Una revisión narrativa sobre los avances, directrices legales y limitaciones actuales de las vacunas de ARNm usadas en el tratamiento del cáncer con un enfoque en los diversos sistemas de entrega empleados

El desarrollo de vacunas de ARNm ha marcado un hito en la inmunoterapia, permitiendo respuestas rápidas a enfermedades emergentes como el COVID-19. Actualmente, estas vacunas están siendo evaluadas en ensayos clínicos para el tratamiento de diferentes tipos de cánceres. No obstante, uno de los princ...

Full description

Autores:
Pulido Torres, Ammi Zaray
Rincón Torres, Maria Fernanda
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2025
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/14365
Acceso en línea:
https://hdl.handle.net/20.500.12495/14365
Palabra clave:
Vacunas de ARNm
Sistema de entrega
Cáncer
Tratamiento
Ensayos clínicos
Investigaciones preclínicas
Normatividad
615.19
mRNA vaccines
Delivery Sistems
Cancer
Treatment
Clinical Trials
Preclinical research
Regulations
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNBOSQUE2_5351470d2a0224b9586606ec020d9206
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/14365
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Una revisión narrativa sobre los avances, directrices legales y limitaciones actuales de las vacunas de ARNm usadas en el tratamiento del cáncer con un enfoque en los diversos sistemas de entrega empleados
dc.title.translated.none.fl_str_mv A narrative review on the current advances, legal guidelines, and limitations of mRNA vaccines used in cancer treatment with a focus on the various delivery systems employed
title Una revisión narrativa sobre los avances, directrices legales y limitaciones actuales de las vacunas de ARNm usadas en el tratamiento del cáncer con un enfoque en los diversos sistemas de entrega empleados
spellingShingle Una revisión narrativa sobre los avances, directrices legales y limitaciones actuales de las vacunas de ARNm usadas en el tratamiento del cáncer con un enfoque en los diversos sistemas de entrega empleados
Vacunas de ARNm
Sistema de entrega
Cáncer
Tratamiento
Ensayos clínicos
Investigaciones preclínicas
Normatividad
615.19
mRNA vaccines
Delivery Sistems
Cancer
Treatment
Clinical Trials
Preclinical research
Regulations
title_short Una revisión narrativa sobre los avances, directrices legales y limitaciones actuales de las vacunas de ARNm usadas en el tratamiento del cáncer con un enfoque en los diversos sistemas de entrega empleados
title_full Una revisión narrativa sobre los avances, directrices legales y limitaciones actuales de las vacunas de ARNm usadas en el tratamiento del cáncer con un enfoque en los diversos sistemas de entrega empleados
title_fullStr Una revisión narrativa sobre los avances, directrices legales y limitaciones actuales de las vacunas de ARNm usadas en el tratamiento del cáncer con un enfoque en los diversos sistemas de entrega empleados
title_full_unstemmed Una revisión narrativa sobre los avances, directrices legales y limitaciones actuales de las vacunas de ARNm usadas en el tratamiento del cáncer con un enfoque en los diversos sistemas de entrega empleados
title_sort Una revisión narrativa sobre los avances, directrices legales y limitaciones actuales de las vacunas de ARNm usadas en el tratamiento del cáncer con un enfoque en los diversos sistemas de entrega empleados
dc.creator.fl_str_mv Pulido Torres, Ammi Zaray
Rincón Torres, Maria Fernanda
dc.contributor.advisor.none.fl_str_mv Ariza Márquez, Viviana Yeimy
Jimenez Cruz, Ronald Andrés
dc.contributor.author.none.fl_str_mv Pulido Torres, Ammi Zaray
Rincón Torres, Maria Fernanda
dc.subject.none.fl_str_mv Vacunas de ARNm
Sistema de entrega
Cáncer
Tratamiento
Ensayos clínicos
Investigaciones preclínicas
Normatividad
topic Vacunas de ARNm
Sistema de entrega
Cáncer
Tratamiento
Ensayos clínicos
Investigaciones preclínicas
Normatividad
615.19
mRNA vaccines
Delivery Sistems
Cancer
Treatment
Clinical Trials
Preclinical research
Regulations
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv mRNA vaccines
Delivery Sistems
Cancer
Treatment
Clinical Trials
Preclinical research
Regulations
description El desarrollo de vacunas de ARNm ha marcado un hito en la inmunoterapia, permitiendo respuestas rápidas a enfermedades emergentes como el COVID-19. Actualmente, estas vacunas están siendo evaluadas en ensayos clínicos para el tratamiento de diferentes tipos de cánceres. No obstante, uno de los principales retos es la adecuada vehiculización del ARNm, ya que su estabilidad puede verse afectada por diversos factores, por lo que se emplean sistemas de entrega diseñados para protegerlo y garantizar su eficacia. Esta revisión explora los avances en las vacunas de ARNm para cáncer, sus sistemas de entrega y las directrices regulatorias actuales. Se identificaron 101 ensayos clínicos, de los cuales el 55% no detallaron el sistema de entrega y el 34% emplearon células dendríticas (terapia Ex vivo) por vía intradérmica. Estos estudios están principalmente reclutando para fase I y se espera que las vacunas de ARNm en estudio se puedan comercializar en 2033. Por otro lado, las nanopartículas lipídicas, liposomas y poliplexes destacan como los sistemas de entrega más utilizados en las investigaciones preclínicas. Finalmente, se observan vacíos en las normativas internacionales y nacionales donde se evidencia la falta de una categoría específica para estas vacunas. En conclusión, las vacunas de ARNm tienen un gran potencial para el tratamiento del cáncer. Sin embargo, al ser una tecnología compleja y personalizada, es fundamental superar desafíos clave en su eficacia, seguridad y regulación antes de su implementación a gran escala.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-05-16T15:03:15Z
dc.date.available.none.fl_str_mv 2025-05-16T15:03:15Z
dc.date.issued.none.fl_str_mv 2025-04
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/14365
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/14365
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1]. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33.​ https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21820
[2].World Health Organization. Global cancer burden growing amidst mounting need for services [Internet]. Geneva: WHO; 2024 Feb 1 [cited 2025 Mar 30]. Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
[3]. International Agency for Research on Cancer. "Incidence All Cancer". GloboCan. [Online]. Available: https://gco.iarc.fr/today/en/dataviz/tables?mode= population. Accessed: 2022.
[4]. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20:817–38. doi:10.1038/s41573-021-00283-5.
[5]. Kallerup RS, Foged C. Classification of Vaccines. En: Subunit Vaccine Delivery. 2nd ed. New York: Springer; 2015. p. 15-29. Disponible en: https://link.springer.com/chapter/10.1007/978-1-4939-1417-3_2
[6]. Tahamtan A, Charostad J, Hoseini Shokouh SJ, Barati M. An overview of history, evolution, and manufacturing of various generations of vaccines. J Arch Mil Med. 2017;5(3):e12315. doi:10.5812/jamm.12315.​
[7]. Wu Z, Yang M, Cao Y. Tumor antigens and vaccines in colorectal cancer. Med Drug Discov. 2022;16:100144. doi: 10.1016/j.medidd.2022.100144.
[8]. Sayour EJ, Boczkowski D, Mitchell DA, Nair SK. Cancer mRNA vaccines: clinical advances and future opportunities. Nat Rev Clin Oncol. 2024;21(7):489–500. doi:10.1038/s41571-024-00902-1.
