Atrofia multisistémica del tipo cerebelosa: implicaciones patológicas de la conectividad neuronal
Introducción. La atrofia multisistémica (MSA) es una enfermedad neurodegenerativa progresiva que afecta principal mente la materia blanca (WM, por su sigla en inglés). Este tipo de atrofia se caracteriza por ocasionar inclusiones cito plasmáticas gliales de la proteína alfa-sinucleína, además de dis...
- Autores:
-
Guardias Garzon, Juan Andres
Caceres Urbano, Laura Daniela
Leon Malkun, Luis Alejandro
Sandoval Traslaviña, Karen
Huerfano Tamaro, Nataly Andrea
Gutiérrez Huertas, Jessica Liliana
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2023
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14360
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/14360
- Palabra clave:
- Atrofia de múltiples sistemas
Alfa-sinucleína
Ataxia cerebelosa
Red en modo predeterminado
Imagen de difusión por resonancia magnética
Multi-system atrophy
Alpha-synuclein
Cerebellar ataxia
Default mode network
Diffusion-weighted magnetic resonance imaging.
W100
- Rights
- License
- Attribution 4.0 International
id |
UNBOSQUE2_92c826655ce8c3ad50b4f34fc96c7ca4 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14360 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Atrofia multisistémica del tipo cerebelosa: implicaciones patológicas de la conectividad neuronal |
dc.title.translated.none.fl_str_mv |
Multiple system atrophy cerebellar variant: pathological implications of the neural connectivity |
title |
Atrofia multisistémica del tipo cerebelosa: implicaciones patológicas de la conectividad neuronal |
spellingShingle |
Atrofia multisistémica del tipo cerebelosa: implicaciones patológicas de la conectividad neuronal Atrofia de múltiples sistemas Alfa-sinucleína Ataxia cerebelosa Red en modo predeterminado Imagen de difusión por resonancia magnética Multi-system atrophy Alpha-synuclein Cerebellar ataxia Default mode network Diffusion-weighted magnetic resonance imaging. W100 |
title_short |
Atrofia multisistémica del tipo cerebelosa: implicaciones patológicas de la conectividad neuronal |
title_full |
Atrofia multisistémica del tipo cerebelosa: implicaciones patológicas de la conectividad neuronal |
title_fullStr |
Atrofia multisistémica del tipo cerebelosa: implicaciones patológicas de la conectividad neuronal |
title_full_unstemmed |
Atrofia multisistémica del tipo cerebelosa: implicaciones patológicas de la conectividad neuronal |
title_sort |
Atrofia multisistémica del tipo cerebelosa: implicaciones patológicas de la conectividad neuronal |
dc.creator.fl_str_mv |
Guardias Garzon, Juan Andres Caceres Urbano, Laura Daniela Leon Malkun, Luis Alejandro Sandoval Traslaviña, Karen Huerfano Tamaro, Nataly Andrea Gutiérrez Huertas, Jessica Liliana |
dc.contributor.advisor.none.fl_str_mv |
Ramirez Mosquera , Esteban |
dc.contributor.author.none.fl_str_mv |
Guardias Garzon, Juan Andres Caceres Urbano, Laura Daniela Leon Malkun, Luis Alejandro Sandoval Traslaviña, Karen Huerfano Tamaro, Nataly Andrea Gutiérrez Huertas, Jessica Liliana |
dc.subject.none.fl_str_mv |
Atrofia de múltiples sistemas Alfa-sinucleína Ataxia cerebelosa Red en modo predeterminado Imagen de difusión por resonancia magnética |
topic |
Atrofia de múltiples sistemas Alfa-sinucleína Ataxia cerebelosa Red en modo predeterminado Imagen de difusión por resonancia magnética Multi-system atrophy Alpha-synuclein Cerebellar ataxia Default mode network Diffusion-weighted magnetic resonance imaging. W100 |
dc.subject.keywords.none.fl_str_mv |
Multi-system atrophy Alpha-synuclein Cerebellar ataxia Default mode network Diffusion-weighted magnetic resonance imaging. |
dc.subject.nlm.none.fl_str_mv |
W100 |
description |
Introducción. La atrofia multisistémica (MSA) es una enfermedad neurodegenerativa progresiva que afecta principal mente la materia blanca (WM, por su sigla en inglés). Este tipo de atrofia se caracteriza por ocasionar inclusiones cito plasmáticas gliales de la proteína alfa-sinucleína, además de disminuir la integridad, la desmielinización y los cambios en los diámetros axonales de la WM (trastornos del movimiento). Objetivo. Evaluar los hallazgos patológicos de la conectividad encontrados en casos de atrofia multisistémica de tipo cerebelosa (MSA-C) y las posibles conexiones que estos muestran con las señales clínicas, la fisiopatología de la enfermedad, la imagenología y los blancos terapéuticos mediante una revisión sistemática de la literatura científica disponible. Métodos. Se realizó una búsqueda bibliográfica en las bases de datos PubMed, ResearchGate, Embase y Scopus con los siguientes términos claves: “Multiple system atrophy” AND “therapy” OR “diagnostic imagining” OR “physiopathology” OR epidemiology”. Se seleccionaron artículos, en español e inglés, publicados entre 1989 y 2022. Tras aplicar los criterios de inclusión y exclusión y eliminar duplicados, se seleccionaron 61 estudios que comparaban los temas objetivo del estudio. Resultados. La conectividad funcional disminuida en la red de control ejecutivo izquierdo (ECN), relacionada con los circuitos de los ganglios basales y el tálamo, ocasiona desconexión cerebelo-prefrontal y cerebelo-amigdaloide / parahipocampal, lo cual tiene manifestaciones neuro histopatológicas que están correlacionadas con ciertos hallazgos imagenológicos. Conclusión. Se evidenció que resultados de diversos estudios han permitido dar viabilidad a la comprensión de la conectividad nodal identificada y sus manifestaciones anatomo-patológicas y funcionales en el curso natural de la MSA-C. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-07 |
