Relación y posibles mecanismos moleculares del cáncer de tiroides y el uso de medicamentos AR-GLP-1: una revisión narrativa
Los agonistas del receptor del péptido similar al glucagón tipo 1 (AR-GLP-1) son medicamentos indicados para el tratamiento de la diabetes tipo 2 y la obesidad. Sin embargo, el uso de AR-GLP-1 se ha asociado con efectos adversos gastrointestinales y un posible aumento en el riesgo de cáncer medular...
- Autores:
-
González Marroquín, Jaider Yamid
Rojas León, Danna Sarai
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14399
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/14399
- Palabra clave:
- Diabetes mellitus
Agonistas del GLP-1
Mecanismos moleculares
Cancér de tiroides
615.19
Diabetes mellitus
GLP-1 agonists
Molecular mechanisms
Thyroid cancer
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
UNBOSQUE2_56a6c41c301142660c127e576fc8d847 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14399 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Relación y posibles mecanismos moleculares del cáncer de tiroides y el uso de medicamentos AR-GLP-1: una revisión narrativa |
dc.title.translated.none.fl_str_mv |
Relationship and possible molecular mechanisms of thyroid cancer and AR-GLP-1 drug cancer and the use of AR-GLP-1 drugs: a narrative review of the narrative |
title |
Relación y posibles mecanismos moleculares del cáncer de tiroides y el uso de medicamentos AR-GLP-1: una revisión narrativa |
spellingShingle |
Relación y posibles mecanismos moleculares del cáncer de tiroides y el uso de medicamentos AR-GLP-1: una revisión narrativa Diabetes mellitus Agonistas del GLP-1 Mecanismos moleculares Cancér de tiroides 615.19 Diabetes mellitus GLP-1 agonists Molecular mechanisms Thyroid cancer |
title_short |
Relación y posibles mecanismos moleculares del cáncer de tiroides y el uso de medicamentos AR-GLP-1: una revisión narrativa |
title_full |
Relación y posibles mecanismos moleculares del cáncer de tiroides y el uso de medicamentos AR-GLP-1: una revisión narrativa |
title_fullStr |
Relación y posibles mecanismos moleculares del cáncer de tiroides y el uso de medicamentos AR-GLP-1: una revisión narrativa |
title_full_unstemmed |
Relación y posibles mecanismos moleculares del cáncer de tiroides y el uso de medicamentos AR-GLP-1: una revisión narrativa |
title_sort |
Relación y posibles mecanismos moleculares del cáncer de tiroides y el uso de medicamentos AR-GLP-1: una revisión narrativa |
dc.creator.fl_str_mv |
González Marroquín, Jaider Yamid Rojas León, Danna Sarai |
dc.contributor.advisor.none.fl_str_mv |
Amaya Mendez, Sergio |
dc.contributor.author.none.fl_str_mv |
González Marroquín, Jaider Yamid Rojas León, Danna Sarai |
dc.subject.none.fl_str_mv |
Diabetes mellitus Agonistas del GLP-1 Mecanismos moleculares Cancér de tiroides |
topic |
Diabetes mellitus Agonistas del GLP-1 Mecanismos moleculares Cancér de tiroides 615.19 Diabetes mellitus GLP-1 agonists Molecular mechanisms Thyroid cancer |
dc.subject.ddc.none.fl_str_mv |
615.19 |
dc.subject.keywords.none.fl_str_mv |
Diabetes mellitus GLP-1 agonists Molecular mechanisms Thyroid cancer |
description |
Los agonistas del receptor del péptido similar al glucagón tipo 1 (AR-GLP-1) son medicamentos indicados para el tratamiento de la diabetes tipo 2 y la obesidad. Sin embargo, el uso de AR-GLP-1 se ha asociado con efectos adversos gastrointestinales y un posible aumento en el riesgo de cáncer medular de tiroides (CMT), observado en ciertos estudios preclínicos realizados en modelos de roedores. Esta revisión narrativa recopiló un total de 800 registros bibliográficos, de los cuales se seleccionaron 5 estudios de cohorte tipo caso-control para su inclusión, analizados según los criterios de Bradford Hill. Los hallazgos indican que la asociación entre el uso de AR-GLP-1 y el desarrollo de cáncer de tiroides (CT) ha arrojado resultados mixtos, con algunos autores que sugieren un mayor riesgo de CT—especialmente del tipo medular—relacionado con el uso prolongado de estos fármacos; sin embargo, otros estudios más recientes no encontraron evidencia significativa que respalde dicha asociación. En cuanto a los mecanismos biológicos, las investigaciones han señalado la expresión del receptor de GLP-1 en las células C tiroideas, tanto en tejidos normales como en formaciones neoplásicas, aunque aún no está claro si la activación sostenida de estos receptores por agonistas podría inducir CT en humanos. Se recomienda un monitoreo regular en pacientes tratados con AR-GLP-1, incluyendo la palpación del cuello para detectar posibles signos de CT, así como análisis de calcitonina, especialmente en pacientes en tratamiento a largo plazo. Además, la evidencia sugiere evitar el uso combinado de AR-GLP-1 con inhibidores de la DPP-4, ya que podría aumentar el riesgo de efectos adversos, incluyendo el posible desarrollo de CT. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-05-19T20:09:18Z |