[9]. Wu S, Zhou Y, Asakawa N, Wen M, Sun Y, Ming Y, Song T, Chen W, Ma G, Xia Y. Engineering CaP-Pickering emulsion for enhanced mRNA cancer vaccines via dual DC and NK activations. J Control Release. 2024;373:837-52. doi: 10.1016/j.jconrel.2024.07.051.
[10]. Zeng C, Zhang C, Walker PG, Dong Y. Tecnologías de formulación y administración para vacunas de ARNm. Curr Top Microbiol Immunol. 2022;440:71-110. DOI: 10.1007/82_2020_217. PMID: 32483657; PMCID: PMC8195316.
[11]. Naik R, Peden K. Regulatory Considerations on the Development of mRNA Vaccines. Curr Top Microbiol Immunol. 2022;440:187-205. doi: 10.1007/82_2020_220. PMID: 32638114.
[12]. European Union Clinical Trials Register.Open label randomized phase II/III trial of dendritic cell immunotherapy against cancer stem cells in glioblastoma patients receiving standard therapy (DEN-STEM).European Union Clinical Trials Register:2015-002198-40.https://www.clinicaltrialsregister.eu/ctr-search/trial/2015-002198-40/NO.Acceso: 11 de febrero de 2025.
[13]. ClinicalTrials.gov.Monocyte Antigen Carrier Cells for Newly Diagnosed GBM (DEMAND).ClinicalTrials.gov identifier:NCT04741984.https://clinicaltrials.gov/study/NCT04741984?cond=Cancer&term=Tumor&intr=mRNA&viewType=Table&limit=100&page=2&rank=180.Acceso: 11 de febrero de 2025.
[14]. Cafri G, Gartner JJ, Zaks T, Hopson K, Levin N, Paria BC, Parkhurst MR, Yossef R, Lowery FJ, Jafferji MS, Prickett TD, Goff SL, McGowan CT, Seitter S, Shindorf ML, Parikh A, Chatani PD, Robbins PF, Rosenberg SA. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest. 2020 Nov 2;130(11):5976-5988. doi: 10.1172/JCI134915. PMID: 33016924; PMCID: PMC7598064
[15]. Vlahovic G, et al. Phase I trial of combination of antitumor immunotherapy targeted against cytomegalovirus (CMV) plus regulatory T-cell inhibition in patients with newly-diagnosed glioblastoma multiforme (GBM). J Clin Oncol. 2016;34(Suppl 15):e13518. doi:10.1200/JCO.2016.34.15_suppl.e13518.
[16]. ClinicalTrials.gov.Phase 1/​2 Study of Combination Immunotherapy and Messenger Ribonucleic Acid (mRNA) Vaccine in Subjects With NSCLC. ClinicalTrials.gov identifier:NCT03164772.https://clinicaltrials.gov/study/NCT03164772?cond=Cancer&term=Tumor&intr=mRNA&page=4&rank=35.Acceso: 11 de febrero de 2025.
[17]. ClinicalTrials.gov.CT7, MAGE-A3, and WT1 mRNA-electroporated Autologous Langerhans-type Dendritic Cells as Consolidation for Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplantation. ClinicalTrials.gov identifier:NCT01995708.https://clinicaltrials.gov/study/NCT01995708?cond=Cancer&term=Tumor&intr=mRNA&page=4&rank=37.Acceso: 11 de febrero de 2025.
[18]. Wang QT, Nie Y, Sun SN, Lin T, Han RJ, Jiang J, Li Z, Li JQ, Xiao YP, Fan YY, Yuan XH, Zhang H, Zhao BB, Zeng M, Li SY, Liao HX, Zhang J, He YW. Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunol Immunother. 2020 Jul;69(7):1375-1387. doi: 10.1007/s00262-020-02496-w. Epub 2020 Feb 20. PMID: 32078016; PMCID: PMC11027674.
[19]. Kyte JA, Aamdal S, Dueland S, Sæbøe-Larsen S, Inderberg EM, Madsbu UE, Skovlund E, Gaudernack G, Kvalheim G. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. Oncoimmunology. 2016 Oct 18;5(11):e1232237. doi: 10.1080/2162402X.2016.1232237. PMID: 27999747; PMCID: PMC5139630.
[20].Zwi N. Berneman, Paul Germonpre, Manon Thirza Huizing, Ann Van de Velde, Griet Nijs, Barbara Stein, Viggo F. Van Tendeloo, Eva Lion, Evelien L. Smits, and Sebastien Anguille.Dendritic cell vaccination in malignant pleural mesothelioma: A phase I/II study.Journal of Clinical Oncology. 2014;32(15_suppl):7583. Available from: https://ascopubs.org/doi/10.1200/jco.2014.32.15_suppl.7583.
[21].ClinicalTrials.gov.Immunotherapy Targeted Against Cytomegalovirus in Patients With Newly-Diagnosed WHO Grade IV Unmethylated Glioma (I-ATTAC).ClinicalTrials.gov identifier:NCT03927222.https://clinicaltrials.gov/study/NCT03927222?cond=Cancer&term=Tumor&intr=mRNA&page=2&rank=117&tab=results.Acceso: 11 de febrero de 2025.
[22]. Westdorp H, Creemers JHA, van Oort IM, Schreibelt G, Gorris MAJ, Mehra N, Simons M, de Goede AL, van Rossum MM, Croockewit AJ, Figdor CG, Witjes JA, Aarntzen EHJG, Mus RDM, Brüning M, Petry K, Gotthardt M, Barentsz JO, de Vries IJM, Gerritsen WR. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer. 2019 Nov 14;7(1):302. doi: 10.1186/s40425-019-0787-6. PMID: 31727154; PMCID: PMC6854814
[23]. Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusson G, Cools N, Nijs G, Stein B, Lion E, Van Driessche A, Vandenbosch I, Verlinden A, Gadisseur AP, Schroyens WA, Muylle L, Vermeulen K, Maes MB, Deiteren K, Malfait R, Gostick E, Lammens M, Couttenye MM, Jorens P, Goossens H, Price DA, Ladell K, Oka Y, Fujiki F, Oji Y, Sugiyama H, Berneman ZN. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017 Oct 12;130(15):1713-1721. doi: 10.1182/blood-2017-04-780155. Epub 2017 Aug 22. PMID: 28830889; PMCID: PMC5649080.
[24]. ClinicalTrials.gov.Nivolumab With DC Vaccines for Recurrent Brain Tumors (AVERT).ClinicalTrials.gov identifier:NCT02529072.https://clinicaltrials.gov/study/NCT02529072?cond=Cancer&term=Tumor&intr=mRNA&viewType=Table&limit=100&page=2&rank=176.Acceso: 11 de febrero de 2025.
[25]. Wilgenhof S, Van Nuffel AMT, Benteyn D, Corthals J, Aerts C, Heirman C, Van Riet I, Bonehill A, Thielemans K, Neyns B. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol. 2013 Oct;24(10):2686-2693. doi: 10.1093/annonc/mdt245. Epub 2013 Jul 31. PMID: 23904461.
[26]. Guo J, Ma S, Mai Y, Gao T, Song Z, Yang J. Combination of a cationic complex loaded with mRNA and α-galactose ceramide enhances antitumor immunity and affects the tumor immune microenvironment. Int Immunopharmacol. 2022;113(Pt A):109254. doi:10.1016/j.intimp.2022.109254.
[27]. Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J, et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol Ther. 2018;26(1):45-55. doi:10.1016/j.ymthe.2017.10.020.
[28]. Duan X, Zhang Y, Guo M, Fan N, Chen K, Qin S, et al. Sodium alginate coating simultaneously increases the biosafety and immunotherapeutic activity of the cationic mRNA nanovaccine. Acta Pharm Sin B. 2023;13(3):942-954. doi:10.1016/j.apsb.2022.08.015.
[29]. Xiao W, Wang F, Gu Y, He X, Fan N, Zheng Q, et al. PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chin Chem Lett. 2024;35(5):108755. doi:10.1016/j.cclet.2023.108755.
[30]. Zhang W, Liu Y, Chin JM, Phua KKL. Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination. Eur J Pharm Biopharm. 2021;163:179-187. doi:10.1016/j.ejpb.2021.03.011.
[31]. Huang L, Zhao F, He M, Fang Y, Ma X, Lu S, et al. An inoculation site-retained mRNA vaccine induces robust immune responses against SARS-CoV-2 variants. J Control Release. 2024;366:479-493. doi:10.1016/j.jconrel.2024.01.002.
[32]. Hsia T, Chen Y. RNA-encapsulating lipid nanoparticles in cancer immunotherapy: From pre-clinical studies to clinical trials. Eur J Pharm Biopharm. 2024;197:114234. doi:10.1016/j.ejpb.2024.114234.
[33]. Guo S, Shi Y, Liang Y, Liu L, Sun K, Li Y. Relationship and improvement strategies between drug nanocarrier characteristics and hemocompatibility: What can we learn from the literature. Asian J Pharm Sci. 2021;16(5):551–76.
[34]. Ren J, Cao Y, Li L, Wang X, Lu H, Yang J, et al. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Control Release. 2021;338:537-547. doi:10.1016/j.jconrel.2021.08.061.
[35]. Perumal S, Atchudan R, Lee W. A Review of Polymeric Micelles and Their Applications. Polymers (Basel). 2022 Jun 20;14(12):2510. doi: 10.3390/polym14122510. PMID: 35746086; PMCID: PMC9230755.
[36]. Li J, Chen YC, Tseng YC, Mozumdar S, Huang L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release. 2010 Mar 19;142(3):416-21. doi: 10.1016/j.jconrel.2009.11.008. Epub 2009 Nov 15. PMID: 19919845; PMCID: PMC2833237.
[37]. Van Hoecke L, Roose K, Ballegeer M, Zhong Z, Sanders NN, De Koker S, et al. The opposing effect of Type I IFN on the T cell response by non-modified mRNA-lipoplex vaccines is determined by the route of administration. Mol Ther Nucleic Acids. 2020;22:373-81. doi: 10.1016/j.omtn.2020.09.004.
[38]. Mai Y, Guo J, Zhao Y, Ma S, Hou Y, Yang J. Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cell Immunol. 2020;354:104143. doi:10.1016/j.cellimm.2020.104143.
[39]. Rezaee M, Kazemi Oskuee R, Nassirli H, Malaekeh-Nikouei B. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. J Control Release. 2016;236:1-14. doi:10.1016/j.jconrel.2016.06.023.
[40]. Meulewaeter S, Aernout I, Deprez J, Engelen Y, De Velder M, Franceschini L, Breckpot K, Van Calenbergh S, Asselman C, Boucher K, Impens F, De Smedt SC, Verbeke R, Lentacker I. Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. J Control Release. 2024 Jun;370:379-391. doi: 10.1016/j.jconrel.2024.04.052. Epub 2024 May 4. PMID: 38697317.
[41]. Coolen AL, Lacroix C, Mercier-Gouy P, Delaune E, Monge C, Exposito JY, et al. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials. 2019;195:23-37. doi: 10.1016/j.biomaterials.2018.12.019.
[42]. Casalini T, Rossi F, Castrovinci A, Perale G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front Bioeng Biotechnol. 2019 Oct 11;7:259. doi: 10.3389/fbioe.2019.00259. PMID: 31681741; PMCID: PMC6797553.
[43]. Tan L, Zheng T, Li M, Zhong X, Tang Y, Qin M, et al. Optimization of an mRNA vaccine assisted with cyclodextrin-polyethyleneimine conjugates. Drug Deliv Transl Res. 2020;10(3):678-89. doi: 10.1007/s13346-020-00725-4.
[44]. Zhang R, Tang L, Tian Y, Ji X, Hu Q, Zhou B, et al. DP7-C-modified liposomes enhance immune responses and the antitumor effect of a neoantigen-based mRNA vaccine. J Control Release. 2020;328:210-21. doi: 10.1016/j.jconrel.2020.08.023.
[45]. Aguilar-Pérez KM, Avilés-Castrillo JI, Medina DI, Parra-Saldivar R, Iqbal HMN. Insight Into Nanoliposomes as Smart Nanocarriers for Greening the Twenty-First Century Biomedical Settings. Front Bioeng Biotechnol. 2020 Dec 15;8:579536. doi: 10.3389/fbioe.2020.579536. PMID: 33384988; PMCID: PMC7770187.
[46]. Chen Z, Meng C, Mai J, Liu Y, Li H, Shen H. An mRNA vaccine elicits STING-dependent antitumor immune responses. Acta Pharm Sin B. 2023;13(3):1274-86. doi: 10.1016/j.apsb.2022.11.013.
[47]. Mahalingam G, Rachamalla HK, Arjunan P, Karuppusamy KV, Periyasami Y, Mohan A, Subramaniyam K, M S, Rajendran V, Moorthy M, Varghese GM, Mohankumar KM, Thangavel S, Srivastava A, Marepally S. SMART-lipid nanoparticles enabled mRNA vaccine elicits cross-reactive humoral responses against the omicron sub-variants. Mol Ther. 2024 May 1;32(5):1284-1297. doi: 10.1016/j.ymthe.2024.02.028. Epub 2024 Feb 27. PMID: 38414245; PMCID: PMC11081802.
[48]. Jiang Y, Zhang Y, Liu C, Liu J, Xue W, Wang Z, Li X. Tumor-activated IL-2 mRNA delivered by lipid nanoparticles for cancer immunotherapy. J Control Release. 2024 Apr;368:663-675. doi: 10.1016/j.jconrel.2024.03.016. Epub 2024 Mar 18. PMID: 38492862.
[49]. Tenchov R, Sasso JM, Zhou QA. PEGylated lipid nanoparticle formulations: immunological safety and efficiency perspective. Bioconjug Chem. 2023;34(6):941-60. doi: 10.1021/acs.bioconjchem.3c00174.
[50]. Islam MA, Rice J, Reesor E, Zope H, Tao W, Lim M, et al. Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials. 2021;266:120431. doi: 10.1016/j.biomaterials.2020.120431.
[51]. Xu K, Xu Y, Sun J, et al. Piperazine-derived ionizable lipids for enhanced mRNA delivery and cancer immunotherapy. Nano Res. 2024;17:7357-64. doi: 10.1007/s12274-024-6575-8.
[52]. Ministerio de Salud y Protección Social. Decreto número 1782 de 2014, por el cual se establecen los requisitos y el procedimiento para las evaluaciones farmacológica y farmacéutica de los medicamentos biológicos en el trámite del registro sanitario. Bogotá: Ministerio de Salud y Protección Social; 2014 Sep 18. Disponible en: https://www.minsalud.gov.co/normatividad_nuevo/decreto%201782%20de%202014.pdf
[53]. Ministerio de Salud y Protección Social. Resolución número 033890 de 2016, por la cual se expide la Guía de Estabilidad de Medicamentos Biológicos. Bogotá: Ministerio de Salud y Protección Social; 2016 Ago 17. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-3690-2016.pdf
[54]. Ministerio de Salud y Protección Social. Resolución número 2950 de 2019, por la cual se expide la Guía para la Evaluación de la Comparabilidad de Medicamentos Biológicos y se dictan otras disposiciones. Diario Oficial No. 51.129, 2019 Nov 6. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-2950-de-2019.pdf
[55]. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). ICH Harmonised Tripartite Guideline: Quality of Biotechnological Products: Stability Testing of Biotechnological/Biological Products. Q5C, Current Step 4 version, 1995 Nov 30. Disponible en: https://database.ich.org/sites/default/files/Q5C%20Guideline.pdf
[56]. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). ICH Harmonised Tripartite Guideline: Nonclinical Evaluation for Anticancer Pharmaceuticals. S9, Current Step 4 version, 2009 Oct 29. Disponible en: https://database.ich.org/sites/default/files/S9_Guideline.pdf
[57]. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). S13 EWG: Non-clinical safety evaluation of oligonucleotide-based therapeutics. Concept Paper, 28 Oct 2024. Endorsed by the Management Committee on 3 Nov 2024. Available from: https://database.ich.org/sites/default/files/ICH_S13EWG_Concept_Paper_2024_1028.pdf
[58]. FDA. Clinical Considerations for Therapeutic Cancer Vaccines: Guidance for Industry. Final, October 2011. Docket Number: FDA-2009-D-0427. Issued by: Center for Biologics Evaluation and Research. Available from: https://www.fda.gov
[59]. European Medicines Agency (EMA). Guideline on quality aspects included in the product information for vaccines for human use. EMA/CHMP/BWP/133540/2017. 2017. Available from: https://www.ema.europa.eu
[60]. Brivio E, Samarasinghe S. How to use monoclonal antibody-based therapy in ALL. EJC Paediatr Oncol. 2025;5:100214. doi:10.1016/j.ejcped.2025.100214.
[61]. Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833-40. doi: 10.1038/mt.2008.200.
[62]. Lou G, Anderluzzi G, Schmidt ST, Woods S, Gallorini S, Brazzoli M, et al. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection. J Control Release. 2020;325:370-9. doi: 10.1016/j.jconrel.2020.06.027.
[63]. Fu Q, Zhao X, Hu J, et al. mRNA vaccines in the context of cancer treatment: from concept to application. J Transl Med. 2025;23(12). doi: 10.1186/s12967-024-06033-6.
[64]. Lorentzen CL, Haanen JB, Met Ø, Svane IM. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 2022;23(10):e450-e458. doi:10.1016/S1470-2045(22)00372-2.
[65]. U.S. Food and Drug Administration (FDA). Step 3: Clinical Research. [Internet]. Available from: https://www.fda.gov/patients/drug-development-process/step-3-clinical-research
[66]. International Agency for Research on Cancer (IARC). Global Cancer Observatory: Cancer Today. [Internet]. Available from: https://gco.iarc.fr/today/en/dataviz/tables?mode=population
[67]. Rabinovich GA, Geffner JR. Qué es el sistema inmune. Buenos Aires: Ediciones B; 2015.
[68]. Kwok G, Yau TC, Chiu JW, Tse E, Kwong YL. Pembrolizumab (Keytruda). Hum Vaccin Immunother. 2016;12(11):2777–89. doi:10.1080/21645515.2016.1199310.
[69]. Zhu Y, Ma J, Shen R, Lin J, Li S, Lu X, et al. Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity. Nat Biomed Eng. 2024;8(5):544–560. doi:10.1038/s41551-023-01131-0.
[70]. Yu, J., Sun, H., Cao, W. et al. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 11, 3 (2022). https://doi.org/10.1186/s40164-022-00257-2
[71]. Di J, Du Z, Wu K, et al. Biodistribution and non-linear gene expression of mRNA LNPs affected by delivery route and particle size. Pharm Res. 2022;39(1):105-114. doi:10.1007/s11095-022-03166-5.
[72]. Ma, S., Li, X., Mai, Y., Guo, J., Zuo, W., & Yang, J. (2023). Immunotherapeutic treatment of lung cancer and bone metastasis with a mPLA/mRNA tumor vaccine. Acta Biomaterialia, 169, 489–499. https://doi.org/10.1016/j.actbio.2023.07.059.
[73]. Phua, K., Staats, H., Leong, K. et al. (2014). Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Scientific Reports, 4, 5128. https://doi.org/10.1038/srep05128.
[74]. Haabeth, O. A. W., Blake, T. R., McKinlay, C. J., Waymouth, R. M., Wender, P. A., & Levy, R. (2018). mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proceedings of the National Academy of Sciences of the United States of America, 115(39), E9153–E9161. https://doi.org/10.1073/pnas.1810002115.
[75]. Jin, C., Zhang, Y., Li, B., Gao, T., Wang, B., & Hua, P. (2024). Robust anti-tumor immunity through the integration of targeted lipid nanoparticle-based mRNA nanovaccines with PD-1/PD-L1 blockade. Materials today. Bio, 27, 101136. https://doi.org/10.1016/j.mtbio.2024.101136
[76]. Zhou, S., Chen, W., Cole, J., & Zhu, G. (2020). Delivery of nucleic acid therapeutics for cancer immunotherapy. Medicine in Drug Discovery, 6, 100023. https://doi.org/10.1016/j.medidd.2020.100023.
[77]. Lei, S., Gao, Y., Li, J., Chen, X., Zhou, W., Wu, J., Ma, P., Men, K., & Duan, X. (2022). Dual-RNA controlled delivery system inhibited tumor growth by apoptosis induction and TME activation. Journal of Controlled Release, 344, 97–112. https://doi.org/10.1016/j.jconrel.2022.02.022.
[78]. Invima. Dispositivos médicos. Instituto Nacional de Vigilancia de Medicamentos y Alimentos. Available from: https://www.invima.gov.co/productos-vigilados/dispositivos-medicos
[79]. Presidencia de la República de Colombia. Decreto 1571 de 1993, por el cual se reglamenta parcialmente el Título IX de la Ley 09 de 1979 sobre el funcionamiento de establecimientos dedicados a la extracción, procesamiento, conservación y transporte de sangre, y se crean la Red Nacional de Bancos de Sangre y el Consejo Nacional de Bancos de Sangre. Agosto 12, 1993. Available from: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=14527
[80]. Guzmán Cruz JH, Otálvaro Cifuentes EH. Establecimiento de una Red de Intercambio de Conocimiento en el Área de la Medicina Regenerativa, la Terapia Génica y Celular y su Aplicación Clínica. Cooperación Española Conocimiento; La Antigua, Guatemala, noviembre 14-17, 2017. Available from: https://www.invima.gov.co/sites/default/files/dispositivos-medicos/2023-10/PRESENTACION-TERAPIAS-AVANZADAS-UNA-MIRADA-DESDE-EL-CONTEXTO-COLOMBIA-16-11-2017.pdf
[81].Banoun H. (2023). mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues. International Journal of Molecular Sciences, 24(13), 10514. https://doi.org/10.3390/ijms241310514
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/d5b45953-0a94-4bed-a017-005171565917/download
https://repositorio.unbosque.edu.co/bitstreams/9e40958b-a56e-4abe-bb24-92e76c133604/download
https://repositorio.unbosque.edu.co/bitstreams/20ba03a1-9bbe-4bd8-ae7f-c7eb36328ba0/download
https://repositorio.unbosque.edu.co/bitstreams/f19de4e9-24d9-4704-b47b-06db48178b97/download
https://repositorio.unbosque.edu.co/bitstreams/c9f90407-4343-4e24-85ee-8629ae93c734/download
https://repositorio.unbosque.edu.co/bitstreams/472f6930-193c-460a-b7cf-df59fed81a44/download
https://repositorio.unbosque.edu.co/bitstreams/8f2e7b3b-cfb7-473b-adbd-17511c533df1/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
c8b26801229113cb0c7e0921a19fdb31
9b46d93070dfbf184e0acd5eb3a8184f
ee955904be29100f3a6df41738fdd0ba
3b6ce8e9e36c89875e8cf39962fe8920
1f44066ce916f2730f6ff8ca9078a90c
ce9be368477c83a2d670494e9360c293
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1834107895914954752
spelling Ariza Márquez, Viviana YeimyJimenez Cruz, Ronald AndrésPulido Torres, Ammi ZarayRincón Torres, Maria Fernanda2025-05-16T15:03:15Z2025-05-16T15:03:15Z2025-04https://hdl.handle.net/20.500.12495/14365Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl desarrollo de vacunas de ARNm ha marcado un hito en la inmunoterapia, permitiendo respuestas rápidas a enfermedades emergentes como el COVID-19. Actualmente, estas vacunas están siendo evaluadas en ensayos clínicos para el tratamiento de diferentes tipos de cánceres. No obstante, uno de los principales retos es la adecuada vehiculización del ARNm, ya que su estabilidad puede verse afectada por diversos factores, por lo que se emplean sistemas de entrega diseñados para protegerlo y garantizar su eficacia. Esta revisión explora los avances en las vacunas de ARNm para cáncer, sus sistemas de entrega y las directrices regulatorias actuales. Se identificaron 101 ensayos clínicos, de los cuales el 55% no detallaron el sistema de entrega y el 34% emplearon células dendríticas (terapia Ex vivo) por vía intradérmica. Estos estudios están principalmente reclutando para fase I y se espera que las vacunas de ARNm en estudio se puedan comercializar en 2033. Por otro lado, las nanopartículas lipídicas, liposomas y poliplexes destacan como los sistemas de entrega más utilizados en las investigaciones preclínicas. Finalmente, se observan vacíos en las normativas internacionales y nacionales donde se evidencia la falta de una categoría específica para estas vacunas. En conclusión, las vacunas de ARNm tienen un gran potencial para el tratamiento del cáncer. Sin embargo, al ser una tecnología compleja y personalizada, es fundamental superar desafíos clave en su eficacia, seguridad y regulación antes de su implementación a gran escala.PregradoQuímico FarmacéuticoThe development of mRNA vaccines has marked a milestone in immunotherapy, enabling rapid responses to emerging diseases such as COVID-19. Currently, these vaccines are being evaluated in clinical trials for the treatment of various types of cancer. However, one of the main challenges is the proper delivery of mRNA, as its stability can be affected by several factors. Therefore, delivery systems are employed to protect it and ensure its effectiveness. This review explores the advances in mRNA cancer vaccines, their delivery systems, and current regulatory guidelines. A total of 101 clinical trials were identified, 55% of which did not detail the delivery system, while 34% used dendritic cells (ex vivo therapy) via intradermal administration. Most of these studies are currently recruiting for Phase I, and mRNA cancer vaccines are expected to reach the market by 2033. On the other hand, lipid nanoparticles, liposomes, and polyplexes stand out as the most commonly used delivery systems in preclinical research. Finally, gaps in both international and national regulations were observed, revealing the lack of a specific category for these vaccines. In conclusion, mRNA vaccines hold great potential for cancer treatment. However, as a complex and personalized technology, it is essential to overcome key challenges in efficacy, safety, and regulation before their large-scale implementation.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Vacunas de ARNmSistema de entregaCáncerTratamientoEnsayos clínicosInvestigaciones preclínicasNormatividad615.19mRNA vaccinesDelivery SistemsCancerTreatmentClinical TrialsPreclinical researchRegulationsUna revisión narrativa sobre los avances, directrices legales y limitaciones actuales de las vacunas de ARNm usadas en el tratamiento del cáncer con un enfoque en los diversos sistemas de entrega empleadosA narrative review on the current advances, legal guidelines, and limitations of mRNA vaccines used in cancer treatment with a focus on the various delivery systems employedQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa[1]. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33.​ https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21820[2].World Health Organization. Global cancer burden growing amidst mounting need for services [Internet]. Geneva: WHO; 2024 Feb 1 [cited 2025 Mar 30]. Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services[3]. International Agency for Research on Cancer. "Incidence All Cancer". GloboCan. [Online]. Available: https://gco.iarc.fr/today/en/dataviz/tables?mode= population. Accessed: 2022.[4]. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20:817–38. doi:10.1038/s41573-021-00283-5.[5]. Kallerup RS, Foged C. Classification of Vaccines. En: Subunit Vaccine Delivery. 2nd ed. New York: Springer; 2015. p. 15-29. Disponible en: https://link.springer.com/chapter/10.1007/978-1-4939-1417-3_2[6]. Tahamtan A, Charostad J, Hoseini Shokouh SJ, Barati M. An overview of history, evolution, and manufacturing of various generations of vaccines. J Arch Mil Med. 2017;5(3):e12315. doi:10.5812/jamm.12315.​[7]. Wu Z, Yang M, Cao Y. Tumor antigens and vaccines in colorectal cancer. Med Drug Discov. 2022;16:100144. doi: 10.1016/j.medidd.2022.100144.[8]. Sayour EJ, Boczkowski D, Mitchell DA, Nair SK. Cancer mRNA vaccines: clinical advances and future opportunities. Nat Rev Clin Oncol. 2024;21(7):489–500. doi:10.1038/s41571-024-00902-1.[9]. Wu S, Zhou Y, Asakawa N, Wen M, Sun Y, Ming Y, Song T, Chen W, Ma G, Xia Y. Engineering CaP-Pickering emulsion for enhanced mRNA cancer vaccines via dual DC and NK activations. J Control Release. 2024;373:837-52. doi: 10.1016/j.jconrel.2024.07.051.[10]. Zeng C, Zhang C, Walker PG, Dong Y. Tecnologías de formulación y administración para vacunas de ARNm. Curr Top Microbiol Immunol. 2022;440:71-110. DOI: 10.1007/82_2020_217. PMID: 32483657; PMCID: PMC8195316.[11]. Naik R, Peden K. Regulatory Considerations on the Development of mRNA Vaccines. Curr Top Microbiol Immunol. 2022;440:187-205. doi: 10.1007/82_2020_220. PMID: 32638114.[12]. European Union Clinical Trials Register.Open label randomized phase II/III trial of dendritic cell immunotherapy against cancer stem cells in glioblastoma patients receiving standard therapy (DEN-STEM).European Union Clinical Trials Register:2015-002198-40.https://www.clinicaltrialsregister.eu/ctr-search/trial/2015-002198-40/NO.Acceso: 11 de febrero de 2025.[13]. ClinicalTrials.gov.Monocyte Antigen Carrier Cells for Newly Diagnosed GBM (DEMAND).ClinicalTrials.gov identifier:NCT04741984.https://clinicaltrials.gov/study/NCT04741984?cond=Cancer&term=Tumor&intr=mRNA&viewType=Table&limit=100&page=2&rank=180.Acceso: 11 de febrero de 2025.[14]. Cafri G, Gartner JJ, Zaks T, Hopson K, Levin N, Paria BC, Parkhurst MR, Yossef R, Lowery FJ, Jafferji MS, Prickett TD, Goff SL, McGowan CT, Seitter S, Shindorf ML, Parikh A, Chatani PD, Robbins PF, Rosenberg SA. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest. 2020 Nov 2;130(11):5976-5988. doi: 10.1172/JCI134915. PMID: 33016924; PMCID: PMC7598064[15]. Vlahovic G, et al. Phase I trial of combination of antitumor immunotherapy targeted against cytomegalovirus (CMV) plus regulatory T-cell inhibition in patients with newly-diagnosed glioblastoma multiforme (GBM). J Clin Oncol. 2016;34(Suppl 15):e13518. doi:10.1200/JCO.2016.34.15_suppl.e13518.[16]. ClinicalTrials.gov.Phase 1/​2 Study of Combination Immunotherapy and Messenger Ribonucleic Acid (mRNA) Vaccine in Subjects With NSCLC. ClinicalTrials.gov identifier:NCT03164772.https://clinicaltrials.gov/study/NCT03164772?cond=Cancer&term=Tumor&intr=mRNA&page=4&rank=35.Acceso: 11 de febrero de 2025.[17]. ClinicalTrials.gov.CT7, MAGE-A3, and WT1 mRNA-electroporated Autologous Langerhans-type Dendritic Cells as Consolidation for Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplantation. ClinicalTrials.gov identifier:NCT01995708.https://clinicaltrials.gov/study/NCT01995708?cond=Cancer&term=Tumor&intr=mRNA&page=4&rank=37.Acceso: 11 de febrero de 2025.[18]. Wang QT, Nie Y, Sun SN, Lin T, Han RJ, Jiang J, Li Z, Li JQ, Xiao YP, Fan YY, Yuan XH, Zhang H, Zhao BB, Zeng M, Li SY, Liao HX, Zhang J, He YW. Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunol Immunother. 2020 Jul;69(7):1375-1387. doi: 10.1007/s00262-020-02496-w. Epub 2020 Feb 20. PMID: 32078016; PMCID: PMC11027674.[19]. Kyte JA, Aamdal S, Dueland S, Sæbøe-Larsen S, Inderberg EM, Madsbu UE, Skovlund E, Gaudernack G, Kvalheim G. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. Oncoimmunology. 2016 Oct 18;5(11):e1232237. doi: 10.1080/2162402X.2016.1232237. PMID: 27999747; PMCID: PMC5139630.[20].Zwi N. Berneman, Paul Germonpre, Manon Thirza Huizing, Ann Van de Velde, Griet Nijs, Barbara Stein, Viggo F. Van Tendeloo, Eva Lion, Evelien L. Smits, and Sebastien Anguille.Dendritic cell vaccination in malignant pleural mesothelioma: A phase I/II study.Journal of Clinical Oncology. 2014;32(15_suppl):7583. Available from: https://ascopubs.org/doi/10.1200/jco.2014.32.15_suppl.7583.[21].ClinicalTrials.gov.Immunotherapy Targeted Against Cytomegalovirus in Patients With Newly-Diagnosed WHO Grade IV Unmethylated Glioma (I-ATTAC).ClinicalTrials.gov identifier:NCT03927222.https://clinicaltrials.gov/study/NCT03927222?cond=Cancer&term=Tumor&intr=mRNA&page=2&rank=117&tab=results.Acceso: 11 de febrero de 2025.[22]. Westdorp H, Creemers JHA, van Oort IM, Schreibelt G, Gorris MAJ, Mehra N, Simons M, de Goede AL, van Rossum MM, Croockewit AJ, Figdor CG, Witjes JA, Aarntzen EHJG, Mus RDM, Brüning M, Petry K, Gotthardt M, Barentsz JO, de Vries IJM, Gerritsen WR. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer. 2019 Nov 14;7(1):302. doi: 10.1186/s40425-019-0787-6. PMID: 31727154; PMCID: PMC6854814[23]. Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusson G, Cools N, Nijs G, Stein B, Lion E, Van Driessche A, Vandenbosch I, Verlinden A, Gadisseur AP, Schroyens WA, Muylle L, Vermeulen K, Maes MB, Deiteren K, Malfait R, Gostick E, Lammens M, Couttenye MM, Jorens P, Goossens H, Price DA, Ladell K, Oka Y, Fujiki F, Oji Y, Sugiyama H, Berneman ZN. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017 Oct 12;130(15):1713-1721. doi: 10.1182/blood-2017-04-780155. Epub 2017 Aug 22. PMID: 28830889; PMCID: PMC5649080.[24]. ClinicalTrials.gov.Nivolumab With DC Vaccines for Recurrent Brain Tumors (AVERT).ClinicalTrials.gov identifier:NCT02529072.https://clinicaltrials.gov/study/NCT02529072?cond=Cancer&term=Tumor&intr=mRNA&viewType=Table&limit=100&page=2&rank=176.Acceso: 11 de febrero de 2025.[25]. Wilgenhof S, Van Nuffel AMT, Benteyn D, Corthals J, Aerts C, Heirman C, Van Riet I, Bonehill A, Thielemans K, Neyns B. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol. 2013 Oct;24(10):2686-2693. doi: 10.1093/annonc/mdt245. Epub 2013 Jul 31. PMID: 23904461.[26]. Guo J, Ma S, Mai Y, Gao T, Song Z, Yang J. Combination of a cationic complex loaded with mRNA and α-galactose ceramide enhances antitumor immunity and affects the tumor immune microenvironment. Int Immunopharmacol. 2022;113(Pt A):109254. doi:10.1016/j.intimp.2022.109254.[27]. Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J, et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol Ther. 2018;26(1):45-55. doi:10.1016/j.ymthe.2017.10.020.[28]. Duan X, Zhang Y, Guo M, Fan N, Chen K, Qin S, et al. Sodium alginate coating simultaneously increases the biosafety and immunotherapeutic activity of the cationic mRNA nanovaccine. Acta Pharm Sin B. 2023;13(3):942-954. doi:10.1016/j.apsb.2022.08.015.[29]. Xiao W, Wang F, Gu Y, He X, Fan N, Zheng Q, et al. PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chin Chem Lett. 2024;35(5):108755. doi:10.1016/j.cclet.2023.108755.[30]. Zhang W, Liu Y, Chin JM, Phua KKL. Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination. Eur J Pharm Biopharm. 2021;163:179-187. doi:10.1016/j.ejpb.2021.03.011.[31]. Huang L, Zhao F, He M, Fang Y, Ma X, Lu S, et al. An inoculation site-retained mRNA vaccine induces robust immune responses against SARS-CoV-2 variants. J Control Release. 2024;366:479-493. doi:10.1016/j.jconrel.2024.01.002.[32]. Hsia T, Chen Y. RNA-encapsulating lipid nanoparticles in cancer immunotherapy: From pre-clinical studies to clinical trials. Eur J Pharm Biopharm. 2024;197:114234. doi:10.1016/j.ejpb.2024.114234.[33]. Guo S, Shi Y, Liang Y, Liu L, Sun K, Li Y. Relationship and improvement strategies between drug nanocarrier characteristics and hemocompatibility: What can we learn from the literature. Asian J Pharm Sci. 2021;16(5):551–76.[34]. Ren J, Cao Y, Li L, Wang X, Lu H, Yang J, et al. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Control Release. 2021;338:537-547. doi:10.1016/j.jconrel.2021.08.061.[35]. Perumal S, Atchudan R, Lee W. A Review of Polymeric Micelles and Their Applications. Polymers (Basel). 2022 Jun 20;14(12):2510. doi: 10.3390/polym14122510. PMID: 35746086; PMCID: PMC9230755.[36]. Li J, Chen YC, Tseng YC, Mozumdar S, Huang L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release. 2010 Mar 19;142(3):416-21. doi: 10.1016/j.jconrel.2009.11.008. Epub 2009 Nov 15. PMID: 19919845; PMCID: PMC2833237.[37]. Van Hoecke L, Roose K, Ballegeer M, Zhong Z, Sanders NN, De Koker S, et al. The opposing effect of Type I IFN on the T cell response by non-modified mRNA-lipoplex vaccines is determined by the route of administration. Mol Ther Nucleic Acids. 2020;22:373-81. doi: 10.1016/j.omtn.2020.09.004.[38]. Mai Y, Guo J, Zhao Y, Ma S, Hou Y, Yang J. Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cell Immunol. 2020;354:104143. doi:10.1016/j.cellimm.2020.104143.[39]. Rezaee M, Kazemi Oskuee R, Nassirli H, Malaekeh-Nikouei B. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. J Control Release. 2016;236:1-14. doi:10.1016/j.jconrel.2016.06.023.[40]. Meulewaeter S, Aernout I, Deprez J, Engelen Y, De Velder M, Franceschini L, Breckpot K, Van Calenbergh S, Asselman C, Boucher K, Impens F, De Smedt SC, Verbeke R, Lentacker I. Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. J Control Release. 2024 Jun;370:379-391. doi: 10.1016/j.jconrel.2024.04.052. Epub 2024 May 4. PMID: 38697317.[41]. Coolen AL, Lacroix C, Mercier-Gouy P, Delaune E, Monge C, Exposito JY, et al. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials. 2019;195:23-37. doi: 10.1016/j.biomaterials.2018.12.019.[42]. Casalini T, Rossi F, Castrovinci A, Perale G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front Bioeng Biotechnol. 2019 Oct 11;7:259. doi: 10.3389/fbioe.2019.00259. PMID: 31681741; PMCID: PMC6797553.[43]. Tan L, Zheng T, Li M, Zhong X, Tang Y, Qin M, et al. Optimization of an mRNA vaccine assisted with cyclodextrin-polyethyleneimine conjugates. Drug Deliv Transl Res. 2020;10(3):678-89. doi: 10.1007/s13346-020-00725-4.[44]. Zhang R, Tang L, Tian Y, Ji X, Hu Q, Zhou B, et al. DP7-C-modified liposomes enhance immune responses and the antitumor effect of a neoantigen-based mRNA vaccine. J Control Release. 2020;328:210-21. doi: 10.1016/j.jconrel.2020.08.023.[45]. Aguilar-Pérez KM, Avilés-Castrillo JI, Medina DI, Parra-Saldivar R, Iqbal HMN. Insight Into Nanoliposomes as Smart Nanocarriers for Greening the Twenty-First Century Biomedical Settings. Front Bioeng Biotechnol. 2020 Dec 15;8:579536. doi: 10.3389/fbioe.2020.579536. PMID: 33384988; PMCID: PMC7770187.[46]. Chen Z, Meng C, Mai J, Liu Y, Li H, Shen H. An mRNA vaccine elicits STING-dependent antitumor immune responses. Acta Pharm Sin B. 2023;13(3):1274-86. doi: 10.1016/j.apsb.2022.11.013.[47]. Mahalingam G, Rachamalla HK, Arjunan P, Karuppusamy KV, Periyasami Y, Mohan A, Subramaniyam K, M S, Rajendran V, Moorthy M, Varghese GM, Mohankumar KM, Thangavel S, Srivastava A, Marepally S. SMART-lipid nanoparticles enabled mRNA vaccine elicits cross-reactive humoral responses against the omicron sub-variants. Mol Ther. 2024 May 1;32(5):1284-1297. doi: 10.1016/j.ymthe.2024.02.028. Epub 2024 Feb 27. PMID: 38414245; PMCID: PMC11081802.[48]. Jiang Y, Zhang Y, Liu C, Liu J, Xue W, Wang Z, Li X. Tumor-activated IL-2 mRNA delivered by lipid nanoparticles for cancer immunotherapy. J Control Release. 2024 Apr;368:663-675. doi: 10.1016/j.jconrel.2024.03.016. Epub 2024 Mar 18. PMID: 38492862.[49]. Tenchov R, Sasso JM, Zhou QA. PEGylated lipid nanoparticle formulations: immunological safety and efficiency perspective. Bioconjug Chem. 2023;34(6):941-60. doi: 10.1021/acs.bioconjchem.3c00174.[50]. Islam MA, Rice J, Reesor E, Zope H, Tao W, Lim M, et al. Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials. 2021;266:120431. doi: 10.1016/j.biomaterials.2020.120431.[51]. Xu K, Xu Y, Sun J, et al. Piperazine-derived ionizable lipids for enhanced mRNA delivery and cancer immunotherapy. Nano Res. 2024;17:7357-64. doi: 10.1007/s12274-024-6575-8.[52]. Ministerio de Salud y Protección Social. Decreto número 1782 de 2014, por el cual se establecen los requisitos y el procedimiento para las evaluaciones farmacológica y farmacéutica de los medicamentos biológicos en el trámite del registro sanitario. Bogotá: Ministerio de Salud y Protección Social; 2014 Sep 18. Disponible en: https://www.minsalud.gov.co/normatividad_nuevo/decreto%201782%20de%202014.pdf[53]. Ministerio de Salud y Protección Social. Resolución número 033890 de 2016, por la cual se expide la Guía de Estabilidad de Medicamentos Biológicos. Bogotá: Ministerio de Salud y Protección Social; 2016 Ago 17. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-3690-2016.pdf[54]. Ministerio de Salud y Protección Social. Resolución número 2950 de 2019, por la cual se expide la Guía para la Evaluación de la Comparabilidad de Medicamentos Biológicos y se dictan otras disposiciones. Diario Oficial No. 51.129, 2019 Nov 6. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-2950-de-2019.pdf[55]. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). ICH Harmonised Tripartite Guideline: Quality of Biotechnological Products: Stability Testing of Biotechnological/Biological Products. Q5C, Current Step 4 version, 1995 Nov 30. Disponible en: https://database.ich.org/sites/default/files/Q5C%20Guideline.pdf[56]. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). ICH Harmonised Tripartite Guideline: Nonclinical Evaluation for Anticancer Pharmaceuticals. S9, Current Step 4 version, 2009 Oct 29. Disponible en: https://database.ich.org/sites/default/files/S9_Guideline.pdf[57]. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). S13 EWG: Non-clinical safety evaluation of oligonucleotide-based therapeutics. Concept Paper, 28 Oct 2024. Endorsed by the Management Committee on 3 Nov 2024. Available from: https://database.ich.org/sites/default/files/ICH_S13EWG_Concept_Paper_2024_1028.pdf[58]. FDA. Clinical Considerations for Therapeutic Cancer Vaccines: Guidance for Industry. Final, October 2011. Docket Number: FDA-2009-D-0427. Issued by: Center for Biologics Evaluation and Research. Available from: https://www.fda.gov[59]. European Medicines Agency (EMA). Guideline on quality aspects included in the product information for vaccines for human use. EMA/CHMP/BWP/133540/2017. 2017. Available from: https://www.ema.europa.eu[60]. Brivio E, Samarasinghe S. How to use monoclonal antibody-based therapy in ALL. EJC Paediatr Oncol. 2025;5:100214. doi:10.1016/j.ejcped.2025.100214.[61]. Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833-40. doi: 10.1038/mt.2008.200.[62]. Lou G, Anderluzzi G, Schmidt ST, Woods S, Gallorini S, Brazzoli M, et al. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection. J Control Release. 2020;325:370-9. doi: 10.1016/j.jconrel.2020.06.027.[63]. Fu Q, Zhao X, Hu J, et al. mRNA vaccines in the context of cancer treatment: from concept to application. J Transl Med. 2025;23(12). doi: 10.1186/s12967-024-06033-6.[64]. Lorentzen CL, Haanen JB, Met Ø, Svane IM. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 2022;23(10):e450-e458. doi:10.1016/S1470-2045(22)00372-2.[65]. U.S. Food and Drug Administration (FDA). Step 3: Clinical Research. [Internet]. Available from: https://www.fda.gov/patients/drug-development-process/step-3-clinical-research[66]. International Agency for Research on Cancer (IARC). Global Cancer Observatory: Cancer Today. [Internet]. Available from: https://gco.iarc.fr/today/en/dataviz/tables?mode=population[67]. Rabinovich GA, Geffner JR. Qué es el sistema inmune. Buenos Aires: Ediciones B; 2015.[68]. Kwok G, Yau TC, Chiu JW, Tse E, Kwong YL. Pembrolizumab (Keytruda). Hum Vaccin Immunother. 2016;12(11):2777–89. doi:10.1080/21645515.2016.1199310.[69]. Zhu Y, Ma J, Shen R, Lin J, Li S, Lu X, et al. Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity. Nat Biomed Eng. 2024;8(5):544–560. doi:10.1038/s41551-023-01131-0.[70]. Yu, J., Sun, H., Cao, W. et al. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 11, 3 (2022). https://doi.org/10.1186/s40164-022-00257-2[71]. Di J, Du Z, Wu K, et al. Biodistribution and non-linear gene expression of mRNA LNPs affected by delivery route and particle size. Pharm Res. 2022;39(1):105-114. doi:10.1007/s11095-022-03166-5.[72]. Ma, S., Li, X., Mai, Y., Guo, J., Zuo, W., & Yang, J. (2023). Immunotherapeutic treatment of lung cancer and bone metastasis with a mPLA/mRNA tumor vaccine. Acta Biomaterialia, 169, 489–499. https://doi.org/10.1016/j.actbio.2023.07.059.[73]. Phua, K., Staats, H., Leong, K. et al. (2014). Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Scientific Reports, 4, 5128. https://doi.org/10.1038/srep05128.[74]. Haabeth, O. A. W., Blake, T. R., McKinlay, C. J., Waymouth, R. M., Wender, P. A., & Levy, R. (2018). mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proceedings of the National Academy of Sciences of the United States of America, 115(39), E9153–E9161. https://doi.org/10.1073/pnas.1810002115.[75]. Jin, C., Zhang, Y., Li, B., Gao, T., Wang, B., & Hua, P. (2024). Robust anti-tumor immunity through the integration of targeted lipid nanoparticle-based mRNA nanovaccines with PD-1/PD-L1 blockade. Materials today. Bio, 27, 101136. https://doi.org/10.1016/j.mtbio.2024.101136[76]. Zhou, S., Chen, W., Cole, J., & Zhu, G. (2020). Delivery of nucleic acid therapeutics for cancer immunotherapy. Medicine in Drug Discovery, 6, 100023. https://doi.org/10.1016/j.medidd.2020.100023.[77]. Lei, S., Gao, Y., Li, J., Chen, X., Zhou, W., Wu, J., Ma, P., Men, K., & Duan, X. (2022). Dual-RNA controlled delivery system inhibited tumor growth by apoptosis induction and TME activation. Journal of Controlled Release, 344, 97–112. https://doi.org/10.1016/j.jconrel.2022.02.022.[78]. Invima. Dispositivos médicos. Instituto Nacional de Vigilancia de Medicamentos y Alimentos. Available from: https://www.invima.gov.co/productos-vigilados/dispositivos-medicos[79]. Presidencia de la República de Colombia. Decreto 1571 de 1993, por el cual se reglamenta parcialmente el Título IX de la Ley 09 de 1979 sobre el funcionamiento de establecimientos dedicados a la extracción, procesamiento, conservación y transporte de sangre, y se crean la Red Nacional de Bancos de Sangre y el Consejo Nacional de Bancos de Sangre. Agosto 12, 1993. Available from: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=14527[80]. Guzmán Cruz JH, Otálvaro Cifuentes EH. Establecimiento de una Red de Intercambio de Conocimiento en el Área de la Medicina Regenerativa, la Terapia Génica y Celular y su Aplicación Clínica. Cooperación Española Conocimiento; La Antigua, Guatemala, noviembre 14-17, 2017. Available from: https://www.invima.gov.co/sites/default/files/dispositivos-medicos/2023-10/PRESENTACION-TERAPIAS-AVANZADAS-UNA-MIRADA-DESDE-EL-CONTEXTO-COLOMBIA-16-11-2017.pdf[81].Banoun H. (2023). mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues. International Journal of Molecular Sciences, 24(13), 10514. https://doi.org/10.3390/ijms241310514spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/d5b45953-0a94-4bed-a017-005171565917/download17cc15b951e7cc6b3728a574117320f9MD51Carta de autorizacion.pdfapplication/pdf281847https://repositorio.unbosque.edu.co/bitstreams/9e40958b-a56e-4abe-bb24-92e76c133604/downloadc8b26801229113cb0c7e0921a19fdb31MD54Anexo 1 acta de aprobacion.pdfapplication/pdf9313875https://repositorio.unbosque.edu.co/bitstreams/20ba03a1-9bbe-4bd8-ae7f-c7eb36328ba0/download9b46d93070dfbf184e0acd5eb3a8184fMD55ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf2275175https://repositorio.unbosque.edu.co/bitstreams/f19de4e9-24d9-4704-b47b-06db48178b97/downloadee955904be29100f3a6df41738fdd0baMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/c9f90407-4343-4e24-85ee-8629ae93c734/download3b6ce8e9e36c89875e8cf39962fe8920MD53TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain101664https://repositorio.unbosque.edu.co/bitstreams/472f6930-193c-460a-b7cf-df59fed81a44/download1f44066ce916f2730f6ff8ca9078a90cMD56THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5696https://repositorio.unbosque.edu.co/bitstreams/8f2e7b3b-cfb7-473b-adbd-17511c533df1/downloadce9be368477c83a2d670494e9360c293MD5720.500.12495/14365oai:repositorio.unbosque.edu.co:20.500.12495/143652025-05-17 05:03:23.494http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalembargo2026-05-15https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=