dc.date.accessioned.none.fl_str_mv |
2025-05-15T20:51:15Z |
dc.date.available.none.fl_str_mv |
2025-05-15T20:51:15Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14360 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14360 |
identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
1. Papp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci. 1989;94(1-3):79-100. Disponible en: https://doi.org/10.1016/0022-510x(89)90219-0. 2. Raccagni C, Nonnekes J, Bloem BR, Peball M, Boehme C, Seppi K, et al. Gait and postural disorders in parkinsonism: a clinical approach. J Neurol. 2020;267(11):3169-76. Disponible en: https://doi.org/10.1007/s00415-019-09382-1. 3. Wenning GK, Geser F, Krismer F, Seppi K, Duerr S, Boesch S, et al. The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol. 2013;12(3):264-74. Disponible en: https://doi.org/10.1016/S1474-4422(12)70327-7 4. Bower JH, Maraganore DM, McDonnell SK, Rocca WA. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology. 1997;49(5):1284-8. Disponible en: https://doi.org/10.1212/WNL.49.5.1284 5. Schrag A, Ben-Shlomo Y, Quinn NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet. 1999;354(9192):1771-5. Disponible en: https://doi.org/10.1016/s0140-6736(99)04137-9 6. Yabe I, Soma H, Takei A, Fujiki N, Yanagihara T, Sasaki H. MSA-C is the predominant clinical phenotype of MSA in Japan: analysis of 142 patients with probable MSA. J Neurol Sci. 2006;249(2):115-21. Disponible en: https://doi.org/10.1016/j.jns.2006.05.064. 7. Ozawa T, Onodera O. Multiple system atrophy: clinicopathological characteristics in Japanese patients. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(5):251-8. Disponible en: https://doi.org/10.2183/pjab.93.016 8. Seo JH, Yong SW, Song SK, Lee JE, Sohn YH, Lee PH. A case-control study of multiple system atrophy in Korean patients. Mov Disord. 2010;25(12):1953-9. Disponible en: https://doi.org/10.1002/mds.23185. 9. Tseng FS, Deng X, Ong YL, Li HH, Tan EK. Multiple System Atrophy (MSA) and smoking: a meta-analysis and mechanistic insights. Aging (Albany NY). 2020;12(21):21959-70. Disponible en: https://doi.org/10.18632/aging.104021. 10. Vanacore N, Bonifati V, Fabbrini G, Colosimo C, de Michele G, Marconi R, et al. Case-control study of multiple system atrophy. Mov Disord. 2005;20(2):158-63. Disponible en: https://doi.org/10.1002/mds.20303 11. Folke J, Rydbirk R, Løkkegaard A, Salvesen L, Hejl AM, Starhof C, et al. Distinct Autoimmune Anti-α-Synuclein Antibody Patterns in Multiple System Atrophy and Parkinson’s Disease. Front Immunol. 2019;10:2253. Disponible en: https://doi.org/10.3389/fimmu.2019.02253 12. Carmona-Abellan M, del Pino R, Murueta-Goyena A, Acera M, Tijero B, Berganzo K, et al. Multiple system atrophy: Clinical, evolutive and histopathological characteristics of a series of cases. Neurologia (Engl Ed). 2021;S0213-4853(21)00073-6. Disponible en: https://doi.org/10.1016/j.nrl.2021.04.007 13. Trinkaus VA, Riera-Tur I, Martínez-Sánchez A, Bäuerlein FJB, Guo Q, Arzberger T, et al. In situ architecture of neuronal α-Synuclein inclusions. Nat Commun. 2021;12(1):2110. Disponible en: https://doi.org/10.1038/s41467-021-22108-0. 14. Van der Perren A, Gelders G, Fenyi A, Bousset L, Brito F, Peelaerts W, et al. The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson’s disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol. 2020;139(6):977-1000. Disponible en: https://doi.org/10.1007/s00401-020-02157-3 15. Honjo Y, Ayaki T, Horibe T, Ito H, Takahashi R, Kawakami K. FKBP12-immunopositive inclusions in patients with α-synucleinopathies. Brain Res. 2018;1680:39-45. Disponible en: https://doi.org/10.1016/j.brainres.2017.12.012 16. Heras-Garvin A, Weckbecker D, Ryazanov S, Leonov A, Griesinger C, Giese A, et al. Anle138b modulates α-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. Mov Disord. 2019;34(2):255-63. Disponible en: https://doi.org/10.1002/mds.27562 17. Jao CW, Soong BW, Huang CW, Duan CA, Wu CC, Wu YT, et al. Diffusion Tensor Magnetic Resonance Imaging for Differentiating Multiple System Atrophy Cerebellar Type and Spinocerebellar Ataxia Type 3. Brain Sci. 2019;9(12):254. Disponible en: https://doi.org/10.3390/brainsci9120354. 18. Lu CF, Soong BW, Wu HM, Teng S, Wang PS, Wu YT. Disrupted cerebellar connectivity reduces whole-brain network efficiency in multiple system atrophy. Mov Disord. 2013;28(3):362-9. Disponible en: https://doi.org/10.1002/mds.25314 19. Kawabata K, Hara K, Watanabe H, Bagarinao E, Ogura A, Masuda M, et al. Alterations in Cognition-Related Cerebello-Cerebral Networks in Multiple System Atrophy. Cerebellum. 2019;18(4):770-80. Disponible en: https://doi.org/10.1007/s12311-019-01031-7. 20. Lee MJ, Shin JH, Seoung JK, Lee JH, Yoon U, Oh JH, et al. Cognitive impairments associated with morphological changes in cortical and subcortical structures in multiple system atrophy of the cerebellar type. Eur J Neurol. 2016;23(1):92-100. Disponible en: https://doi.org/10.1111/ene.12796 21. Cao C, Wang Q, Yu H, Yang H, Li Y, Guo M, et al. Morphological Changes in Cortical and Subcortical Structures in Multiple System Atrophy Patients With Mild Cognitive Impairment. Front Hum Neurosci. 2021;15:649051. Disponible en: https://doi.org/10.3389/fnhum.2021.649051. 22. Santangelo G, Cuoco S, Picillo M, Erro R, Squillante M, Volpe G, et al. Evolution of neuropsychological profile in motor subtypes of multiple system atrophy. Parkinsonism Relat Disord. 2020;70:67-73. Disponible en: https://doi.org/10.1016/j.parkreldis.2019.12.010 23. Kim M, Ahn JH, Cho Y, Kim JS, Youn J, Cho JW. Differential value of brain magnetic resonance imaging in multiple system atrophy cerebellar phenotype and spinocerebellar ataxias. Sci Rep. 2019;9(1):17329. Disponible en: https://doi.org/10.1038/s41598-019-53980-y 24. Shah A, Prasad S, Rastogi B, Dash S, Saini J, Pal PK, et al. Altered structural connectivity of the motor subnetwork in multiple system atrophy with cerebellar features. Eur Radiol. 2019;29(6):2783-91. Disponible en: https://dx.doi.org/10.1007/s00330-018-5874-4 25. Wang N, Zhang L, Yang HG, Liu H, Luo XG, Fan GG. Similarities and differences in cerebellar grey matter volume and disrupted functional connectivity in idiopathic Parkinson’s disease and multiple system atrophy. Neuropsychologia. 2019;124:125-32. Disponible en: https://doi.org/10.1016/j.neuropsychologia.2018.12.019 26. Ren S, Zhang H, Zheng W, Liu M, Gao F, Wang Z, et al. Altered Functional Connectivity of Cerebello-Cortical Circuit in Multiple System Atrophy (Cerebellar-Type). Front Neurosci. 2019;12:996. Disponible en: https://doi.org/10.3389/fnins.2018.00996 27. Rosskopf J, Gorges M, Müller HP, Pinkhardt EH, Ludolph AC, Kassubek J. Hyperconnective and hypoconnective cortical and subcortical functional networks in multiple system atrophy. Parkinsonism Relat Disord. 2018;49:75-80. Disponible en: https://doi.org/10.1016/j.parkreldis.2018.01.012 28. Fukui Y, Hishikawa N, Sato K, Kono S, Matsuzono K, Nakano Y, et al. Dynamic Cerebrospinal Fluid Flow on MRI in Cortical Cerebellar Atrophy and Multiple System Atrophy-cerebellar Type. Intern Med. 2015;54(14):1717-23. Disponible en: https://doi.org/10.2169/internalmedicine.54.4747. 29. Miao Y, Wang K, Han J, Wang Z, Bian Y, Guo Q, et al. Differential value of external anal- and urethral-sphincter electromyography in multiple system atrophy cerebellar type and spinocerebellar ataxias. J Clin Neurosci. 2020;80:16-22. Disponible en: https://doi.org/10.1016/j.jocn.2020.07.067. 30. De la Casa-Fages B, Fernández-Eulate G, Gamez J, Barahona-Hernando R, Morís G, García-Barcina M, et al. Parkinsonism and spastic paraplegia type 7: Expanding the spectrum of mitochondrial Parkinsonism. Mov Disord. 2019;34(10):1547-61. Disponible en: https://doi.org/10.1002/mds.27812. 31. Bellini G, Del Prete E, Unti E, Frosini D, Siciliano G, Ceravolo R. Positive DAT-SCAN in SPG7: a case report mimicking possible MSA-C. BMC Neurol. 2021;21(1):328. Disponible en: https://doi.org/10.1186/s12883-021-02345-y. 32. Zhang H, Ji S, Ren S, Liu M, Ran W, Zhang X, et al. Cerebellar Atrophy in Multiple System Atrophy (Cerebellar Type) and Its Implication for Network Connectivity. Cerebellum. 2020;19(5):636-44. Disponible en: https://doi.org/10.1007/s12311-020-01144-4. 33. Gama RL, Távora DG, Bomfim RC, Silva CE, de Bruin VM, de Bruin PFC. Sleep disturbances and brain MRI morphometry in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy - a comparative study. Parkinsonism Relat Disord. 2010;16(4):275-9. Disponible en: https://doi.org/10.1016/j.parkreldis.2010.01.002. 34. Testa C, Calandra-Buonaura G, Evangelisti S, Giannini G, Provini F, Ratti S, et al. Stridor-related gray matter alterations in multiple system atrophy: A pilot study. Parkinsonism Relat Disord. 2019;62:226-30. Disponible en: https://doi.org/10.1016/j.parkreldis.2018.11.018. 35. Pellecchia MT, Picillo M. Female sexual dysfunction in multiple system atrophy: does it matter? Clin Auton Res. 2021;31(6):649-50. Disponible en: https://doi.org/10.1007/s10286-021-00831-4. 36. Terao Y, Fukuda H, Tokushige SI, Inomata-Terada S, Yugeta A, Hamada M, et al. Distinguishing spinocerebellar ataxia with pure cerebellar manifestation from multiple system atrophy (MSA-C) through saccade profiles. Clin Neurophysiol. 2017;128(1):31-43. Disponible en: https://doi.org/10.1016/j.clinph.2016.10.012. 37. Sugiyama A, Sato N, Kimura Y, Fujii H, Maikusa N, Shigemoto Y, et al. Quantifying iron deposition in the cerebellar subtype of multiple system atrophy and spinocerebellar ataxia type 6 by quantitative susceptibility mapping. J Neurol Sci. 2019;407:116525. Disponible en: https://doi.org/10.1016/j.jns.2019.116525. 38. Chelban V, Catereniuc D, Aftene D, Gasnas A, Vichayanrat E, Iodice V, et al. An update on MSA: premotor and non-motor features open a window of opportunities for early diagnosis and intervention. J Neurol. 2020;267(9):2754-70. Disponible en: https://doi.org/10.1007/s00415-020-09881-6. 39. Sakakibara R, Panicker JN, Aiba Y, Tateno F, Ogata T, Yano M, et al. Possible “Premotor” Multiple System Atrophy-Cerebellar Form. Eur Neurol. 2020;83(1):80-6. Disponible en: https://doi.org/10.1159/000506983. 40. Matsuse D, Yamasaki R, Maimaitijiang G, Yamaguchi H, Masaki K, Isobe N, et al. Early decrease in intermediate monocytes in peripheral blood is characteristic of multiple system atrophy-cerebellar type. J Neuroimmunol. 