dc.date.available.none.fl_str_mv |
2025-05-19T20:09:18Z |
dc.date.issued.none.fl_str_mv |
2025-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14399 |
dc.identifier.instname.spa.fl_str_mv |
Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14399 |
identifier_str_mv |
Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
1. Bednarz K, Kowalczyk K, Cwynar M, Czapla D, Czarkowski W, Kmita D, et al. The role of glp-1 receptor agonists in insulin resistance with concomitant obesity treatment in polycystic ovary syndrome. International journal of molecular sciences. 2022; 23(8). 2. Cheng D, Yang S, Zhao X, Wang G. The role of glucagon-like peptide-1 receptor agonists (GLP-1 RA) in diabetesrelated neurodegenerative diseases. Drug design, development and therapy. 2023. 3. Yen FS, Hsu CC, Wei JCC, Tsai FJ, Huang Y, Yu TS, et al. Glucagon-like peptide-1 receptor agonists may benefit cardiopulmonary outcomes in patients with COPD. Thorax. 2024; 79(11). 4. Espinosa De Ycaza AE, Brito JP, McCoy RG, Shao H, Singh Ospina N. Glucagon-Like Peptide-1 Receptor Agonists and Thyroid Cancer: A Narrative Review. Thyroid. 2024; 34(4). 5. Lisco G, De Tullio A, Disoteo O, Piazzolla G, Guastamacchia E, Sabbà C, et al. Glucagon-like peptide 1 receptor agonists and thyroid cancer: is it the time to be concerned? Endocrine Connections. 2023; 12(11). 6. Honigberg MC, Chang LS, McGuire DK, Plutzky J, Aroda VR, Vaduganathan M. Use of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes and cardiovascular disease: a review. JAMA cardiology. 2020;5(10) 7. Tran KL, Park YI, Pandya S, Muliyil NJ, Jensen BD, Huynh K, et al. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes. American health & drug benefits. 2017; 10(4) 8. Gentilella R, Pechtner V, Corcos A, Consoli A. Glucagon‐like peptide‐1 receptor agonists in type 2 diabetes treatment: are they all the same? Diabetes/metabolism research and reviews. 2019; 35(1). 9. Davis EM, Sandoval DA. Glucagon-like peptide-1: actions and influence on pancreatic hormone function. Comprehensive Physiology. 2020; 10(2). 10. Holst JJ, Gasbjerg LS, Rosenkilde MM. The role of incretins on insulin function and glucose homeostasis. Endocrinology. 2021; 162(7). 11. Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell metabolism. 2018; 27(4) 12. Gribble FM, Reimann F. Metabolic messengers: glucagon-like peptide 1. Nature metabolism. 2021; 3(2): p. 142-148 13. El K, Campbell JE. The role of GIP in α-cells and glucagon secretion. Peptides. 2020; 125. 14. Ramracheya R, Chapman C, Chibalina M, Dou H, Miranda C, González A, et al. GLP‐1 suppresses glucagon secretion in human pancreatic alpha‐cells by inhibition of P/Q‐type Ca2+ channels. Physiological reports. 2018; 6(17). 15. Capuccio S, Scilletta S, La Rocca F, Miano N, Di Marco M, Bosco G, et al. Implications of GLP-1 Receptor Agonist on Thyroid Function: A Literature Review of Its Effects on Thyroid Volume, Risk of Cancer, Functionality and TSH Levels. Biomolecules. 2024; 14(6). 16. Lymperopoulos A, Borges JI, Stoicovy RA. Cyclic adenosine monophosphate in cardiac and sympathoadrenal GLP1 receptor signaling: focus on anti-inflammatory effects. Pharmaceutics. 2024; 16(6). 17. Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP-1 and GIP receptor signaling in beta cells–a review of receptor interactions and co-stimulation. Peptides. 2022; 151. 18. Camilleri M. The role of gastric function in control of food intake (and body weight) in relation to obesity, as well as pharmacological and surgical interventions. Neurogastroenterology & Motility. 2024; 36(2). 19. Camilleri M, Lupianez-Merly C. Effects of GLP-1 and other gut hormone receptors on the gastrointestinal tract and implications in clinical practice. Official journal of the American College of Gastroenterology| ACG. 2022; 10. 20. Plummer MP, Chapman MJ, Horowitz M. Incretins and the intensivist: ¿what are they and what does an intensivist need to know about them? Critical Care. 2014; 18. 21. Wang JY, Wang QW, Yang XY, Yang W, Li DR, Jin JY, et al. GLP− 1 receptor agonists for the treatment of obesity: role as a promising approach. Frontiers in endocrinology. 2023; 14. 22. Guo M, Gu J, Teng F, Chen J, Ma X, Chen Q, et al. The efficacy and safety of combinations of SGLT2 inhibitors and GLP-1 receptor agonists in the treatment of type 2 diabetes or obese adults: a systematic review and meta-analysis. Endocrine. 2020; 67 23. Williams DM, Nawaz A, Evans M. Drug therapy in obesity: a review of current and emerging treatments. Diabetes Therapy. 2020; 11(6). 24. Overgaard RV, Navarria A, Ingwersen SH, Bækdal TA, Kildemoes RJ. Clinical pharmacokinetics of oral semaglutide: analyses of data from clinical pharmacology trials. Clinical Pharmacokinetics. 2021; 60 25. Jacobsen LV, Flint A, Olsen AK, Ingwersen SH. Liraglutide in type 2 diabetes mellitus: clinical pharmacokinetics and pharmacodynamics. Clinical pharmacokinetics. 2016; 55. 26. Cirincione B, Mager DE. Population pharmacokinetics of exenatide. British journal of clinical pharmacology. 2017; 83(3) 27. Brønden A, Knop FK, Christensen MB. Clinical pharmacokinetics and pharmacodynamics of albiglutide. Clinical pharmacokinetics. 2017; 56. 28. Federación Internacional de Diabetes. FID. [Online].; 2024 [cited 2025 enero 2. Available from: https://idf.org/es/about-diabetes/diabetes-facts-figures/. 29. Cuenta de alto Costo, CAC. Organismo técnico no gubernamental del Sistema General de Seguridad Social en Salud de Colombia creado mediante el Decreto 2699 de 2007. [Online].; 2025 [cited 2024 noviembre 23. Available from: https://cuentadealtocosto.org/ 30. Organización Mundial de la Salud. OMS. [Online].; 2024 [cited 2025 01 02. Available from: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight. 31. Huang X, Wu Y, Ni Y, Xu H, He Y. Global, regional, and national burden of type 2 diabetes mellitus caused by high BMI from 1990 to 2021, and forecasts to 2045: analysis from the global burden of disease study 2021. Frontiers in Public Health. 2025; 13 32. Shekar M, Okamura KS, Vilar-Compte M, Dell’Aira C. Investment Framework for Nutrition 2024. Washington, DC: World Bank. 2024. 33. Rojas Sánchez L, Pastor Verbel M, Badel Valera H. Costo-utilidad de la semaglutida comparada con liraglutida a corto plazo en personas adultas con sobrepeso (IMC >27 kg/m2) y obesidad (IMC >30 kg/m2) en Colombia. Universidad de Antioquia. 2024 34. Gomes DA, Presume J, de Araújo Gonçalves P, Almeida MS, Mendes M, Ferreira J. Association between the magnitude of glycemic control and body weight loss with GLP-1 receptor agonists and risk of atherosclerotic cardiovascular disease: a systematic review and meta-analyses of randomized diabetes cardiovascular outcomes trials. Cardiovascular Drugs and Therapy. 2024; 1. 35. Taha MB, Yahya T, Satish P, Laird R, Agatston AS, Cainzos-Achirica M, et al. Glucagon-like peptide 1 receptor agonists: a medication for obesity management. Current atherosclerosis reports. 2022; 24(8). 36. Yao H, Zhang A, Li D, Wu Y, Wang CZ, Wan JY, et al. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis. BMJ. 2024; 384. 37. Gratzl S, Rodriguez PJ, Cartwright BMG, Baker C, Do D, Stucky NL. Monitoring Report: GLP-1 RA Prescribing Trends-March 2024 Data. medRxiv. 2024; 01. 38. Sánchez O, Calderón A, Forero L, Albanes JP, Huérfano L. Análisis del comportamiento de la dispensación de antidiabéticos y costo per cápita desde la perspectiva de un gestor farmacéutico en Colombia. Revista Colombiana de Endocrinología, Diabetes & Metabolismo. 2023; 10(1). 39. Hale PM, Ali AK, Buse JB, McCullen MK, Ross DS, Sabol ME, et al. Medullary thyroid carcinoma surveillance study: a case-series registry. Thyroid. 2020; 30(10). 40. Tobaiqy M. A review of serious adverse events linked with GLP-1 agonists in type 2 diabetes mellitus and obesity treatment. Pharmacological Reports. 2024; 76(5). 41. Saklani S. Recent Patterns of Cancer Incidence and Mortality: Global and Indian Scenario. Nanoparticles in Cancer Theranostics. 2024; 40. 42. Shank JB, Are C, Wenos CD. Thyroid cancer: global burden and trends. Indian Journal of Surgical Oncology. 2022;1. 43. Paz-Ibarra J, Concepción-Zavaleta MJ, Quiroz-Aldave JE. Environmental factors related to the origin and evolution of differentiated thyroid cancer: A narrative review. Expert Review of Endocrinology & Metabolism. 2024; 19(6) 44. Kitahara CM, Schneider AB. Epidemiology of thyroid cancer. Cancer epidemiology, biomarkers & prevention. 2022; 31(7). 45. Miranda-Filho A, Lortet-Tieulent J, Bray F, Cao B, Franceschi S, Vaccarella S, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study. The lancet Diabetes & endocrinology. 2021; 9(4). 46. Pani F, Caria P, Yasuda Y, Makoto M, Mariotti S, Leenhardt L, et al. The immune landscape of papillary thyroid cancer in the context of autoimmune thyroiditis. Cancers. 2022; 14(17). 47. Banerjee S, Nahar U, Dahiya D, Mukherjee S, Dey P, Gupta R, et al. Role of cytotoxic T cells and PD-1 immune checkpoint pathway in papillary thyroid carcinoma. Frontiers in Endocrinology. 2022; 13. 48. Subhi O, Schulten HJ, Bagatian N, Al-Dayini RA, Karim S, Bakhashab S, et al. Genetic relationship between Hashimotos thyroiditis and papillary thyroid carcinoma with coexisting Hashimotos thyroiditis. PLoS One. 2020; 15(6) 49. Bezin J, Gouverneur A, Pénichon M, Mathieu C, Garrel R, Hillaire-Buys D, et al. GLP-1 receptor agonists and the risk of thyroid cancer. Diabetes care. 2023; 46(2). 50. Zhu C, Dai Y, Zhang H, Ruan Y, Zhou Y, Dai Y, et al. T cell exhaustion is associated with the risk of papillary thyroid carcinoma and can be a predictive and sensitive biomarker for diagnosis. Diagnostic Pathology. 2021; 16 51. Zhong Y, Lu TT, Liu XM, Liu BL, Hu Y, Liu S, et al. High levels of thyroid hormone impair regulatory T cell function via reduced PD-1 expression. The Journal of Clinical Endocrinology & Metabolism. 2021; 106(9). 52. Hu W, Song R, Cheng R, Liu C, Guo R, Tang W, et al. Use of GLP-1 receptor agonists and occurrence of thyroid disorders: a meta-analysis of randomized controlled trials. Frontiers in Endocrinology. 2022; 13. 53. Gallo M, Monami M, Ragni A, Renzelli V. Cancer related safety with SGLT2-i and GLP1-RAs: Should we worry? Diabetes Research and Clinical Practice. 2023; 198. 54. Sauter ER, Agurs-Collins T. Mechanisms by Which Pharmacotherapy May Impact Cancer Risk among Individuals with Overweight and Obesity. Cancers. 2024; 16(19). 55. Feier CVI, Vonica RC, Faur AM, Streinu DR, Muntean C. Assessment of Thyroid Carcinogenic Risk and Safety Profile of GLP1-RA Semaglutide (Ozempic) Therapy for Diabetes Mellitus and Obesity: A Systematic Literature Review. International Journal of Molecular Sciences. 2024; 25(8) 56. Kukova L, Munir KM, Sayeed A, Davis SN. Assessing the therapeutic and toxicological profile of novel GLP-1 receptor agonists for type 2 diabetes. Expert Opinion on Drug Metabolism & Toxicology. 2024; 20(10). 57. Yang Z, Yu M, Mei M, Chen C, Lv Y, Xiang L, et al. The association between GLP-1 receptor agonist and diabetic ketoacidosis in the FDA adverse event reporting system. Nutrition, Metabolism and Cardiovascular Diseases. 2022; 32(2). 58. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista española de cardiología. 2021; 74(9). 59. Pasternak B, Wintzell V, Hviid A, Eliasson B, Gudbjörnsdottir S, Jonasson C, et al. Glucagon-like peptide 1 receptor agonist use and risk of thyroid cancer: Scandinavian cohort study. BMJ. 2024; 385. 60. Baxter SM, Lund LC, Andersen JH, Brix TH, Hegedüs L, Hsieh MHC, et al. Glucagon-like peptide 1 receptor agonists and risk of thyroid cancer: an international multisite cohort study. Thyroid. 2025 61. Bea S, Son H, Bae JH, Cho SW, Shin JY, Cho YM. Risk of thyroid cancer associated with glucagon‐like peptide‐1 receptor agonists and dipeptidyl peptidase‐4 inhibitors in patients with type 2 diabetes: a population‐based cohort study. Diabetes, Obesity and Metabolism. 2024; 26(1): p. 108-117. 62. Liang C, Bertoia ML, Ding Y, Clifford CR, Qiao Q, Gagne JJ, et al. Exenatide use and incidence of pancreatic and thyroid cancer: a retrospective cohort study. Diabetes, Obesity and Metabolism. 2019; 21(4). 63. Abi Zeid Daou C, Mourad M. Exploring Connections between Weigh-Loss Medications and Thyroid Cancer: A Look at the FDA Adverse Event Reporting System Database. SSRN. 2024. 64. Brito JP, Herrin J, Swarna KS, Ospina NMS, Montori VM, Toro-Tobon D, et al. GLP-1RA Use and Thyroid Cancer Risk. JAMA Otolaryngology–Head & Neck Surgery. 2024. 65. Gier B, Butler PC, Lai CK, Kirakossian D, DeNicola MM, Yeh MW. Glucagon like peptide-1 receptor expression in the human thyroid gland. The Journal of Clinical Endocrinology & Metabolism. 2012; 97(1). 66. Zhang X, Zhang L, Wang B, Zhang X, Gu L, Guo K, et al. GLP-1 receptor agonist liraglutide inhibits the proliferation and migration of thyroid cancer cells. Cellular and Molecular Biology. 2023; 69(14). 67. Yang Z, Lv Y, Yu M, Mei M, Xiang L, Zhao S, et al. GLP-1 receptor agonist-associated tumor adverse events: A realworld study from 2004 to 2021 based on FAERS. Frontiers in Pharmacology. 2022; 13. 68. Mali G, Ahuja V, Dubey K. Glucagon‐like peptide‐1 analogues and thyroid cancer: an analysis of cases reported in the European pharmacovigilance database. Journal of Clinical Pharmacy and Therapeutics. 2021; 46(1). 70. Rosol TJ. On-target effects of GLP-1 receptor agonists on thyroid C-cells in rats and mice. Toxicologic pathology. 2013; 41(2). 71. Tseng CH, Lee KY, Tseng FH. An updated review on cancer risk associated with incretin mimetics and enhancers. Journal of Environmental Science and Health, Part C. 2015; 33(1). |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Química Farmacéutica |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/249467a5-b801-46c8-9dd6-f049b4204ad7/download https://repositorio.unbosque.edu.co/bitstreams/c519a1e4-290e-4d2c-9ed1-9545568acc34/download https://repositorio.unbosque.edu.co/bitstreams/0c4078aa-96a5-400f-946b-90168da455b6/download https://repositorio.unbosque.edu.co/bitstreams/dddf67db-ebf2-4c83-bfc3-8faf2a694bc7/download https://repositorio.unbosque.edu.co/bitstreams/64e2e5ad-6870-4a22-8b6b-8918a3d8db45/download https://repositorio.unbosque.edu.co/bitstreams/22e69d87-388e-4446-9b46-0f42ba756c48/download https://repositorio.unbosque.edu.co/bitstreams/cf36c397-e143-4781-b3a0-1efb1f725905/download |
bitstream.checksum.fl_str_mv |
17cc15b951e7cc6b3728a574117320f9 86f9cc2835221a0b8841d4a4e79f8173 92423a8725e49981261ece417a6b40ef dcb88bb06c968701822df553586ed33a 5643bfd9bcf29d560eeec56d584edaa9 b31b86b2f30ef3688eb0b9cf12e4e089 c68ebfd89092cceae5b9af3590ba85ab |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1834108030471372800 |
spelling |
Amaya Mendez, SergioGonzález Marroquín, Jaider YamidRojas León, Danna Sarai2025-05-19T20:09:18Z2025-05-19T20:09:18Z2025-05https://hdl.handle.net/20.500.12495/14399Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLos agonistas del receptor del péptido similar al glucagón tipo 1 (AR-GLP-1) son medicamentos indicados para el tratamiento de la diabetes tipo 2 y la obesidad. Sin embargo, el uso de AR-GLP-1 se ha asociado con efectos adversos gastrointestinales y un posible aumento en el riesgo de cáncer medular de tiroides (CMT), observado en ciertos estudios preclínicos realizados en modelos de roedores. Esta revisión narrativa recopiló un total de 800 registros bibliográficos, de los cuales se seleccionaron 5 estudios de cohorte tipo caso-control para su inclusión, analizados según los criterios de Bradford Hill. Los hallazgos indican que la asociación entre el uso de AR-GLP-1 y el desarrollo de cáncer de tiroides (CT) ha arrojado resultados mixtos, con algunos autores que sugieren un mayor riesgo de CT—especialmente del tipo medular—relacionado con el uso prolongado de estos fármacos; sin embargo, otros estudios más recientes no encontraron evidencia significativa que respalde dicha asociación. En cuanto a los mecanismos biológicos, las investigaciones han señalado la expresión del receptor de GLP-1 en las células C tiroideas, tanto en tejidos normales como en formaciones neoplásicas, aunque aún no está claro si la activación sostenida de estos receptores por agonistas podría inducir CT en humanos. Se recomienda un monitoreo regular en pacientes tratados con AR-GLP-1, incluyendo la palpación del cuello para detectar posibles signos de CT, así como análisis de calcitonina, especialmente en pacientes en tratamiento a largo plazo. Además, la evidencia sugiere evitar el uso combinado de AR-GLP-1 con inhibidores de la DPP-4, ya que podría aumentar el riesgo de efectos adversos, incluyendo el posible desarrollo de CT.PregradoQuímico FarmacéuticoGlucagon-like peptide-1 receptor agonists (AR-GLP-1) are medications indicated for the treatment of type 2 diabetes and obesity. Nevertheless, the use of AR-GLP-1 has been linked to gastrointestinal adverse effects and a potential increased risk of medullary thyroid cancer (MTC), as observed in certain preclinical studies conducted on rodent models. This narrative review gathered a total of 800 bibliographic records, from which 5 case-control cohort studies were selected for inclusion and analyzed according to the Bradford Hill criteria. The findings indicate that the association between AR-GLP-1 use and the development of thyroid cancer (TC) has produced mixed results, with some authors suggesting a heightened risk of TC—particularly of the medullary type—linked to prolonged use of these drugs; however, other more recent studies have found no significant evidence supporting such an association. In terms of biological mechanisms, research has indicated the presence of GLP-1 receptor expression in thyroid C cells, both in normal tissue and neoplastic formations, though it remains unclear whether sustained activation of these receptors by agonists could trigger TC in humans. Regular monitoring is advised for patients undergoing treatment with AR-GLP-1, including palpation of the neck to identify potential signs of TC, as well as calcitonin level assessments, especially in patients on long-term therapy. Additionally, evidence suggests avoiding the combined use of AR-GLP-1 and DPP-4 inhibitors, as this may elevate the risk of adverse effects, including the possible development of TC.application/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Diabetes mellitusAgonistas del GLP-1Mecanismos molecularesCancér de tiroides615.19Diabetes mellitusGLP-1 agonistsMolecular mechanismsThyroid cancerRelación y posibles mecanismos moleculares del cáncer de tiroides y el uso de medicamentos AR-GLP-1: una revisión narrativaRelationship and possible molecular mechanisms of thyroid cancer and AR-GLP-1 drug cancer and the use of AR-GLP-1 drugs: a narrative review of the narrativeQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. Bednarz K, Kowalczyk K, Cwynar M, Czapla D, Czarkowski W, Kmita D, et al. The role of glp-1 receptor agonists in insulin resistance with concomitant obesity treatment in polycystic ovary syndrome. International journal of molecular sciences. 2022; 23(8).2. Cheng D, Yang S, Zhao X, Wang G. The role of glucagon-like peptide-1 receptor agonists (GLP-1 RA) in diabetesrelated neurodegenerative diseases. Drug design, development and therapy. 2023.3. Yen FS, Hsu CC, Wei JCC, Tsai FJ, Huang Y, Yu TS, et al. Glucagon-like peptide-1 receptor agonists may benefit cardiopulmonary outcomes in patients with COPD. Thorax. 2024; 79(11).4. Espinosa De Ycaza AE, Brito JP, McCoy RG, Shao H, Singh Ospina N. Glucagon-Like Peptide-1 Receptor Agonists and Thyroid Cancer: A Narrative Review. Thyroid. 2024; 34(4).5. Lisco G, De Tullio A, Disoteo O, Piazzolla G, Guastamacchia E, Sabbà C, et al. Glucagon-like peptide 1 receptor agonists and thyroid cancer: is it the time to be concerned? Endocrine Connections. 2023; 12(11).6. Honigberg MC, Chang LS, McGuire DK, Plutzky J, Aroda VR, Vaduganathan M. Use of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes and cardiovascular disease: a review. JAMA cardiology. 2020;5(10)7. Tran KL, Park YI, Pandya S, Muliyil NJ, Jensen BD, Huynh K, et al. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes. American health & drug benefits. 2017; 10(4)8. Gentilella R, Pechtner V, Corcos A, Consoli A. Glucagon‐like peptide‐1 receptor agonists in type 2 diabetes treatment: are they all the same? Diabetes/metabolism research and reviews. 2019; 35(1).9. Davis EM, Sandoval DA. Glucagon-like peptide-1: actions and influence on pancreatic hormone function. Comprehensive Physiology. 2020; 10(2).10. Holst JJ, Gasbjerg LS, Rosenkilde MM. The role of incretins on insulin function and glucose homeostasis. Endocrinology. 2021; 162(7).11. Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell metabolism. 2018; 27(4)12. Gribble FM, Reimann F. Metabolic messengers: glucagon-like peptide 1. Nature metabolism. 2021; 3(2): p. 142-14813. El K, Campbell JE. The role of GIP in α-cells and glucagon secretion. Peptides. 2020; 125.14. Ramracheya R, Chapman C, Chibalina M, Dou H, Miranda C, González A, et al. GLP‐1 suppresses glucagon secretion in human pancreatic alpha‐cells by inhibition of P/Q‐type Ca2+ channels. Physiological reports. 2018; 6(17).15. Capuccio S, Scilletta S, La Rocca F, Miano N, Di Marco M, Bosco G, et al. Implications of GLP-1 Receptor Agonist on Thyroid Function: A Literature Review of Its Effects on Thyroid Volume, Risk of Cancer, Functionality and TSH Levels. Biomolecules. 2024; 14(6).16. Lymperopoulos A, Borges JI, Stoicovy RA. Cyclic adenosine monophosphate in cardiac and sympathoadrenal GLP1 receptor signaling: focus on anti-inflammatory effects. Pharmaceutics. 2024; 16(6).17. Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP-1 and GIP receptor signaling in beta cells–a review of receptor interactions and co-stimulation. Peptides. 2022; 151.18. Camilleri M. The role of gastric function in control of food intake (and body weight) in relation to obesity, as well as pharmacological and surgical interventions. Neurogastroenterology & Motility. 2024; 36(2).19. Camilleri M, Lupianez-Merly C. Effects of GLP-1 and other gut hormone receptors on the gastrointestinal tract and implications in clinical practice. Official journal of the American College of Gastroenterology| ACG. 2022; 10.20. Plummer MP, Chapman MJ, Horowitz M. Incretins and the intensivist: ¿what are they and what does an intensivist need to know about them? Critical Care. 2014; 18.21. Wang JY, Wang QW, Yang XY, Yang W, Li DR, Jin JY, et al. GLP− 1 receptor agonists for the treatment of obesity: role as a promising approach. Frontiers in endocrinology. 2023; 14.22. Guo M, Gu J, Teng F, Chen J, Ma X, Chen Q, et al. The efficacy and safety of combinations of SGLT2 inhibitors and GLP-1 receptor agonists in the treatment of type 2 diabetes or obese adults: a systematic review and meta-analysis. Endocrine. 2020; 6723. Williams DM, Nawaz A, Evans M. Drug therapy in obesity: a review of current and emerging treatments. Diabetes Therapy. 2020; 11(6).24. Overgaard RV, Navarria A, Ingwersen SH, Bækdal TA, Kildemoes RJ. Clinical pharmacokinetics of oral semaglutide: analyses of data from clinical pharmacology trials. Clinical Pharmacokinetics. 2021; 6025. Jacobsen LV, Flint A, Olsen AK, Ingwersen SH. Liraglutide in type 2 diabetes mellitus: clinical pharmacokinetics and pharmacodynamics. Clinical pharmacokinetics. 2016; 55.26. Cirincione B, Mager DE. Population pharmacokinetics of exenatide. British journal of clinical pharmacology. 2017; 83(3)27. Brønden A, Knop FK, Christensen MB. Clinical pharmacokinetics and pharmacodynamics of albiglutide. Clinical pharmacokinetics. 2017; 56.28. Federación Internacional de Diabetes. FID. [Online].; 2024 [cited 2025 enero 2. Available from: https://idf.org/es/about-diabetes/diabetes-facts-figures/.29. Cuenta de alto Costo, CAC. Organismo técnico no gubernamental del Sistema General de Seguridad Social en Salud de Colombia creado mediante el Decreto 2699 de 2007. [Online].; 2025 [cited 2024 noviembre 23. Available from: https://cuentadealtocosto.org/30. Organización Mundial de la Salud. OMS. [Online].; 2024 [cited 2025 01 02. Available from: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight.31. Huang X, Wu Y, Ni Y, Xu H, He Y. Global, regional, and national burden of type 2 diabetes mellitus caused by high BMI from 1990 to 2021, and forecasts to 2045: analysis from the global burden of disease study 2021. Frontiers in Public Health. 2025; 1332. Shekar M, Okamura KS, Vilar-Compte M, Dell’Aira C. Investment Framework for Nutrition 2024. Washington, DC: World Bank. 2024.33. Rojas Sánchez L, Pastor Verbel M, Badel Valera H. Costo-utilidad de la semaglutida comparada con liraglutida a corto plazo en personas adultas con sobrepeso (IMC >27 kg/m2) y obesidad (IMC >30 kg/m2) en Colombia. Universidad de Antioquia. 202434. Gomes DA, Presume J, de Araújo Gonçalves P, Almeida MS, Mendes M, Ferreira J. Association between the magnitude of glycemic control and body weight loss with GLP-1 receptor agonists and risk of atherosclerotic cardiovascular disease: a systematic review and meta-analyses of randomized diabetes cardiovascular outcomes trials. Cardiovascular Drugs and Therapy. 2024; 1.35. Taha MB, Yahya T, Satish P, Laird R, Agatston AS, Cainzos-Achirica M, et al. Glucagon-like peptide 1 receptor agonists: a medication for obesity management. Current atherosclerosis reports. 2022; 24(8).36. Yao H, Zhang A, Li D, Wu Y, Wang CZ, Wan JY, et al. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis. BMJ. 2024; 384.37. Gratzl S, Rodriguez PJ, Cartwright BMG, Baker C, Do D, Stucky NL. Monitoring Report: GLP-1 RA Prescribing Trends-March 2024 Data. medRxiv. 2024; 01.38. Sánchez O, Calderón A, Forero L, Albanes JP, Huérfano L. Análisis del comportamiento de la dispensación de antidiabéticos y costo per cápita desde la perspectiva de un gestor farmacéutico en Colombia. Revista Colombiana de Endocrinología, Diabetes & Metabolismo. 2023; 10(1).39. Hale PM, Ali AK, Buse JB, McCullen MK, Ross DS, Sabol ME, et al. Medullary thyroid carcinoma surveillance study: a case-series registry. Thyroid. 2020; 30(10).40. Tobaiqy M. A review of serious adverse events linked with GLP-1 agonists in type 2 diabetes mellitus and obesity treatment. Pharmacological Reports. 2024; 76(5).41. Saklani S. Recent Patterns of Cancer Incidence and Mortality: Global and Indian Scenario. Nanoparticles in Cancer Theranostics. 2024; 40.42. Shank JB, Are C, Wenos CD. Thyroid cancer: global burden and trends. Indian Journal of Surgical Oncology. 2022;1.43. Paz-Ibarra J, Concepción-Zavaleta MJ, Quiroz-Aldave JE. Environmental factors related to the origin and evolution of differentiated thyroid cancer: A narrative review. Expert Review of Endocrinology & Metabolism. 2024; 19(6)44. Kitahara CM, Schneider AB. Epidemiology of thyroid cancer. Cancer epidemiology, biomarkers & prevention. 2022; 31(7).45. Miranda-Filho A, Lortet-Tieulent J, Bray F, Cao B, Franceschi S, Vaccarella S, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study. The lancet Diabetes & endocrinology. 2021; 9(4).46. Pani F, Caria P, Yasuda Y, Makoto M, Mariotti S, Leenhardt L, et al. The immune landscape of papillary thyroid cancer in the context of autoimmune thyroiditis. Cancers. 2022; 14(17).47. Banerjee S, Nahar U, Dahiya D, Mukherjee S, Dey P, Gupta R, et al. Role of cytotoxic T cells and PD-1 immune checkpoint pathway in papillary thyroid carcinoma. Frontiers in Endocrinology. 2022; 13.48. Subhi O, Schulten HJ, Bagatian N, Al-Dayini RA, Karim S, Bakhashab S, et al. Genetic relationship between Hashimotos thyroiditis and papillary thyroid carcinoma with coexisting Hashimotos thyroiditis. PLoS One. 2020; 15(6)49. Bezin J, Gouverneur A, Pénichon M, Mathieu C, Garrel R, Hillaire-Buys D, et al. GLP-1 receptor agonists and the risk of thyroid cancer. Diabetes care. 2023; 46(2).50. Zhu C, Dai Y, Zhang H, Ruan Y, Zhou Y, Dai Y, et al. T cell exhaustion is associated with the risk of papillary thyroid carcinoma and can be a predictive and sensitive biomarker for diagnosis. Diagnostic Pathology. 2021; 1651. Zhong Y, Lu TT, Liu XM, Liu BL, Hu Y, Liu S, et al. High levels of thyroid hormone impair regulatory T cell function via reduced PD-1 expression. The Journal of Clinical Endocrinology & Metabolism. 2021; 106(9).52. Hu W, Song R, Cheng R, Liu C, Guo R, Tang W, et al. Use of GLP-1 receptor agonists and occurrence of thyroid disorders: a meta-analysis of randomized controlled trials. Frontiers in Endocrinology. 2022; 13.53. Gallo M, Monami M, Ragni A, Renzelli V. Cancer related safety with SGLT2-i and GLP1-RAs: Should we worry? Diabetes Research and Clinical Practice. 2023; 198.54. Sauter ER, Agurs-Collins T. Mechanisms by Which Pharmacotherapy May Impact Cancer Risk among Individuals with Overweight and Obesity. Cancers. 2024; 16(19).55. Feier CVI, Vonica RC, Faur AM, Streinu DR, Muntean C. Assessment of Thyroid Carcinogenic Risk and Safety Profile of GLP1-RA Semaglutide (Ozempic) Therapy for Diabetes Mellitus and Obesity: A Systematic Literature Review. International Journal of Molecular Sciences. 2024; 25(8)56. Kukova L, Munir KM, Sayeed A, Davis SN. Assessing the therapeutic and toxicological profile of novel GLP-1 receptor agonists for type 2 diabetes. Expert Opinion on Drug Metabolism & Toxicology. 2024; 20(10).57. Yang Z, Yu M, Mei M, Chen C, Lv Y, Xiang L, et al. The association between GLP-1 receptor agonist and diabetic ketoacidosis in the FDA adverse event reporting system. Nutrition, Metabolism and Cardiovascular Diseases. 2022; 32(2).58. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista española de cardiología. 2021; 74(9).59. Pasternak B, Wintzell V, Hviid A, Eliasson B, Gudbjörnsdottir S, Jonasson C, et al. Glucagon-like peptide 1 receptor agonist use and risk of thyroid cancer: Scandinavian cohort study. BMJ. 2024; 385.60. Baxter SM, Lund LC, Andersen JH, Brix TH, Hegedüs L, Hsieh MHC, et al. Glucagon-like peptide 1 receptor agonists and risk of thyroid cancer: an international multisite cohort study. Thyroid. 202561. Bea S, Son H, Bae JH, Cho SW, Shin JY, Cho YM. Risk of thyroid cancer associated with glucagon‐like peptide‐1 receptor agonists and dipeptidyl peptidase‐4 inhibitors in patients with type 2 diabetes: a population‐based cohort study. Diabetes, Obesity and Metabolism. 2024; 26(1): p. 108-117.62. Liang C, Bertoia ML, Ding Y, Clifford CR, Qiao Q, Gagne JJ, et al. Exenatide use and incidence of pancreatic and thyroid cancer: a retrospective cohort study. Diabetes, Obesity and Metabolism. 2019; 21(4).63. Abi Zeid Daou C, Mourad M. Exploring Connections between Weigh-Loss Medications and Thyroid Cancer: A Look at the FDA Adverse Event Reporting System Database. SSRN. 2024.64. Brito JP, Herrin J, Swarna KS, Ospina NMS, Montori VM, Toro-Tobon D, et al. GLP-1RA Use and Thyroid Cancer Risk. JAMA Otolaryngology–Head & Neck Surgery. 2024.65. Gier B, Butler PC, Lai CK, Kirakossian D, DeNicola MM, Yeh MW. Glucagon like peptide-1 receptor expression in the human thyroid gland. The Journal of Clinical Endocrinology & Metabolism. 2012; 97(1).66. Zhang X, Zhang L, Wang B, Zhang X, Gu L, Guo K, et al. GLP-1 receptor agonist liraglutide inhibits the proliferation and migration of thyroid cancer cells. Cellular and Molecular Biology. 2023; 69(14).67. Yang Z, Lv Y, Yu M, Mei M, Xiang L, Zhao S, et al. GLP-1 receptor agonist-associated tumor adverse events: A realworld study from 2004 to 2021 based on FAERS. Frontiers in Pharmacology. 2022; 13.68. Mali G, Ahuja V, Dubey K. Glucagon‐like peptide‐1 analogues and thyroid cancer: an analysis of cases reported in the European pharmacovigilance database. Journal of Clinical Pharmacy and Therapeutics. 2021; 46(1).70. Rosol TJ. On-target effects of GLP-1 receptor agonists on thyroid C-cells in rats and mice. Toxicologic pathology. 2013; 41(2).71. Tseng CH, Lee KY, Tseng FH. An updated review on cancer risk associated with incretin mimetics and enhancers. Journal of Environmental Science and Health, Part C. 2015; 33(1).spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/249467a5-b801-46c8-9dd6-f049b4204ad7/download17cc15b951e7cc6b3728a574117320f9MD51Carta autorizacion.pdfapplication/pdf276144https://repositorio.unbosque.edu.co/bitstreams/c519a1e4-290e-4d2c-9ed1-9545568acc34/download86f9cc2835221a0b8841d4a4e79f8173MD57Acta de aprobacion.pdfapplication/pdf822244https://repositorio.unbosque.edu.co/bitstreams/0c4078aa-96a5-400f-946b-90168da455b6/download92423a8725e49981261ece417a6b40efMD58ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1319010https://repositorio.unbosque.edu.co/bitstreams/dddf67db-ebf2-4c83-bfc3-8faf2a694bc7/downloaddcb88bb06c968701822df553586ed33aMD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repositorio.unbosque.edu.co/bitstreams/64e2e5ad-6870-4a22-8b6b-8918a3d8db45/download5643bfd9bcf29d560eeec56d584edaa9MD56TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain56409https://repositorio.unbosque.edu.co/bitstreams/22e69d87-388e-4446-9b46-0f42ba756c48/downloadb31b86b2f30ef3688eb0b9cf12e4e089MD59THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg4842https://repositorio.unbosque.edu.co/bitstreams/cf36c397-e143-4781-b3a0-1efb1f725905/downloadc68ebfd89092cceae5b9af3590ba85abMD51020.500.12495/14399oai:repositorio.unbosque.edu.co:20.500.12495/143992025-05-20 05:08:36.592http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |