study. Medical Journal of Australia. 2012 Dec 10;197(11–12):608–10.
Dontje ML, Eastwood P, Straker L. Western Australian pregnancy cohort (Raine) Study: Generation 1. BMJ Open. 2019 May 27;9(5):e026276.
Lee SSY, Lingham G, Yazar S, Sanfilippo PG, Charng J, Chen FK, et al. Rationale and protocol for the 7- and 8-year longitudinal assessments of eye health in a cohort of young adults in the Raine Study. BMJ Open. 2020 Mar 25;10(3):e033440.
Yazar S, Forward H, McKnight CM, Tan A, Soloshenko A, Oates SK, et al. Raine Eye Health Study: Design, Methodology and Baseline Prevalence of Ophthalmic Disease in a Birth-cohort Study of Young Adults. Ophthalmic Genet. 2013 Dec 10;34(4):199–208.
Diaz Torres S, Sze-Yee Lee S, Marín L, Campos A, Lingham G, Ong JS, et al. Uncovering Novel Genetic Loci and Biological Pathways Associated with Age-Related Cataracts through GWAS Meta-Analysis. Nature Portfolio. 2023 Apr 19;1.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics. 2007 Sep;81(3):559–75.
Zheng Z, Liu S, Sidorenko J, Wang Y, Lin T, Yengo L, et al. Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries. Nat Genet. 2024 Apr 30;
Márquez-Luna C, Gazal S, Loh PR, Kim SS, Furlotte N, Auton A, et al. Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets. Nat Commun. 2021 Oct 18;12(1):6052.
Binzer S, Jiang X, Hillert J, Manouchehrinia A. Depression and multiple sclerosis: A bidirectional Mendelian randomisation study. Multiple Sclerosis Journal. 2021 Oct 19;27(11):1799–802.
Au Yeung SL, Borges MC, Lawlor DA. Association of Genetic Instrumental Variables for Lung Function on Coronary Artery Disease Risk. Circ Genom Precis Med. 2018 Apr;11(4).
Han X, Gharahkhani P, Hamel AR, Ong JS, Rentería ME, Mehta P, et al. Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. Nat Genet. 2023 Jul 29;55(7):1116–25.
Hemelings R, Elen B, Barbosa-Breda J, Blaschko MB, De Boever P, Stalmans I. Deep learning on fundus images detects glaucoma beyond the optic disc. Sci Rep. 2021 Oct 13;11(1):20313.
Khan MW, Sharif M, Yasmin M, Saba T. CDR based glaucoma detection using fundus images: a review. International Journal of Applied Pattern Recognition. 2017;4(3):261.
Richter GM, Sylvester B, Chu Z, Burkemper B, Madi I, Chang R, et al. Peripapillary microvasculature in the retinal nerve fiber layer in glaucoma by optical coherence tomography angiography: focal structural and functional correlations and diagnostic performance. Clinical Ophthalmology. 2018 Nov;Volume 12:2285–96.
Tabl AA, Tabl MA. Correlation between OCT-angiography and photopic negative response in patients with primary open angle glaucoma. Int Ophthalmol. 2022 Nov 28;43(6):1889–901.
Richter GM, Madi I, Chu Z, Burkemper B, Chang R, Zaman A, et al. Structural and Functional Associations of Macular Microcirculation in the Ganglion Cell-Inner Plexiform Layer in Glaucoma Using Optical Coherence Tomography Angiography. J Glaucoma. 2018 Mar;27(3):281–90.
Abalo-Lojo JM, Treus A, Arias M, Gómez-Ulla F, Gonzalez F. Longitudinal study of retinal nerve fiber layer thickness changes in a multiple sclerosis patients cohort: A long term 5 year follow-up. Mult Scler Relat Disord. 2018 Jan;19:124–8.
Al-Mujaini AS, Al-Mujaini MS, Sabt BI. Retinal nerve fiber layer thickness in multiple sclerosis with and without optic neuritis: a four-year follow-up study from Oman. BMC Ophthalmol. 2021 Dec 12;21(1):391.
Richter GM, Chang R, Situ B, Chu Z, Burkemper B, Reznik A, et al. Diagnostic Performance of Macular Versus Peripapillary Vessel Parameters by Optical Coherence Tomography Angiography for Glaucoma. Transl Vis Sci Technol. 2018 Dec 6;7(6):21.
Thompson D, Wells D, Selzam S, Peneva I, Moore R, Sharp K, et al. UK Biobank release and systematic evaluation of optimised polygenic risk scores for 53 diseases and quantitative traits. medRxiv. 2022;1–24.
Travers BS, Tsang BKT, Barton JL. Multiple sclerosis: Diagnosis, disease-modifying therapy and prognosis. Aust J Gen Pract. 2022 Apr 1;51(4):199–206.
Ford H. Clinical presentation and diagnosis of multiple sclerosis. Clinical Medicine. 2020 Jul;20(4):380–3.
Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, et al. Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities. Sensors. 2022 Oct 16;22(20):7856.
McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and Treatment of Multiple Sclerosis. JAMA. 2021 Feb 23;325(8):765.
Patsopoulos NA, Barcellos LF, Hintzen RQ, Schaefer C, van Duijn CM, Noble JA, et al. Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects. PLoS Genet. 2013 Nov 21;9(11):e1003926.
Munger KL, Bentzen J, Laursen B, Stenager E, Koch-Henriksen N, Sørensen TI, et al. Childhood body mass index and multiple sclerosis risk: a long-term cohort study. Multiple Sclerosis Journal. 2013 Sep 2;19(10):1323–9.
Handel AE, Williamson AJ, Disanto G, Dobson R, Giovannoni G, Ramagopalan S V. Smoking and Multiple Sclerosis: An Updated Meta-Analysis. PLoS One. 2011 Jan 13;6(1):e16149.
Ciapă MA, Șalaru DL, Stătescu C, Sascău RA, Bogdănici CM. Optic Neuritis in Multiple Sclerosis—A Review of Molecular Mechanisms Involved in the Degenerative Process. Curr Issues Mol Biol. 2022 Sep 2;44(9):3959–79.
Wu G, Parker Harp C, Shindler K. Optic Neuritis: A Model for the Immuno-pathogenesis of Central Nervous System Inflammatory Demyelinating Diseases. Curr Immunol Rev. 2015 Aug 18;11(2):85–92.
Fjeldstad C, Bemben M, Pardo G. Reduced retinal nerve fiber layer and macular thickness in patients with multiple sclerosis with no history of optic neuritis identified by the use of spectral domain high-definition optical coherence tomography. Journal of Clinical Neuroscience. 2011 Nov;18(11):1469–72.
Bostan M, Chua J, Sim YC, Tan B, Bujor I, Wong D, et al. Microvascular changes in the macular and parafoveal areas of multiple sclerosis patients without optic neuritis. Sci Rep. 2022 Aug 3;12(1):13366.
Craig JE, Han X, Qassim A, Hassall M, Cooke Bailey JN, Kinzy TG, et al. Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nat Genet. 2020 Feb 20;52(2):160–6.
Shin HT, Yoon BW, Seo JH. Analysis of risk allele frequencies of single nucleotide polymorphisms related to open-angle glaucoma in different ethnic groups. BMC Med Genomics. 2021 Dec 16;14(1):80.
dc.rights.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Biología
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/b6c91a0f-bb9e-4ca3-a2d0-89b1e170d3f6/download
https://repositorio.unbosque.edu.co/bitstreams/99d009cc-ece6-4300-af5f-c6e77c896952/download
https://repositorio.unbosque.edu.co/bitstreams/8f3a6362-a485-4ad3-b4ae-f56db9642def/download
https://repositorio.unbosque.edu.co/bitstreams/561634b5-f6c0-4326-a138-acdda1e72733/download
bitstream.checksum.fl_str_mv a6e581af4014221c8fdfb6a1b3f15854
17cc15b951e7cc6b3728a574117320f9
ad9145843ca1d63673eb14722b6d1795
69c7d1fea1b67f73a10c194afeb39b1b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1849967314341986304
spelling Diaz Torres, SantiagoValero Puentes, Sebastian DavidValero Puentes, Sebastian David [0000-0001-7942-2641]2025-10-17T15:19:01Z2024-05https://hdl.handle.net/20.500.12495/17978instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLa esclerosis múltiple (MS) es una enfermedad neurodegenerativa que afecta al sistema nervioso central, es una enfermedad compleja, es decir, presenta una gran poligenicidad. Actualmente no existe una prueba que permita su detección temprana, lo que implica que al momento de su diagnosis ya se pueden haber desarrollado síntomas como la neuritis óptica. Por su parte, el glaucoma (GC) corresponde a una neuropatía óptica que puede presentarse como una comorbilidad de MS, provocando defectos en el campo visual debido a la pérdida progresiva de células ganglionares en la capa de fibras nerviosas de la retina (RNFL). Se desconoce si existe una relación genética causal entre las dos condiciones y la dirección de su asociación, aun cuando estudios observacionales han demostrado que los pacientes diagnosticados con MS pueden presentar GC con una prevalencia mayor al 15%. El presente trabajo evaluó los vínculos genéticos presentes entre estas dos afecciones, mediante el análisis de la influencia del riesgo genético de MS en marcadores clínicos de neuropatía óptica. Tales como RNFL y el grosor de la capa plexiforme interna de células ganglionares (GCIPL). Para tal efecto, se llevaron a cabo análisis de aleatorización mendeliana (MR) y el puntaje de riesgo poligénico (PRS). Encontrando que la aparente relación causal entre MS y el glaucoma primario de ángulo abierto (POAG) se encuentra mediada por la RNFL a través de mecanismos pleiotrópicos entre las enfermedades, siendo consistente con los resultados de correlación genética y colocalización entre los dos fenotipos (MS y POAG). Finalmente, se identificó el potencial de modelos de predicción que combinen el puntaje de riesgo poligénico de RNFL y MS como una herramienta para identificar pacientes con riesgo de desarrollar MS a una edad más temprana. Facilitando el desarrollo de estrategias que propicien una detección temprana de la condición, previniendo así la degeneración del nervio óptico.QIMR- Berghofer Medical Research InstituteUniversity of QueenslandBiólogoPregradoMultiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system. It is a complex disease characterized by high polygenicity. Currently, there is no test available for its early detection, meaning that by the time of diagnosis, symptoms such as optic neuritis may have already developed. Glaucoma (GC), on the other hand, is an optic neuropathy that can occur as a comorbidity of MS, causing visual field defects due to the progressive loss of ganglion cells in the retinal nerve fiber layer (RNFL). It is unknown whether there is a causal genetic relationship between the two conditions and the direction of their association, even though observational studies have shown that patients diagnosed with MS can present GC with a prevalence greater than 15%. This study evaluated the genetic links between these two conditions by analyzing the influence of MS genetic risk on clinical markers of optic neuropathy, such as RNFL and the ganglion cell-inner plexiform layer (GCIPL) thickness. To this end, Mendelian randomization (MR) and polygenic risk score (PRS) analyses were conducted. The findings indicate that the apparent causal relationship between MS and primary open-angle glaucoma (POAG) is mediated by RNFL through pleiotropic mechanisms between the diseases. This is consistent with genetic correlation and colocalization results between the two phenotypes (MS and POAG). Finally, the potential of prediction models combining the polygenic risk scores of RNFL and MS was identified as a tool to identify patients at risk of developing MS at an earlier age, facilitating the development of strategies that promote early detection of the condition and thereby prevent optic nerve degeneration.application/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2GlaucomaEsclerosis múltipleGlaucoma Primario de Ángulo AbiertoCapa de Fibras Nerviosas de la RetinaCapa Plexiforme Interna de Células Ganglionares570GlaucomaMultiple SclerosisPrimary Open-Angle GlaucomaRetinal Nerve Fiber LayerGanglion Cell–Inner Plexiform LayerDescubriendo los vínculos genéticos entre la esclerosis múltiple y el glaucomaDiscovering the genetic links between multiple sclerosis and glaucomaBiologíaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aaBazelier MT, Mueller-Schotte S, Leufkens HG, Uitdehaag BM, van Staa T, de Vries F. Risk of cataract and glaucoma in patients with multiple sclerosis. Multiple Sclerosis Journal. 2012 May 24;18(5):628–38.Domínguez Moreno R, Morales Esponda M, Rossiere Echazarreta NL, Olan Triano R, Gutiérrez Morales LJ. Esclerosis múltiple: revisión de la literatura médica. Revista de la Facultas de Medicina de la UNAM. 2012;55(5):27–35.Ruz C, Alcantud JL, Vives Montero F, Duran R, Bandres-Ciga S. Proteotoxicity and Neurodegenerative Diseases. Int J Mol Sci. 2020 Aug 6;21(16):5646.Nabizadeh F, Sardaripour A, Azami M. Glaucoma and Cataract in Multiple Sclerosis. Arch Neurosci. 2022 Aug 12;9(3).Navarro Castro CE. Estudio de costo-utilidad de ocrelizumab vs rituximab en el tratamiento de la esclerosis múltiple recaída-remisión en Colombia [Magíster]. [Bogotá D.C.]: Universidad El Bosque; 2022.Dahham J, Rizk R, Kremer I, Evers SMAA, Hiligsmann M. Economic Burden of Multiple Sclerosis in Low- and Middle‐Income Countries: A Systematic Review. Pharmacoeconomics. 2021 Jul 6;39(7):789–807.Dirani M, Crowston JG, Taylor PS, Moore PT, Rogers S, Pezzullo ML, et al. Economic impact of primary open-angle glaucoma in Australia. Clin Exp Ophthalmol. 2011 Sep;39(7):623–32.Palmer AJ, Colman S, O’Leary B, Taylor B V, Simmons RD. The economic impact of multiple sclerosis in Australia in 2010. Multiple Sclerosis Journal. 2013 Oct 7;19(12):1640–6.Varma R, Lee PP, Goldberg I, Kotak S. An Assessment of the Health and Economic Burdens of Glaucoma. Am J Ophthalmol. 2011 Oct;152(4):515–22.Platero Armero JL. Impacto en el estado de inflamación de pacientes con esclerosis múltiple, tras tratamiento con epigalocatequina galato y aceite de coco. Disminución del riesgo cardiaco [Tesis Doctoral]. [Valencia]: Universidad Católica de Valencia San Vicente Mártir; 2022.Gu W, Tagg NT, Panchal NL, Brown-Bickerstaff CA, Nyman JM, Reynolds ME. Incidence of Optic Neuritis and the Associated Risk of Multiple Sclerosis for Service Members of U.S. Armed Forces. Mil Med. 2023 Mar 20;188(3–4):e697–702.Milo R, Kahana E. Multiple sclerosis: Geoepidemiology, genetics and the environment. Autoimmun Rev. 2010 Mar;9(5):A387–94.Berge T, Leikfoss I, Harbo H. From Identification to Characterization of the Multiple Sclerosis Susceptibility Gene CLEC16A. Int J Mol Sci. 2013 Feb 25;14(3):4476–97.Rubio JP, Stankovich J, Field J, Tubridy N, Marriott M, Chapman C, et al. Replication of KIAA0350, IL2RA, RPL5 and CD58 as multiple sclerosis susceptibility genes in Australians. Genes Immun. 2008 Oct 24;9(7):624–30.Kurtzke JF. Epidemiology and Etiology of Multiple Sclerosis. Phys Med Rehabil Clin N Am. 2005 May;16(2):327–49.Sawcer S, Franklin RJM, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014 Jul;13(7):700–9.The International Multiple Sclerosis Genetics Consortium (IMSGC). IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci. Genes Immun. 2010 Jul 17;11(5):397–405.Leikfoss IS, Mero IL, Dahle MK, Lie BA, Harbo HF, Spurkland A, et al. Multiple sclerosis-associated single-nucleotide polymorphisms in CLEC16A correlate with reduced SOCS1 and DEXI expression in the thymus. Genes Immun. 2013 Jan 15;14(1):62–6.Zoledziewska M, Costa G, Pitzalis M, Cocco E, Melis C, Moi L, et al. Variation within the CLEC16A gene shows consistent disease association with both multiple sclerosis and type 1 diabetes in Sardinia. Genes Immun. 2009;10(1):15–7.van Luijn MM, Kreft KL, Jongsma ML, Mes SW, Wierenga-Wolf AF, van Meurs M, et al. Multiple sclerosis-associated CLEC16A controls HLA class II expression via late endosome biogenesis. Brain. 2015 Jun;138(6):1531–47.Eriksson AM, Leikfoss IS, Abrahamsen G, Sundvold V, Isom MM, Keshari PK, et al. Exploring the role of the multiple sclerosis susceptibility gene CLEC16A in T cells. Scand J Immunol. 2021 Jul 20;94(1).Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. 2016 Feb;15(2):198–209.Pisapia L, Cerillo I, Farina F, Zimbardo A, Barba P, Orefice G, et al. The HLA‐DRB1 risk alleles for multiple sclerosis are differentially expressed in blood cells of patients from Southern Italy. Int J Immunogenet. 2019 Dec 17;46(6):479–84.Jones-Odeh E, Hammond CJ. How strong is the relationship between glaucoma, the retinal nerve fibre layer, and neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis? Eye. 2015 Oct 4;29(10):1270–84.Wiggs JL, Aboobakar IF. The genetics of glaucoma: Disease associations, personalised risk assessment and therapeutic opportunities‐A review. Clin Exp Ophthalmol. 2022 Mar 17;50(2):143–62.Miller MA, Fingert JH, Bettis DI. Genetics and genetic testing for glaucoma. Curr Opin Ophthalmol. 2017 Mar;28(2):133–8.Wiggs JL, Pasquale LR. Genetics of glaucoma. Hum Mol Genet. 2017 Aug 1;26(R1):R21–7.Michels TC, Oana I. Glaucoma: Diagnosis and Management. Am Fam Physician [Internet]. 2023 Mar;107(3):253–62. Available from: https://login.ezproxy.unbosque.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&AN=36920817&lang=es&site=eds-live&scope=siteBailey JNC, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet. 2016 Feb 11;48(2):189–94.Liu Y, Allingham RR. Molecular genetics in glaucoma. Exp Eye Res. 2011 Oct;93(4):331–9.Zepeda EM, Branham K, Moroi SE, Bohnsack BL. Surgical outcomes of Glaucoma associated with Axenfeld-Rieger syndrome. BMC Ophthalmol. 2020 Dec 1;20(1):172.Rodrigues TAR, de Souza BB, Bertozzo V de H e, de Castro JNP, Camargo ACL, Costa FF, et al. Association of variants in the ATXN2 (rs7137828), FOXC1 (rs2745572) and TXNRD2 (rs35934224) genes as risk factors for primary open-angle glaucoma development in a Brazilian cohort. Ophthalmic Genet. 2023 May 4;44(3):246–52.Or L, Barkana Y, Hecht I, Weiner C, Einan-Lifshitz A, Pras E. FOXC1 variant in a family with anterior segment dysgenesis and normal-tension glaucoma. Exp Eye Res. 2020 Nov;200:108220.Xu J, Fu C, Sun Y, Wen X, Chen CB, Huang C, et al. Untargeted and Oxylipin-Targeted Metabolomics Study on the Plasma Samples of Primary Open-Angle Glaucoma Patients. Biomolecules. 2024 Mar 5;14(3):307.Zahra W, Rai SN, Birla H, Singh S Sen, Dilnashin H, Rathore AS, et al. The Global Economic Impact of Neurodegenerative Diseases: Opportunities and Challenges. In: Bioeconomy for Sustainable Development. Singapore: Springer Singapore; 2020. p. 333–45.Botello-Marabotto M, Martínez-Bisbal MC, Pinazo-Durán MD, Martínez-Máñez R. Tear metabolomics for the diagnosis of primary open-angle glaucoma. Talanta. 2024 Jun;273:125826.Verma SS, Gudiseva H V., Chavali VRM, Salowe RJ, Bradford Y, Guare L, et al. A multi-cohort genome-wide association study in African ancestry individuals reveals risk loci for primary open-angle glaucoma. Cell. 2024 Jan;187(2):464-480.e10.Gutiérrez Martín LC. Update on the diagnosis and treatment of normotensive glaucoma. Arch Soc Esp Oftalmol. 2023 Jun;98(6):344–50.Glannon W. Key Concepts: Endophenotypes. Philosophy, Psychiatry, & Psychology. 2003 Sep;10(3):277–84.Gao XR, Wu F, Yuhas PT, Rasel RK, Chiariglione M. Automated vertical cup-to-disc ratio determination from fundus images for glaucoma detection. Sci Rep. 2024 Feb 24;14(1):4494.Han X, Gharahkhani P, Hamel AR, Ong JS, Rentería ME, Mehta P, et al. Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. Nat Genet. 2023 Jul 29;55(7):1116–25.Avasarala JR, Jones JR, Rogers CR. Forkhead box C1 gene variant causing glaucoma and small vessel angiopathy can mimic multiple sclerosis. Mult Scler Relat Disord. 2018 May;22:157–60.Sitinjak BDP, Murdaya N, Rachman TA, Zakiyah N, Barliana MI. The Potential of Single Nucleotide Polymorphisms (SNPs) as Biomarkers and Their Association with the Increased Risk of Coronary Heart Disease: A Systematic Review. Vasc Health Risk Manag. 2023 May;Volume 19:289–301.Smith GD. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004 Feb 1;33(1):30–42.Sanderson E, Glymour MM, Holmes M V., Kang H, Morrison J, Munafò MR, et al. Mendelian randomization. Nature Reviews Methods Primers. 2022 Feb 10;2(1):6.Boehm FJ, Zhou X. Statistical methods for Mendelian randomization in genome-wide association studies: A review. Comput Struct Biotechnol J. 2022;20:2338–51.Hartley AE, Power GM, Sanderson E, Smith GD. A Guide for Understanding and Designing Mendelian Randomization Studies in the Musculoskeletal Field. JBMR Plus. 2022 Oct 20;6(10).Richmond RC, Davey Smith G. Mendelian Randomization: Concepts and Scope. Cold Spring Harb Perspect Med. 2022 Jan;12(1):a040501.Grant AJ, Burgess S. Pleiotropy robust methods for multivariable Mendelian randomization. Stat Med. 2021 Nov 20;40(26):5813–30.Burgess S, Thompson SG. Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects. Am J Epidemiol. 2015 Feb 15;181(4):251–60.Privé F, Vilhjálmsson BJ, Aschard H, Blum MGB. Making the Most of Clumping and Thresholding for Polygenic Scores. The American Journal of Human Genetics. 2019 Dec;105(6):1213–21.Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet. 2018 Aug 29;19(8):491–504.Allegrini AG, Baldwin JR, Barkhuizen W, Pingault J. Research Review: A guide to computing and implementing polygenic scores in developmental research. Journal of Child Psychology and Psychiatry. 2022 Oct 30;63(10):1111–24.Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015 Mar 2;47(3):291–5.Platt A, Vilhjálmsson BJ, Nordborg M. Conditions Under Which Genome-Wide Association Studies Will be Positively Misleading. Genetics. 2010 Nov 1;186(3):1045–52.Pettit RW, Amos CI. Linkage Disequilibrium Score Statistic Regression for Identifying Novel Trait Associations. Curr Epidemiol Rep. 2022 Jun 24;9(3):190–9.Cheng B, Liang C, Li P, Liu L, Cheng S, Ma M, et al. Evaluating the Genetic Correlations Between Left-Handedness and Mental Disorder Using Linkage Disequilibrium Score Regression and Transcriptome-Wide Association Study. Biochem Genet. 2020 Apr 25;58(2):348–58.Wand H, Lambert SA, Tamburro C, Iacocca MA, O’Sullivan JW, Sillari C, et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature. 2021 Mar 11;591(7849):211–9.Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020 Dec 18;12(1):44.Slunecka JL, van der Zee MD, Beck JJ, Johnson BN, Finnicum CT, Pool R, et al. Implementation and implications for polygenic risk scores in healthcare. Hum Genomics. 2021 Dec 20;15(1):46.Wand H, Lambert SA, Tamburro C, Iacocca MA, O’Sullivan JW, Sillari C, et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature. 2021 Mar 11;591(7849):211–9.Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016 Jul 16;48(7):709–17.Werme J, van der Sluis S, Posthuma D, de Leeuw CA. An integrated framework for local genetic correlation analysis. Nat Genet. 2022 Mar 14;54(3):274–82.Patsopoulos NA, Baranzini SE, Santaniello A, Shoostari P, Cotsapas C, Wong G, et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science (1979). 2019 Sep 27;365(6460).Gharahkhani P, Jorgenson E, Hysi P, Khawaja AP, Pendergrass S, Han X, et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat Commun. 2021 Feb 24;12(1):1258.Han X, Steven K, Qassim A, Marshall HN, Bean C, Tremeer M, et al. Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA. The American Journal of Human Genetics. 2021 Jul;108(7):1204–16.MacGregor S, Ong JS, An J, Han X, Zhou T, Siggs OM, et al. Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. Nat Genet. 2018 Aug 27;50(8):1067–71.Currant H, Hysi P, Fitzgerald TW, Gharahkhani P, Bonnemaijer PWM, Senabouth A, et al. Genetic variation affects morphological retinal phenotypes extracted from UK Biobank optical coherence tomography images. PLoS Genet. 2021 May 12;17(5):e1009497.Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018 Oct 10;562(7726):203–9.McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood A, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016 Oct 22;48(10):1279–83.Walter K, Min JL, Huang J, Crooks L, Memari Y, McCarthy S, et al. The UK10K project identifies rare variants in health and disease. Nature. 2015 Oct 1;526(7571):82–90.Han X, Steven K, Qassim A, Marshall HN, Bean C, Tremeer M, et al. Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA. The American Journal of Human Genetics. 2021 Jul;108(7):1204–16.McKnight CM, Newnham JP, Stanley FJ, Mountain JA, Landau LI, Beilin LJ, et al. Birth of a cohort — the first 20 years of the Raine study. Medical Journal of Australia. 2012 Dec 10;197(11–12):608–10.Dontje ML, Eastwood P, Straker L. Western Australian pregnancy cohort (Raine) Study: Generation 1. BMJ Open. 2019 May 27;9(5):e026276.Lee SSY, Lingham G, Yazar S, Sanfilippo PG, Charng J, Chen FK, et al. Rationale and protocol for the 7- and 8-year longitudinal assessments of eye health in a cohort of young adults in the Raine Study. BMJ Open. 2020 Mar 25;10(3):e033440.Yazar S, Forward H, McKnight CM, Tan A, Soloshenko A, Oates SK, et al. Raine Eye Health Study: Design, Methodology and Baseline Prevalence of Ophthalmic Disease in a Birth-cohort Study of Young Adults. Ophthalmic Genet. 2013 Dec 10;34(4):199–208.Diaz Torres S, Sze-Yee Lee S, Marín L, Campos A, Lingham G, Ong JS, et al. Uncovering Novel Genetic Loci and Biological Pathways Associated with Age-Related Cataracts through GWAS Meta-Analysis. Nature Portfolio. 2023 Apr 19;1.Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics. 2007 Sep;81(3):559–75.Zheng Z, Liu S, Sidorenko J, Wang Y, Lin T, Yengo L, et al. Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries. Nat Genet. 2024 Apr 30;Márquez-Luna C, Gazal S, Loh PR, Kim SS, Furlotte N, Auton A, et al. Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets. Nat Commun. 2021 Oct 18;12(1):6052.Binzer S, Jiang X, Hillert J, Manouchehrinia A. Depression and multiple sclerosis: A bidirectional Mendelian randomisation study. Multiple Sclerosis Journal. 2021 Oct 19;27(11):1799–802.Au Yeung SL, Borges MC, Lawlor DA. Association of Genetic Instrumental Variables for Lung Function on Coronary Artery Disease Risk. Circ Genom Precis Med. 2018 Apr;11(4).Han X, Gharahkhani P, Hamel AR, Ong JS, Rentería ME, Mehta P, et al. Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. Nat Genet. 2023 Jul 29;55(7):1116–25.Hemelings R, Elen B, Barbosa-Breda J, Blaschko MB, De Boever P, Stalmans I. Deep learning on fundus images detects glaucoma beyond the optic disc. Sci Rep. 2021 Oct 13;11(1):20313.Khan MW, Sharif M, Yasmin M, Saba T. CDR based glaucoma detection using fundus images: a review. International Journal of Applied Pattern Recognition. 2017;4(3):261.Richter GM, Sylvester B, Chu Z, Burkemper B, Madi I, Chang R, et al. Peripapillary microvasculature in the retinal nerve fiber layer in glaucoma by optical coherence tomography angiography: focal structural and functional correlations and diagnostic performance. Clinical Ophthalmology. 2018 Nov;Volume 12:2285–96.Tabl AA, Tabl MA. Correlation between OCT-angiography and photopic negative response in patients with primary open angle glaucoma. Int Ophthalmol. 2022 Nov 28;43(6):1889–901.Richter GM, Madi I, Chu Z, Burkemper B, Chang R, Zaman A, et al. Structural and Functional Associations of Macular Microcirculation in the Ganglion Cell-Inner Plexiform Layer in Glaucoma Using Optical Coherence Tomography Angiography. J Glaucoma. 2018 Mar;27(3):281–90.Abalo-Lojo JM, Treus A, Arias M, Gómez-Ulla F, Gonzalez F. Longitudinal study of retinal nerve fiber layer thickness changes in a multiple sclerosis patients cohort: A long term 5 year follow-up. Mult Scler Relat Disord. 2018 Jan;19:124–8.Al-Mujaini AS, Al-Mujaini MS, Sabt BI. Retinal nerve fiber layer thickness in multiple sclerosis with and without optic neuritis: a four-year follow-up study from Oman. BMC Ophthalmol. 2021 Dec 12;21(1):391.Richter GM, Chang R, Situ B, Chu Z, Burkemper B, Reznik A, et al. Diagnostic Performance of Macular Versus Peripapillary Vessel Parameters by Optical Coherence Tomography Angiography for Glaucoma. Transl Vis Sci Technol. 2018 Dec 6;7(6):21.Thompson D, Wells D, Selzam S, Peneva I, Moore R, Sharp K, et al. UK Biobank release and systematic evaluation of optimised polygenic risk scores for 53 diseases and quantitative traits. medRxiv. 2022;1–24.Travers BS, Tsang BKT, Barton JL. Multiple sclerosis: Diagnosis, disease-modifying therapy and prognosis. Aust J Gen Pract. 2022 Apr 1;51(4):199–206.Ford H. Clinical presentation and diagnosis of multiple sclerosis. Clinical Medicine. 2020 Jul;20(4):380–3.Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, et al. Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities. Sensors. 2022 Oct 16;22(20):7856.McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and Treatment of Multiple Sclerosis. JAMA. 2021 Feb 23;325(8):765.Patsopoulos NA, Barcellos LF, Hintzen RQ, Schaefer C, van Duijn CM, Noble JA, et al. Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects. PLoS Genet. 2013 Nov 21;9(11):e1003926.Munger KL, Bentzen J, Laursen B, Stenager E, Koch-Henriksen N, Sørensen TI, et al. Childhood body mass index and multiple sclerosis risk: a long-term cohort study. Multiple Sclerosis Journal. 2013 Sep 2;19(10):1323–9.Handel AE, Williamson AJ, Disanto G, Dobson R, Giovannoni G, Ramagopalan S V. Smoking and Multiple Sclerosis: An Updated Meta-Analysis. PLoS One. 2011 Jan 13;6(1):e16149.Ciapă MA, Șalaru DL, Stătescu C, Sascău RA, Bogdănici CM. Optic Neuritis in Multiple Sclerosis—A Review of Molecular Mechanisms Involved in the Degenerative Process. Curr Issues Mol Biol. 2022 Sep 2;44(9):3959–79.Wu G, Parker Harp C, Shindler K. Optic Neuritis: A Model for the Immuno-pathogenesis of Central Nervous System Inflammatory Demyelinating Diseases. Curr Immunol Rev. 2015 Aug 18;11(2):85–92.Fjeldstad C, Bemben M, Pardo G. Reduced retinal nerve fiber layer and macular thickness in patients with multiple sclerosis with no history of optic neuritis identified by the use of spectral domain high-definition optical coherence tomography. Journal of Clinical Neuroscience. 2011 Nov;18(11):1469–72.Bostan M, Chua J, Sim YC, Tan B, Bujor I, Wong D, et al. Microvascular changes in the macular and parafoveal areas of multiple sclerosis patients without optic neuritis. Sci Rep. 2022 Aug 3;12(1):13366.Craig JE, Han X, Qassim A, Hassall M, Cooke Bailey JN, Kinzy TG, et al. Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nat Genet. 2020 Feb 20;52(2):160–6.Shin HT, Yoon BW, Seo JH. Analysis of risk allele frequencies of single nucleotide polymorphisms related to open-angle glaucoma in different ethnic groups. BMC Med Genomics. 2021 Dec 16;14(1):80.spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf680538https://repositorio.unbosque.edu.co/bitstreams/b6c91a0f-bb9e-4ca3-a2d0-89b1e170d3f6/downloada6e581af4014221c8fdfb6a1b3f15854MD51trueAnonymousREAD2026-10-17LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/99d009cc-ece6-4300-af5f-c6e77c896952/download17cc15b951e7cc6b3728a574117320f9MD54falseAnonymousREADCarta de autorizacion.pdfapplication/pdf2076553https://repositorio.unbosque.edu.co/bitstreams/8f3a6362-a485-4ad3-b4ae-f56db9642def/downloadad9145843ca1d63673eb14722b6d1795MD56falseBiblioteca - (Publicadores)READCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81161https://repositorio.unbosque.edu.co/bitstreams/561634b5-f6c0-4326-a138-acdda1e72733/download69c7d1fea1b67f73a10c194afeb39b1bMD55falseAnonymousREAD20.500.12495/17978oai:repositorio.unbosque.edu.co:20.500.12495/179782025-10-17T15:20:04.059407Zhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2026-10-17https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=