2020;349:577395. Disponible en: https://doi.org/10.1016/j.jneuroim.2020.577395. 41. Urbizu A, Canet-Pons J, Munoz-Marmol AM, Aldecoa I, Lopez MT, Compta Y, et al. Cystatin C is differentially involved in multiple system atrophy phenotypes. Neuropathol Appl Neurobiol. 2015;41(4):507-19. Disponible en: https://doi.org/10.1111/nan.12134. 42. Del Campo N, Phillips O, Ory-Magne F, Brefel-Courbon C, Galitzky M, Thalamas C, et al. Broad white matter impairment in multiple system atrophy. Hum Brain Mapp. 2021;42(2):357-66. Disponible en: https://doi.org/10.1002/hbm.25227. 43. Krejciova Z, Carlson GA, Giles K, Prusiner SB. Replication of multiple system atrophy prions in primary astrocyte cultures from transgenic mice expressing human α-synuclein. Acta Neuropathol Commun. 2019;7(1):81. Disponible en: https://doi.org/10.1186/s40478-019-0703-9. 44. Yang HG, Wang N, Luo XG, Lv H, Liu H, Fan GG. Altered functional connectivity of dentate nucleus in parkinsonian and cerebellar variants of multiple system atrophy. Brain Imaging Behav. 2019;13(6):1733-45. Disponible en: https://doi.org/10.1007/s11682-019-00097-5. 45. Nimmo JT, Verma A, Dodart JC, Wang CY, Savistchenko J, Melki R, et al. Novel antibodies detect additional α-synuclein pathology in synucleinopathies: potential development for immunotherapy. Alzheimers Res Ther. 2020;12(1):159. Disponible en: https://doi.org/10.1186/s13195-020-00727-x. 46. Schwarz J, Weis S, Kraft E, Tatsch K, Bandmann O, Mehraein P, et al. Signal changes on MRI and increases in reactive microgliosis, astrogliosis, and iron in the putamen of two patients with multiple system atrophy. J Neurol Neurosurg Psychiatry. 1996;60(1):98-101. Disponible en: https://doi.org/10.1136/jnnp.60.1.98. 47. Zhang M, He T, Wang Q. Effects of Non-invasive Brain Stimulation on Multiple System Atrophy: A Systematic Review. Front Neurosci. 2021;15:771090. Disponible en: https://doi.org/10.3389/fnins.2021.771090. 48. Konagaya M, Sakai M, Matsuoka Y, Konagaya Y, Hashizume Y. Multiple system atrophy with remarkable frontal lobe atrophy. Acta Neuropathol. 1999;97(4):423-8. Disponible en: https://doi.org/10.1007/s004010051008. 49. Zheng W, Ren S, Zhang H, Liu M, Zhang Q, Chen Z, et al. Spatial Patterns of Decreased Cerebral Blood Flow and Functional Connectivity in Multiple System Atrophy (Cerebellar-Type): A Combined Arterial Spin Labeling Perfusion and Resting State Functional Magnetic Resonance Imaging Study. Front Neurosci. 2019;13:777. Disponible en: https://doi.org/10.3389/fnins.2019.00777. 50. Ito K, Ohtsuka C, Yoshioka K, Maeda T, Yokosawa S, Mori F, et al. Differentiation Between Multiple System Atrophy and Other Spinocerebellar Degenerations Using Diffusion Kurtosis Imaging. Acad Radiol. 2019;26(11):e333-9. Disponible en: https://doi.org/10.1016/j.acra.2018.12.015. 51. Valera E, Masliah E. Combination therapies: The next logical Step for the treatment of synucleinopathies? Mov Disord. 2016;31(2):225-34. Disponible en: https://doi.org/10.1002/mds.26428. 52. Meissner WG, Traon AP, Foubert-Samier A, Galabova G, Galitzky M, Kutzelnigg A, et al. A Phase 1 Randomized Trial of Specific Active α-Synuclein Immunotherapies PD01A and PD03A in Multiple System Atrophy. Mov Disord. 2020. 53. Lee PH, Lee JE, Kim HS, Sohn YH. Analysis of cerebrospinal fluid α-synuclein in patients with multiple system atrophy. Mov Disord. 2011;26(1):126-30. Disponible en: https://doi.org/10.1002/mds.23499. 54. Constantinescu R, Rosengren L, Johnels B, Zetterberg H, Holmberg B. Consecutive analyses of cerebrospinal fluid biomarkers in Parkinson’s disease and atypical parkinsonian disorders. Parkinsonism Relat Disord. 2010;16(3):142-5. Disponible en: https://doi.org/10.1016/j.parkreldis.2009.10.002 55. Stemberger S, Novotny R, Kraus J, Stockner H, Dejmek J, Reindl M, et al. A heptapeptide blocks alpha-synuclein uptake and aggregation in neurons. Neurobiol Dis. 2011;43(3):588-96. Disponible en: https://doi.org/10.1016/j.nbd.2011.05.008. 56. Schneider SA, Boesch S, Zimprich A, Bhatia KP, Poewe W, Winkelmann J. POLG1 mutations as a cause of progressive ataxia and multiple system atrophy. Mov Disord. 2008;23(4):561-6. Disponible en: https://doi.org/10.1002/mds.21862. 57. Poewe W, Wenning GK. The differential diagnosis of multiple system atrophy: cerebellar type. Cerebellum. 2005;4(1):14-7. Disponible en: https://doi.org/10.1080/14734220510007955. 58. Jellinger KA. Neuropathology of multiple system atrophy: new thoughts about pathogenesis. Mov Disord. 2014;29(14):1720-41. Disponible en: https://doi.org/10.1002/mds.26052. 59. Kaufmann H, Norcliffe-Kaufmann L, Palma JA. Autonomic Disorders in α-Synucleinopathies. Continuum (Minneap Minn). 2020;26(1):144-67. Disponible en: https://doi.org/10.1212/CON.0000000000000813. 60. Fang P, Kazmi SA, Jameson K, Gumb T, Feen E, Fisher R, et al. Hyperconnectivity of cerebellar default mode network in multiple system atrophy: A resting state fMRI study. Front Neurol. 2021;12:648396. Disponible en: https://doi.org/10.3389/fneur.2021.648396. |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Medicina |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/9287cf08-17d3-4c54-9091-1fe1c3521511/download https://repositorio.unbosque.edu.co/bitstreams/196ac699-9148-4ea3-9cda-f5d63446a41a/download https://repositorio.unbosque.edu.co/bitstreams/cc9070fd-cb6c-4c53-9c2d-a3ea88ccd26d/download https://repositorio.unbosque.edu.co/bitstreams/38db87ff-9fa6-4617-ac64-69f67fbf6b8e/download https://repositorio.unbosque.edu.co/bitstreams/4f60e3cc-8228-4b7b-9867-f2dfd9ada07b/download |
bitstream.checksum.fl_str_mv |
17cc15b951e7cc6b3728a574117320f9 7130857a5085787a4af098da56c5e07e 313ea3fe4cd627df823c57a0f12776e5 636d4fa71cff033031f54510acddb5c2 565f7b222cc88c97a73ece3f655e3c15 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1834108018941231104 |
spelling |
Ramirez Mosquera , EstebanGuardias Garzon, Juan AndresCaceres Urbano, Laura DanielaLeon Malkun, Luis AlejandroSandoval Traslaviña, KarenHuerfano Tamaro, Nataly AndreaGutiérrez Huertas, Jessica Liliana2025-05-15T20:51:15Z2025-05-15T20:51:15Z2023-07https://hdl.handle.net/20.500.12495/14360instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coIntroducción. La atrofia multisistémica (MSA) es una enfermedad neurodegenerativa progresiva que afecta principal mente la materia blanca (WM, por su sigla en inglés). Este tipo de atrofia se caracteriza por ocasionar inclusiones cito plasmáticas gliales de la proteína alfa-sinucleína, además de disminuir la integridad, la desmielinización y los cambios en los diámetros axonales de la WM (trastornos del movimiento). Objetivo. Evaluar los hallazgos patológicos de la conectividad encontrados en casos de atrofia multisistémica de tipo cerebelosa (MSA-C) y las posibles conexiones que estos muestran con las señales clínicas, la fisiopatología de la enfermedad, la imagenología y los blancos terapéuticos mediante una revisión sistemática de la literatura científica disponible. Métodos. Se realizó una búsqueda bibliográfica en las bases de datos PubMed, ResearchGate, Embase y Scopus con los siguientes términos claves: “Multiple system atrophy” AND “therapy” OR “diagnostic imagining” OR “physiopathology” OR epidemiology”. Se seleccionaron artículos, en español e inglés, publicados entre 1989 y 2022. Tras aplicar los criterios de inclusión y exclusión y eliminar duplicados, se seleccionaron 61 estudios que comparaban los temas objetivo del estudio. Resultados. La conectividad funcional disminuida en la red de control ejecutivo izquierdo (ECN), relacionada con los circuitos de los ganglios basales y el tálamo, ocasiona desconexión cerebelo-prefrontal y cerebelo-amigdaloide / parahipocampal, lo cual tiene manifestaciones neuro histopatológicas que están correlacionadas con ciertos hallazgos imagenológicos. Conclusión. Se evidenció que resultados de diversos estudios han permitido dar viabilidad a la comprensión de la conectividad nodal identificada y sus manifestaciones anatomo-patológicas y funcionales en el curso natural de la MSA-C.Médico CirujanoPregradoIntroduction. Multiple system atrophy (MSA) is a progressive neurodegenerative disease primarily affecting white matter (WM). This type of atrophy is characterized by causing glial cytoplasmic inclusions of the alpha-synuclein protein and decreasing the integrity, demyelination, and changes in the axonal diameter (movement disorders). Objective. To evaluate the pathological findings of connectivity found in cases of Multiple system atrophy-cerebellar subtype (MSA-C) and the possible connections that these show with clinical signs, the pathophysiology of the disease, imaging and therapeutic targets through a systematic review of the available scientific literature. Methods. A bibliographic search was carried out in the PubMed, ResearchGate, Embase, and Scopus databases with the following key terms: “Multiple system atrophy” AND “therapy” OR “diagnostic imagining” OR “physiopathology” OR “epidemiology.” Articles were selected in Spanish and English and published between 1989 and 2022. After applying the inclusion and exclusion criteria and eliminating duplicates, 61 studies were selected that compared the study’s target topics. Results. Decreased functional connectivity in the left executive control network (ECN), related to the circuits of the basal ganglia and thalamus, causes cerebellar-prefrontal and cerebellar-amygdaloid/parahippocampal disconnection, which has neuro histopathological manifestations that are correlated with specific imaging findings. Conclusion. It was evident that the results of various studies have made it possible to give viability to the understanding of the identified nodal connectivity and its anatomical-pathological and functional manifestations in the natural course of MSA-C.application/pdfAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Atrofia de múltiples sistemasAlfa-sinucleínaAtaxia cerebelosaRed en modo predeterminadoImagen de difusión por resonancia magnéticaMulti-system atrophyAlpha-synucleinCerebellar ataxiaDefault mode networkDiffusion-weighted magnetic resonance imaging.W100Atrofia multisistémica del tipo cerebelosa: implicaciones patológicas de la conectividad neuronalMultiple system atrophy cerebellar variant: pathological implications of the neural connectivityMedicinaUniversidad El BosqueFacultad de MedicinaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. Papp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci. 1989;94(1-3):79-100. Disponible en: https://doi.org/10.1016/0022-510x(89)90219-0.2. Raccagni C, Nonnekes J, Bloem BR, Peball M, Boehme C, Seppi K, et al. Gait and postural disorders in parkinsonism: a clinical approach. J Neurol. 2020;267(11):3169-76. Disponible en: https://doi.org/10.1007/s00415-019-09382-1.3. Wenning GK, Geser F, Krismer F, Seppi K, Duerr S, Boesch S, et al. The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol. 2013;12(3):264-74. Disponible en: https://doi.org/10.1016/S1474-4422(12)70327-74. Bower JH, Maraganore DM, McDonnell SK, Rocca WA. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology. 1997;49(5):1284-8. Disponible en: https://doi.org/10.1212/WNL.49.5.12845. Schrag A, Ben-Shlomo Y, Quinn NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet. 1999;354(9192):1771-5. Disponible en: https://doi.org/10.1016/s0140-6736(99)04137-96. Yabe I, Soma H, Takei A, Fujiki N, Yanagihara T, Sasaki H. MSA-C is the predominant clinical phenotype of MSA in Japan: analysis of 142 patients with probable MSA. J Neurol Sci. 2006;249(2):115-21. Disponible en: https://doi.org/10.1016/j.jns.2006.05.064.7. Ozawa T, Onodera O. Multiple system atrophy: clinicopathological characteristics in Japanese patients. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(5):251-8. Disponible en: https://doi.org/10.2183/pjab.93.0168. Seo JH, Yong SW, Song SK, Lee JE, Sohn YH, Lee PH. A case-control study of multiple system atrophy in Korean patients. Mov Disord. 2010;25(12):1953-9. Disponible en: https://doi.org/10.1002/mds.23185.9. Tseng FS, Deng X, Ong YL, Li HH, Tan EK. Multiple System Atrophy (MSA) and smoking: a meta-analysis and mechanistic insights. Aging (Albany NY). 2020;12(21):21959-70. Disponible en: https://doi.org/10.18632/aging.104021.10. Vanacore N, Bonifati V, Fabbrini G, Colosimo C, de Michele G, Marconi R, et al. Case-control study of multiple system atrophy. Mov Disord. 2005;20(2):158-63. Disponible en: https://doi.org/10.1002/mds.2030311. Folke J, Rydbirk R, Løkkegaard A, Salvesen L, Hejl AM, Starhof C, et al. Distinct Autoimmune Anti-α-Synuclein Antibody Patterns in Multiple System Atrophy and Parkinson’s Disease. Front Immunol. 2019;10:2253. Disponible en: https://doi.org/10.3389/fimmu.2019.0225312. Carmona-Abellan M, del Pino R, Murueta-Goyena A, Acera M, Tijero B, Berganzo K, et al. Multiple system atrophy: Clinical, evolutive and histopathological characteristics of a series of cases. Neurologia (Engl Ed). 2021;S0213-4853(21)00073-6. Disponible en: https://doi.org/10.1016/j.nrl.2021.04.00713. Trinkaus VA, Riera-Tur I, Martínez-Sánchez A, Bäuerlein FJB, Guo Q, Arzberger T, et al. In situ architecture of neuronal α-Synuclein inclusions. Nat Commun. 2021;12(1):2110. Disponible en: https://doi.org/10.1038/s41467-021-22108-0.14. Van der Perren A, Gelders G, Fenyi A, Bousset L, Brito F, Peelaerts W, et al. The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson’s disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol. 2020;139(6):977-1000. Disponible en: https://doi.org/10.1007/s00401-020-02157-315. Honjo Y, Ayaki T, Horibe T, Ito H, Takahashi R, Kawakami K. FKBP12-immunopositive inclusions in patients with α-synucleinopathies. Brain Res. 2018;1680:39-45. Disponible en: https://doi.org/10.1016/j.brainres.2017.12.01216. Heras-Garvin A, Weckbecker D, Ryazanov S, Leonov A, Griesinger C, Giese A, et al. Anle138b modulates α-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. Mov Disord. 2019;34(2):255-63. Disponible en: https://doi.org/10.1002/mds.2756217. Jao CW, Soong BW, Huang CW, Duan CA, Wu CC, Wu YT, et al. Diffusion Tensor Magnetic Resonance Imaging for Differentiating Multiple System Atrophy Cerebellar Type and Spinocerebellar Ataxia Type 3. Brain Sci. 2019;9(12):254. Disponible en: https://doi.org/10.3390/brainsci9120354.18. Lu CF, Soong BW, Wu HM, Teng S, Wang PS, Wu YT. Disrupted cerebellar connectivity reduces whole-brain network efficiency in multiple system atrophy. Mov Disord. 2013;28(3):362-9. Disponible en: https://doi.org/10.1002/mds.2531419. Kawabata K, Hara K, Watanabe H, Bagarinao E, Ogura A, Masuda M, et al. Alterations in Cognition-Related Cerebello-Cerebral Networks in Multiple System Atrophy. Cerebellum. 2019;18(4):770-80. Disponible en: https://doi.org/10.1007/s12311-019-01031-7.20. Lee MJ, Shin JH, Seoung JK, Lee JH, Yoon U, Oh JH, et al. Cognitive impairments associated with morphological changes in cortical and subcortical structures in multiple system atrophy of the cerebellar type. Eur J Neurol. 2016;23(1):92-100. Disponible en: https://doi.org/10.1111/ene.1279621. Cao C, Wang Q, Yu H, Yang H, Li Y, Guo M, et al. Morphological Changes in Cortical and Subcortical Structures in Multiple System Atrophy Patients With Mild Cognitive Impairment. Front Hum Neurosci. 2021;15:649051. Disponible en: https://doi.org/10.3389/fnhum.2021.649051.22. Santangelo G, Cuoco S, Picillo M, Erro R, Squillante M, Volpe G, et al. Evolution of neuropsychological profile in motor subtypes of multiple system atrophy. Parkinsonism Relat Disord. 2020;70:67-73. Disponible en: https://doi.org/10.1016/j.parkreldis.2019.12.01023. Kim M, Ahn JH, Cho Y, Kim JS, Youn J, Cho JW. Differential value of brain magnetic resonance imaging in multiple system atrophy cerebellar phenotype and spinocerebellar ataxias. Sci Rep. 2019;9(1):17329. Disponible en: https://doi.org/10.1038/s41598-019-53980-y24. Shah A, Prasad S, Rastogi B, Dash S, Saini J, Pal PK, et al. Altered structural connectivity of the motor subnetwork in multiple system atrophy with cerebellar features. Eur Radiol. 2019;29(6):2783-91. Disponible en: https://dx.doi.org/10.1007/s00330-018-5874-425. Wang N, Zhang L, Yang HG, Liu H, Luo XG, Fan GG. Similarities and differences in cerebellar grey matter volume and disrupted functional connectivity in idiopathic Parkinson’s disease and multiple system atrophy. Neuropsychologia. 2019;124:125-32. Disponible en: https://doi.org/10.1016/j.neuropsychologia.2018.12.01926. Ren S, Zhang H, Zheng W, Liu M, Gao F, Wang Z, et al. Altered Functional Connectivity of Cerebello-Cortical Circuit in Multiple System Atrophy (Cerebellar-Type). Front Neurosci. 2019;12:996. Disponible en: https://doi.org/10.3389/fnins.2018.0099627. Rosskopf J, Gorges M, Müller HP, Pinkhardt EH, Ludolph AC, Kassubek J. Hyperconnective and hypoconnective cortical and subcortical functional networks in multiple system atrophy. Parkinsonism Relat Disord. 2018;49:75-80. Disponible en: https://doi.org/10.1016/j.parkreldis.2018.01.01228. Fukui Y, Hishikawa N, Sato K, Kono S, Matsuzono K, Nakano Y, et al. Dynamic Cerebrospinal Fluid Flow on MRI in Cortical Cerebellar Atrophy and Multiple System Atrophy-cerebellar Type. Intern Med. 2015;54(14):1717-23. Disponible en: https://doi.org/10.2169/internalmedicine.54.4747.29. Miao Y, Wang K, Han J, Wang Z, Bian Y, Guo Q, et al. Differential value of external anal- and urethral-sphincter electromyography in multiple system atrophy cerebellar type and spinocerebellar ataxias. J Clin Neurosci. 2020;80:16-22. Disponible en: https://doi.org/10.1016/j.jocn.2020.07.067.30. De la Casa-Fages B, Fernández-Eulate G, Gamez J, Barahona-Hernando R, Morís G, García-Barcina M, et al. Parkinsonism and spastic paraplegia type 7: Expanding the spectrum of mitochondrial Parkinsonism. Mov Disord. 2019;34(10):1547-61. Disponible en: https://doi.org/10.1002/mds.27812.31. Bellini G, Del Prete E, Unti E, Frosini D, Siciliano G, Ceravolo R. Positive DAT-SCAN in SPG7: a case report mimicking possible MSA-C. BMC Neurol. 2021;21(1):328. Disponible en: https://doi.org/10.1186/s12883-021-02345-y.32. Zhang H, Ji S, Ren S, Liu M, Ran W, Zhang X, et al. Cerebellar Atrophy in Multiple System Atrophy (Cerebellar Type) and Its Implication for Network Connectivity. Cerebellum. 2020;19(5):636-44. Disponible en: https://doi.org/10.1007/s12311-020-01144-4.33. Gama RL, Távora DG, Bomfim RC, Silva CE, de Bruin VM, de Bruin PFC. Sleep disturbances and brain MRI morphometry in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy - a comparative study. Parkinsonism Relat Disord. 2010;16(4):275-9. Disponible en: https://doi.org/10.1016/j.parkreldis.2010.01.002.34. Testa C, Calandra-Buonaura G, Evangelisti S, Giannini G, Provini F, Ratti S, et al. Stridor-related gray matter alterations in multiple system atrophy: A pilot study. Parkinsonism Relat Disord. 2019;62:226-30. Disponible en: https://doi.org/10.1016/j.parkreldis.2018.11.018.35. Pellecchia MT, Picillo M. Female sexual dysfunction in multiple system atrophy: does it matter? Clin Auton Res. 2021;31(6):649-50. Disponible en: https://doi.org/10.1007/s10286-021-00831-4.36. Terao Y, Fukuda H, Tokushige SI, Inomata-Terada S, Yugeta A, Hamada M, et al. Distinguishing spinocerebellar ataxia with pure cerebellar manifestation from multiple system atrophy (MSA-C) through saccade profiles. Clin Neurophysiol. 2017;128(1):31-43. Disponible en: https://doi.org/10.1016/j.clinph.2016.10.012.37. Sugiyama A, Sato N, Kimura Y, Fujii H, Maikusa N, Shigemoto Y, et al. Quantifying iron deposition in the cerebellar subtype of multiple system atrophy and spinocerebellar ataxia type 6 by quantitative susceptibility mapping. J Neurol Sci. 2019;407:116525. Disponible en: https://doi.org/10.1016/j.jns.2019.116525.38. Chelban V, Catereniuc D, Aftene D, Gasnas A, Vichayanrat E, Iodice V, et al. An update on MSA: premotor and non-motor features open a window of opportunities for early diagnosis and intervention. J Neurol. 2020;267(9):2754-70. Disponible en: https://doi.org/10.1007/s00415-020-09881-6.39. Sakakibara R, Panicker JN, Aiba Y, Tateno F, Ogata T, Yano M, et al. Possible “Premotor” Multiple System Atrophy-Cerebellar Form. Eur Neurol. 2020;83(1):80-6. Disponible en: https://doi.org/10.1159/000506983.40. Matsuse D, Yamasaki R, Maimaitijiang G, Yamaguchi H, Masaki K, Isobe N, et al. Early decrease in intermediate monocytes in peripheral blood is characteristic of multiple system atrophy-cerebellar type. J Neuroimmunol. 2020;349:577395. Disponible en: https://doi.org/10.1016/j.jneuroim.2020.577395.41. Urbizu A, Canet-Pons J, Munoz-Marmol AM, Aldecoa I, Lopez MT, Compta Y, et al. Cystatin C is differentially involved in multiple system atrophy phenotypes. Neuropathol Appl Neurobiol. 2015;41(4):507-19. Disponible en: https://doi.org/10.1111/nan.12134.42. Del Campo N, Phillips O, Ory-Magne F, Brefel-Courbon C, Galitzky M, Thalamas C, et al. Broad white matter impairment in multiple system atrophy. Hum Brain Mapp. 2021;42(2):357-66. Disponible en: https://doi.org/10.1002/hbm.25227.43. Krejciova Z, Carlson GA, Giles K, Prusiner SB. Replication of multiple system atrophy prions in primary astrocyte cultures from transgenic mice expressing human α-synuclein. Acta Neuropathol Commun. 2019;7(1):81. Disponible en: https://doi.org/10.1186/s40478-019-0703-9.44. Yang HG, Wang N, Luo XG, Lv H, Liu H, Fan GG. Altered functional connectivity of dentate nucleus in parkinsonian and cerebellar variants of multiple system atrophy. Brain Imaging Behav. 2019;13(6):1733-45. Disponible en: https://doi.org/10.1007/s11682-019-00097-5.45. Nimmo JT, Verma A, Dodart JC, Wang CY, Savistchenko J, Melki R, et al. Novel antibodies detect additional α-synuclein pathology in synucleinopathies: potential development for immunotherapy. Alzheimers Res Ther. 2020;12(1):159. Disponible en: https://doi.org/10.1186/s13195-020-00727-x.46. Schwarz J, Weis S, Kraft E, Tatsch K, Bandmann O, Mehraein P, et al. Signal changes on MRI and increases in reactive microgliosis, astrogliosis, and iron in the putamen of two patients with multiple system atrophy. J Neurol Neurosurg Psychiatry. 1996;60(1):98-101. Disponible en: https://doi.org/10.1136/jnnp.60.1.98.47. Zhang M, He T, Wang Q. Effects of Non-invasive Brain Stimulation on Multiple System Atrophy: A Systematic Review. Front Neurosci. 2021;15:771090. Disponible en: https://doi.org/10.3389/fnins.2021.771090.48. Konagaya M, Sakai M, Matsuoka Y, Konagaya Y, Hashizume Y. Multiple system atrophy with remarkable frontal lobe atrophy. Acta Neuropathol. 1999;97(4):423-8. Disponible en: https://doi.org/10.1007/s004010051008.49. Zheng W, Ren S, Zhang H, Liu M, Zhang Q, Chen Z, et al. Spatial Patterns of Decreased Cerebral Blood Flow and Functional Connectivity in Multiple System Atrophy (Cerebellar-Type): A Combined Arterial Spin Labeling Perfusion and Resting State Functional Magnetic Resonance Imaging Study. Front Neurosci. 2019;13:777. Disponible en: https://doi.org/10.3389/fnins.2019.00777.50. Ito K, Ohtsuka C, Yoshioka K, Maeda T, Yokosawa S, Mori F, et al. Differentiation Between Multiple System Atrophy and Other Spinocerebellar Degenerations Using Diffusion Kurtosis Imaging. Acad Radiol. 2019;26(11):e333-9. Disponible en: https://doi.org/10.1016/j.acra.2018.12.015.51. Valera E, Masliah E. Combination therapies: The next logical Step for the treatment of synucleinopathies? Mov Disord. 2016;31(2):225-34. Disponible en: https://doi.org/10.1002/mds.26428.52. Meissner WG, Traon AP, Foubert-Samier A, Galabova G, Galitzky M, Kutzelnigg A, et al. A Phase 1 Randomized Trial of Specific Active α-Synuclein Immunotherapies PD01A and PD03A in Multiple System Atrophy. Mov Disord. 2020.53. Lee PH, Lee JE, Kim HS, Sohn YH. Analysis of cerebrospinal fluid α-synuclein in patients with multiple system atrophy. Mov Disord. 2011;26(1):126-30. Disponible en: https://doi.org/10.1002/mds.23499.54. Constantinescu R, Rosengren L, Johnels B, Zetterberg H, Holmberg B. Consecutive analyses of cerebrospinal fluid biomarkers in Parkinson’s disease and atypical parkinsonian disorders. Parkinsonism Relat Disord. 2010;16(3):142-5. Disponible en: https://doi.org/10.1016/j.parkreldis.2009.10.00255. Stemberger S, Novotny R, Kraus J, Stockner H, Dejmek J, Reindl M, et al. A heptapeptide blocks alpha-synuclein uptake and aggregation in neurons. Neurobiol Dis. 2011;43(3):588-96. Disponible en: https://doi.org/10.1016/j.nbd.2011.05.008.56. Schneider SA, Boesch S, Zimprich A, Bhatia KP, Poewe W, Winkelmann J. POLG1 mutations as a cause of progressive ataxia and multiple system atrophy. Mov Disord. 2008;23(4):561-6. Disponible en: https://doi.org/10.1002/mds.21862.57. Poewe W, Wenning GK. The differential diagnosis of multiple system atrophy: cerebellar type. Cerebellum. 2005;4(1):14-7. Disponible en: https://doi.org/10.1080/14734220510007955.58. Jellinger KA. Neuropathology of multiple system atrophy: new thoughts about pathogenesis. Mov Disord. 2014;29(14):1720-41. Disponible en: https://doi.org/10.1002/mds.26052.59. Kaufmann H, Norcliffe-Kaufmann L, Palma JA. Autonomic Disorders in α-Synucleinopathies. Continuum (Minneap Minn). 2020;26(1):144-67. Disponible en: https://doi.org/10.1212/CON.0000000000000813.60. Fang P, Kazmi SA, Jameson K, Gumb T, Feen E, Fisher R, et al. Hyperconnectivity of cerebellar default mode network in multiple system atrophy: A resting state fMRI study. Front Neurol. 2021;12:648396. Disponible en: https://doi.org/10.3389/fneur.2021.648396.spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/9287cf08-17d3-4c54-9091-1fe1c3521511/download17cc15b951e7cc6b3728a574117320f9MD52ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1332028https://repositorio.unbosque.edu.co/bitstreams/196ac699-9148-4ea3-9cda-f5d63446a41a/download7130857a5085787a4af098da56c5e07eMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81019https://repositorio.unbosque.edu.co/bitstreams/cc9070fd-cb6c-4c53-9c2d-a3ea88ccd26d/download313ea3fe4cd627df823c57a0f12776e5MD54TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain59829https://repositorio.unbosque.edu.co/bitstreams/38db87ff-9fa6-4617-ac64-69f67fbf6b8e/download636d4fa71cff033031f54510acddb5c2MD55THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5052https://repositorio.unbosque.edu.co/bitstreams/4f60e3cc-8228-4b7b-9867-f2dfd9ada07b/download565f7b222cc88c97a73ece3f655e3c15MD5620.500.12495/14360oai:repositorio.unbosque.edu.co:20.500.12495/143602025-05-16 05:07:56.209http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |