Estudio comparativo de la polarización de macrófagos in vitro e in vivo inducida por biomateriales de origen natural y sintético y productos de ingeniería de tejidos. Una Revisión narrativa sistematizada
La ingeniería de tejidos ha revolucionado el uso de biomateriales naturales y sintéticos para diseñar productos que reparen o reemplacen órganos o tejidos, para esto, se debe asegurar que el biomaterial sea biocompatible e imite las propiedades fisicoquímicas y mecánicas específicas para el tejido q...
- Autores:
-
Henao Hurtado, Isabela
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14389
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/14389
- Palabra clave:
- Biomateriales
Ingeniería de tejidos
Macrófagos
Polarización
Inmunomodulación
Biocompatibilidad
615.19
Biomaterials
Tissue engineering
Macrophages
Polarization
Immunomodulation
Biocompatibility
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
UNBOSQUE2_20912bd7f57a98bfc8e8dd0be4fbf629 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14389 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Estudio comparativo de la polarización de macrófagos in vitro e in vivo inducida por biomateriales de origen natural y sintético y productos de ingeniería de tejidos. Una Revisión narrativa sistematizada |
dc.title.translated.none.fl_str_mv |
Comparative study of in vitro and in vivo macrophage polarization induced by biomaterials of natural and synthetic origin and tissue engineering products. A systematized narrative review |
title |
Estudio comparativo de la polarización de macrófagos in vitro e in vivo inducida por biomateriales de origen natural y sintético y productos de ingeniería de tejidos. Una Revisión narrativa sistematizada |
spellingShingle |
Estudio comparativo de la polarización de macrófagos in vitro e in vivo inducida por biomateriales de origen natural y sintético y productos de ingeniería de tejidos. Una Revisión narrativa sistematizada Biomateriales Ingeniería de tejidos Macrófagos Polarización Inmunomodulación Biocompatibilidad 615.19 Biomaterials Tissue engineering Macrophages Polarization Immunomodulation Biocompatibility |
title_short |
Estudio comparativo de la polarización de macrófagos in vitro e in vivo inducida por biomateriales de origen natural y sintético y productos de ingeniería de tejidos. Una Revisión narrativa sistematizada |
title_full |
Estudio comparativo de la polarización de macrófagos in vitro e in vivo inducida por biomateriales de origen natural y sintético y productos de ingeniería de tejidos. Una Revisión narrativa sistematizada |
title_fullStr |
Estudio comparativo de la polarización de macrófagos in vitro e in vivo inducida por biomateriales de origen natural y sintético y productos de ingeniería de tejidos. Una Revisión narrativa sistematizada |
title_full_unstemmed |
Estudio comparativo de la polarización de macrófagos in vitro e in vivo inducida por biomateriales de origen natural y sintético y productos de ingeniería de tejidos. Una Revisión narrativa sistematizada |
title_sort |
Estudio comparativo de la polarización de macrófagos in vitro e in vivo inducida por biomateriales de origen natural y sintético y productos de ingeniería de tejidos. Una Revisión narrativa sistematizada |
dc.creator.fl_str_mv |
Henao Hurtado, Isabela |
dc.contributor.advisor.none.fl_str_mv |
Millán Cortés, Diana Milena Jiménez Cruz, Ronald Andrés |
dc.contributor.author.none.fl_str_mv |
Henao Hurtado, Isabela |
dc.subject.none.fl_str_mv |
Biomateriales Ingeniería de tejidos Macrófagos Polarización Inmunomodulación Biocompatibilidad |
topic |
Biomateriales Ingeniería de tejidos Macrófagos Polarización Inmunomodulación Biocompatibilidad 615.19 Biomaterials Tissue engineering Macrophages Polarization Immunomodulation Biocompatibility |
dc.subject.ddc.none.fl_str_mv |
615.19 |
dc.subject.keywords.none.fl_str_mv |
Biomaterials Tissue engineering Macrophages Polarization Immunomodulation Biocompatibility |
description |
La ingeniería de tejidos ha revolucionado el uso de biomateriales naturales y sintéticos para diseñar productos que reparen o reemplacen órganos o tejidos, para esto, se debe asegurar que el biomaterial sea biocompatible e imite las propiedades fisicoquímicas y mecánicas específicas para el tejido que se quiere reparar. Independientemente del tipo de biomaterial empleado para el diseño de productos de ingeniería de tejidos, estos están condicionados a la respuesta inmune del huésped generando una reacción a cuerpo extraño cuando son implantados. Estas respuestas dependen en gran parte de los macrófagos tisulares que polarizan hacia un perfil inflamatorio o antiinflamatorio. En este trabajo, se realizó una revisión narrativa sistematizada para comparar la diferencia en la polarización de macrófagos inducida por biomateriales naturales y sintéticos, y productos de ingeniería de tejidos diseñados con estos, y entender cómo las características de estos biomateriales inciden en su biocompatibilidad. Los artículos seleccionados demostraron que la composición de un producto de ingeniería de tejidos, propiedades fisicoquímicas (estructura, tamaño, porosidad, rugosidad, tasa de hinchamiento y degradación) y propiedades mecánicas (rigidez, resistencia a la tracción, resistencia a la compresión y viscoelasticidad) son los principales aspectos que determinan su funcionalidad; además, en algunos casos es requerida la funcionalización con cargas adicionales de componentes bioactivos (citoquinas, péptidos bioactivos, fármacos y nanopartículas) para potenciar la inmunomodulación y regeneración del tejido. Los resultados in vitro mostraron que principalmente en macrófagos Raw264.7, pudo lograrse una polarización eficiente al aumentar la expresión de genes como CD206, y liberación de señales como IL-10, Arg-1 y factores de crecimiento como TGF-β1/TGF-β3. Por otro lado, en los estudios in vivo predominó el estudio de defectos óseos, donde pudo evidenciarse que la polarización M2 de macrófagos favorecía la angiogénesis en las primeras semanas y la osteogénesis se alcanzaba generalmente un mes después de la implantación. A pesar de que se pudo comparar las diferencias entre biomateriales naturales y sintéticos, no podría determinarse cuál es mejor para lograr un mejor efecto inmunomodulador y reparador, ya que cada uno posee ventajas y desventajas que pueden complementarse al usar otro tipo de biomateriales y funcionalización con moléculas bioactivas. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-05-19T16:52:24Z |
dc.date.available.none.fl_str_mv |
2025-05-19T16:52:24Z |
dc.date.issued.none.fl_str_mv |
2025-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14389 |
dc.identifier.instname.spa.fl_str_mv |
Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14389 |
identifier_str_mv |
Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
1. Williams, D.F. Strategies for the Specification of Tissue Engineering Biomaterials; Elsevier Inc., 2014; ISBN 9780123985231. 2. Chandra, P.K.; Soker, S.; Atala, A. Tissue Engineering: Current Status and Future Perspectives. Princ. Tissue Eng. 2020, 1–35, doi:10.1016/B978-0-12-818422-6.00004-6. 3. Thankam, F.G.; Sharma, C.P.; Chandy, T.; Thomas, V. Genesis and Historic Evolution of Tissue Engineering and Regenerative Medicine. Tissue Eng. Curr. Status Challenges 2022, 1–7, doi:10.1016/B978-0-12-824064-9.00018-6. 4. Mo, X.; Sun, B.; Wu, T.; Li, D. Electrospun Nanofibers for Tissue Engineering. Electrospinning Nanofabrication Appl. 2019, 719–734, doi:10.1016/B978-0-323-51270-1.00024-8. 5. Hasnain, M.S.; Ahmad, S.A.; Chaudhary, N.; Hoda, M.N.; Nayak, A.K. Biodegradable Polymer Matrix Nanocomposites for Bone Tissue Engineering. Appl. Nanocomposite Mater. Orthop. 2019, 1–37, doi:10.1016/B978-0-12-813740-6.00001-6. 6. Wardhana, A.; Valeria, M. Tissue Engineering and Regenerative Medicine: A Review. J. Plast. Rekonstruksi 2020, 7, 10–17, doi:10.14228/JPR.V7I1.278. 7. Pandya, P.; Parihar, V.S.; Kellomȁki, M.; Ghosh, S. Biomaterials and Bioengineering: A Detailed Overview. Med. Nanobiotechnology 2025, 1–31, doi:10.1016/B978-0-443-21507-0.00002-7. 8. Tang, X.; Qin, H.; Gu, X.; Fu, X. China’s Landscape in Regenerative Medicine. Biomaterials 2017, 124, 78–94, doi:10.1016/J.BIOMATERIALS.2017.01.044. 9. Murphy, C.M.; O’Brien, F.J.; Little, D.G.; Schindeler, A. Cell-Scaffold Interactions in the Bone Tissue Engineering Triad. Eur. Cells Mater. 2013, 26, 120–132, doi:10.22203/ECM.V026A09. 10. Mariani, E.; Lisignoli, G.; Borzì, R.M.; Pulsatelli, L. Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int. J. Mol. Sci. 2019, Vol. 20, Page 636 2019, 20, 636, doi:10.3390/IJMS20030636. 11. Aldana, A.A.; Bauer, J.; Baker, M.B. Synthetic Biomaterials. Tissue Eng. Third Ed. 2023, 173–212, doi:10.1016/B978-0-12-824459-3.00006-8. 12. Ashammakhi, N.; Ghavaminejad, A.; Tutar, R.; Fricker, A.; Roy, I.; Chatzistavrou, X.; Hoque Apu, E.; Nguyen, K.L.; Ahsan, T.; Pountos, I.; et al. Highlights on Advancing Frontiers in Tissue Engineering. https://home.liebertpub.com/teb 2022, 28, 633–664, doi:10.1089/TEN.TEB.2021.0012. 13. Curvello, R.; Raghuwanshi, V.S.; Garnier, G. Engineering Nanocellulose Hydrogels for Biomedical Applications. Adv. Colloid Interface Sci. 2019, 267, 47–61, doi:10.1016/J.CIS.2019.03.002. 14. Hannen, R.; Connelly, J.; Myers, S.; Ojeh, N. Skin Tissue Engineering and Keratinocyte Stem Cell Therapy. Tissue Eng. Third Ed. 2023, 491–532, doi:10.1016/B978-0-12-824459-3.00031-7. 15. Stocco, T.D.; Bassous, N.; Oliveira Lobo, A. Nanostructured Materials for Bone Tissue Replacement. Nanomedicine Technol. Appl. 2023, 189–211, doi:10.1016/B978-0-12-818627-5.00003-8. 16. Gong, T.; Xie, J.; Liao, J.; Zhang, T.; Lin, S.; Lin, Y. Nanomaterials and Bone Regeneration. Bone Res. 2015, 3, 15029, doi:10.1038/boneres.2015.29. 17. Maheshwari, N.; Tekade, M.; Chourasiya, Y.; Sharma, M.C.; Deb, P.K.; Tekade, R.K. Nanotechnology in Tissue Engineering. Biomater. Bionanotechnol. 2019, 225–261, doi:10.1016/B978-0-12-814427-5.00007-X. 18. Hasan, A.; Morshed, M.; Memic, A.; Hassan, S.; Webster, T.J.; Marei, H.E.S. Nanoparticles in Tissue Engineering: Applications, Challenges and Prospects. Int. J. Nanomedicine 2018, 13, 5637, doi:10.2147/IJN.S153758. 19. Lee, C.; Judd, J. Biphasic Glucomannan Scaffolds and Methods of Use 2024. 20. Radhakrishnan, A.; Sreekumaran, S.; Anjali, S.; Resmi, R.; Saravana, R.P. Emerging Strategies in Bone Tissue Engineering. Tissue Eng. Curr. Status Challenges 2022, 469–492, doi:10.1016/B978-0-12-824064-9.00013-7. 21. Sharma, N.R.; Subburaj, K.; Sandhu, K.; Sharma, V. Applications of 3D Printing in Biomedical Engineering; Sharma, N.R., Subburaj, K., Sandhu, K., Sharma, V., Eds.; 1st ed.; Springer Singapore: Singapore, 2021; ISBN 978-981-33-6887-3. 22. Larouche, J.; Sheoran, S.; Maruyama, K.; Martino, M.M. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv. Wound Care 2018, 7, 209, doi:10.1089/WOUND.2017.0761. 23. Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2018, 99, 665, doi:10.1152/PHYSREV.00067.2017. 24. Martin, K.E.; García, A.J. Macrophage Phenotypes in Tissue Repair and the Foreign Body Response: Implications for Biomaterial-Based Regenerative Medicine Strategies. Acta Biomater. 2021, 133, 4–16, doi:10.1016/J.ACTBIO.2021.03.038. 25. Rayahin, J.E.; Gemeinhart, R.A. Activation of Macrophages in Response to Biomaterials. Results Probl. Cell Differ. 2017, 62, 317–351, doi:10.1007/978-3-319-54090-0_13. 26. Witherel, C.E.; Abebayehu, D.; Barker, T.H.; Spiller, K.L. Macrophage and Fibroblast Interactions in Biomaterial-Mediated Fibrosis. Adv. Healthc. Mater. 2019, 8, 1801451, doi:10.1002/ADHM.201801451. 27. Graney, P.L.; Ben-Shaul, S.; Landau, S.; Bajpai, A.; Singh, B.; Eager, J.; Cohen, A.; Levenberg, S.; Spiller, K.L. Macrophages of Diverse Phenotypes Drive Vascularization of Engineered Tissues. Sci. Adv. 2020, 6, eaay6391, doi:10.1126/SCIADV.AAY6391. 28. Yepes-Nuñez, J.J.; Urrútia, G.; Romero-García, M.; Alonso-Fernández, S. Declaración PRISMA 2020: Una Guía Actualizada Para La Publicación de Revisiones Sistemáticas. Rev. Española Cardiol. 2021, 74, 790–799, doi:10.1016/J.RECESP.2021.06.016. 29. Mohamed Shaffril, H.A.; Samsuddin, S.F.; Abu Samah, A. The ABC of Systematic Literature Review: The Basic Methodological Guidance for Beginners. Qual. Quant. 2021, 55, 1319–1346, doi:10.1007/S11135-020-01059-6/METRICS. 30. Li, J.J.; Zreiqat, H. Tissue Response to Biomaterials. Encycl. Biomed. Eng. 2019, 1–3, 270–277, doi:10.1016/B978-0-12-801238-3.99880-5. 31. Spiller, K.L.; Anfang, R.R.; Spiller, K.J.; Ng, J.; Nakazawa, K.R.; Daulton, J.W.; Vunjak-Novakovic, G. The Role of Macrophage Phenotype in Vascularization of Tissue Engineering Scaffolds. Biomaterials 2014, 35, 4477–4488, doi:10.1016/J.BIOMATERIALS.2014.02.012. 32. Vishwakarma, A.; Bhise, N.S.; Evangelista, M.B.; Rouwkema, J.; Dokmeci, M.R.; Ghaemmaghami, A.M.; Vrana, N.E.; Khademhosseini, A. Engineering Immunomodulatory Biomaterials To Tune the Inflammatory Response. Trends Biotechnol. 2016, 34, 470–482, doi:10.1016/J.TIBTECH.2016.03.009. 33. Zheng, W.; Huang, H.; Guo, F.; Yuan, C.; Zhou, Q. Biomaterials Modulate Macrophage Polarization and Inflammatory Responses. Recent Adv. Microb. Divers. Macrophages their Role Inflamm. 2022, 99–110, doi:10.1016/B978-0-12-822368-0.00006-2. 34. Tan, J.; Zhang, Q.-Y.; Song, Y.-T.; Huang, K.; Jiang, Y.-L.; Chen, J.; Wang, R.; Zou, C.-Y.; Li, Q.-J.; Qin, B.-Q.; et al. Accelerated Bone Defect Regeneration through Sequential Activation of the M1 and M2 Phenotypes of Macrophages by a Composite BMP-2@SIS Hydrogel: An Immunomodulatory Perspective. Compos. Part B Eng. 2022, 243, 110149, doi:10.1016/j.compositesb.2022.110149. 35. Ni, R.; Luo, Y.; Jiang, L.; Mao, X.; Feng, Y.; Tuersun, S.; Hu, Z.; Zhu, Y. Repairing Gastric Ulcer with Hyaluronic Acid/Extracellular Matrix Composite through Promoting M2-Type Polarization of Macrophages. Int. J. Biol. Macromol. 2023, 245, 125556, doi:10.1016/J.IJBIOMAC.2023.125556. 36. Tian, G.; Jiang, S.; Li, J.; Wei, F.; Li, X.; Ding, Y.; Yang, Z.; Sun, Z.; Zha, K.; Wang, F.X.; et al. Cell-Free Decellularized Cartilage Extracellular Matrix Scaffolds Combined with Interleukin 4 Promote Osteochondral Repair through Immunomodulatory Macrophages: In Vitro and in Vivo Preclinical Study. Acta Biomater. 2021, 127, 131–145, doi:10.1016/J.ACTBIO.2021.03.054. 37. Yi, P.; Chen, S.; Zhao, Y.; Ku, W.; Lu, H.; Yu, D.; Zhao, W. An Injectable Dental Pulp-Derived Decellularized Matrix Hydrogel Promotes Dentin Repair through Modulation of Macrophage Response. Biomater. Adv. 2024, 161, 213883, doi:10.1016/J.BIOADV.2024.213883. 38. Qiu, P.; Li, M.; Chen, K.; Fang, B.; Chen, P.; Tang, Z.; Lin, X.; Fan, S. Periosteal Matrix-Derived Hydrogel Promotes Bone Repair through an Early Immune Regulation Coupled with Enhanced Angio- and Osteogenesis. Biomaterials 2020, 227, 119552, doi:10.1016/J.BIOMATERIALS.2019.119552. 39. Yang, L.; Jin, S.; Shi, L.; Ullah, I.; Yu, K.; Zhang, W.; Bo, L.; Zhang, X.; Guo, X. Cryogenically 3D Printed Biomimetic Scaffolds Containing Decellularized Small Intestinal Submucosa and Sr2+/Fe3+ Co-Substituted Hydroxyapatite for Bone Tissue Engineering. Chem. Eng. J. 2022, 431, 133459, doi:10.1016/J.CEJ.2021.133459. 40. Dai, M.; Sui, B.; Hua, Y.; Zhang, Y.; Bao, B.; Lin, Q.; Liu, X.; Zhu, L.; Sun, J. A Well Defect-Suitable and High-Strength Biomimetic Squid Type II Gelatin Hydrogel Promoted in Situ Costal Cartilage Regeneration via Dynamic Immunomodulation and Direct Induction Manners. Biomaterials 2020, 240, 119841, doi:10.1016/j.biomaterials.2020.119841. 41. Mao, X.; Yao, L.; Li, M.; Zhang, X.; Weng, B.; Zhu, W.; Ni, R.; Chen, K.; Yi, L.; Zhao, J.; et al. Enhancement of Tendon Repair Using Tendon-Derived Stem Cells in Small Intestinal Submucosa via M2 Macrophage Polarization. Cells 2022, 11, doi:10.3390/cells11172770. 42. Khosrowpour, Z.; Hashemi, S.M.; Mohammadi-Yeganeh, S.; Simorgh, S.; Eftekhari, B.S.; Brouki Milan, P.; Kundu, S.C.; Gholipourmalekabadi, M. Decellularized Placental Sponge: A Platform for Coculture of Mesenchymal Stem Cells/Macrophages to Assess an M2 Phenotype and Osteogenic Differentiation In Vitro and In Vivo. ACS Omega 2024, 9, 5298–5318, doi:10.1021/acsomega.3c06175. 43. Kumar, M.; Gupta, P.; Bhattacharjee, S.; Nandi, S.K.; Mandal, B.B. Immunomodulatory Injectable Silk Hydrogels Maintaining Functional Islets and Promoting Anti-Inflammatory M2 Macrophage Polarization. Biomaterials 2018, 187, 1–17, doi:10.1016/j.biomaterials.2018.09.037. 44. Chen, S.; Lei, W.; Liu, Q.; Wang, X.; Chen, K.; Lin, X.; Wang, X. Silk-Based Nanocomposite Hydrogel Balances Immune Homeostasis via Targeting Mitochondria for Diabetic Wound Healing. Chem. Eng. J. 2024, 498, 155884, doi:10.1016/J.CEJ.2024.155884. 45. Patel, D.K.; Dutta, S.D.; Hexiu, J.; Ganguly, K.; Lim, K.T. 3D-Printable Chitosan/Silk Fibroin/Cellulose Nanoparticle Scaffolds for Bone Regeneration via M2 Macrophage Polarization. Carbohydr. Polym. 2022, 281, 119077, doi:10.1016/J.CARBPOL.2021.119077. 46. Jiang, L.B.; Ding, S.L.; Ding, W.; Su, D.H.; Zhang, F.X.; Zhang, T.W.; Yin, X.F.; Xiao, L.; Li, Y.L.; Yuan, F.L.; et al. Injectable Sericin Based Nanocomposite Hydrogel for Multi-Modal Imaging-Guided Immunomodulatory Bone Regeneration. Chem. Eng. J. 2021, 418, 129323, doi:10.1016/J.CEJ.2021.129323. 47. Pei, D.; Zeng, Z.; Geng, Z.; Cai, K.; Lu, D.; Guo, C.; Guo, H.; Huang, J.; Gao, B.; Yu, S. Modulation of Macrophage Polarization by Secondary Cross-Linked Hyaluronan-Dopamine Hydrogels. Int. J. Biol. Macromol. 2024, 270, 132417, doi:10.1016/J.IJBIOMAC.2024.132417. 48. Du, J.; Chu, Y.; Hu, Y.; Liu, J.; Liu, H.; Wang, H.; Yang, C.; Wang, Z.; Yu, A.; Ran, J. A Multifunctional Self-Reinforced Injectable Hydrogel for Enhancing Repair of Infected Bone Defects by Simultaneously Targeting Macrophages, Bacteria, and Bone Marrow Stromal Cells. Acta Biomater. 2024, 189, 232–253, doi:10.1016/J.ACTBIO.2024.10.014. 49. Yang, D.; Shou, Z.; Xie, X.; Tang, Y.; Li, Z.; Chen, H.; Tang, S.; Zan, X. Gelatin-Based Dynamic Response Antioxidant, Anti-Inflammatory Multifunctional Hydrogel for Enhanced Diabetic Wound Repair. Int. J. Biol. Macromol. 2024, 260, 129453, doi:10.1016/J.IJBIOMAC.2024.129453. 50. Namazi, S.S.; Mahmoud, A.H.; Dal-Fabbro, R.; Han, Y.; Xu, J.; Sasaki, H.; Fenno, J.C.; Bottino, M.C. Multifunctional and Biodegradable Methacrylated Gelatin/Aloe Vera Nanofibers for Endodontic Disinfection and Immunomodulation. Biomater. Adv. 2023, 150, 213427, doi:10.1016/J.BIOADV.2023.213427. 51. Zhu, G.; Zhang, R.; Xie, Q.; Li, P.; Wang, F.; Wang, L.; Li, C. Shish-Kebab Structure Fiber with Nano and Micro Diameter Regulate Macrophage Polarization for Anti-Inflammatory and Bone Differentiation. Mater. Today Bio 2023, 23, 100880, doi:10.1016/J.MTBIO.2023.100880. 52. Ren, Y.; Chen, Y.; Chen, W.; Deng, H.; Li, P.; Liu, Y.; Gao, C.; Tian, G.; Ning, C.; Yuan, Z.; et al. Hydrophilic Nanofibers with Aligned Topography Modulate Macrophage-Mediated Host Responses via the NLRP3 Inflammasome. J. Nanobiotechnology 2023, 21, doi:10.1186/s12951-023-02024-9. 53. Jiang, J.; Liu, W.; Xiong, Z.; Hu, Y.; Xiao, J. Effects of Biomimetic Hydroxyapatite Coatings on Osteoimmunomodulation. Biomater. Adv. 2022, 134, 112640, doi:10.1016/j.msec.2021.112640. 54. Liu, X.; Chen, W.; Shao, B.; Zhang, X.; Wang, Y.; Zhang, S.; Wu, W. Mussel Patterned with 4D Biodegrading Elastomer Durably Recruits Regenerative Macrophages to Promote Regeneration of Craniofacial Bone. Biomaterials 2021, 276, 120998, doi:10.1016/J.BIOMATERIALS.2021.120998. 55. Liu, Y.; Cao, L.; Zhang, S.; Ji, L.; Wang, J.; Liu, C. Effect of Hierarchical Porous Scaffold on Osteoimmunomodulation and Bone Formation. Appl. Mater. Today 2020, 20, 100779, doi:10.1016/j.apmt.2020.100779. 56. Sridharan, R.; Cavanagh, B.; Cameron, A.R.; Kelly, D.J.; O’Brien, F.J. Material Stiffness Influences the Polarization State, Function and Migration Mode of Macrophages. Acta Biomater. 2019, 89, 47–59, doi:10.1016/J.ACTBIO.2019.02.048. 57. Vassey, M.J.; Figueredo, G.P.; Scurr, D.J.; Vasilevich, A.S.; Vermeulen, S.; Carlier, A.; Luckett, J.; Beijer, N.R.M.; Williams, P.; Winkler, D.A.; et al. Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation. Adv. Sci. 2020, 7, doi:10.1002/ADVS.201903392. 58. Wu, M.; Wang, Y.; Liu, H.; Chen, F.; Zhang, Y.; Wu, P.; Deng, Z.; Cai, L. Engineering Mussel-Inspired Multifunctional Nanocomposite Hydrogels to Orchestrate Osteoimmune Microenvironment and Promote Bone Healing. Mater. Des. 2023, 227, 111705, doi:10.1016/j.matdes.2023.111705. 59. Zhang, W.; Xia, S.; Weng, T.; Yang, M.; Shao, J.; Zhang, M.; Wang, J.; Xu, P.; Wei, J.; Jin, R.; et al. Antibacterial Coaxial Hydro-Membranes Accelerate Diabetic Wound Healing by Tuning Surface Immunomodulatory Functions. Mater. Today Bio 2022, 16, 100395, doi:10.1016/J.MTBIO.2022.100395. 60. Li, X.; Xu, K.; He, Y.; Tao, B.; Li, K.; Lin, C.; Hu, J.; Wu, J.; Wu, Y.; Liu, S.; et al. ROS-Responsive Hydrogel Coating Modified Titanium Promotes Vascularization and Osteointegration of Bone Defects by Orchestrating Immunomodulation. Biomaterials 2022, 287, 121683, doi:10.1016/J.BIOMATERIALS.2022.121683. 61. Li, W.; Zhou, P.; Yan, B.; Qi, M.; Chen, Y.; Shang, L.; Guan, J.; Zhang, L.; Mao, Y. Disc Regeneration by Injectable Fucoidan-Methacrylated Dextran Hydrogels through Mechanical Transduction and Macrophage Immunomodulation. J. Tissue Eng. 2023, 14, doi:10.1177/20417314231180050. 62. Zhao, D.W.; Yu, M.Z.; Zhao, Y.X.; Hu, R.; Xu, P.C.; Sun, Z.Y.; Bian, K.; Liu, C.; Cheng, L. Improvement of Bone Formation by Bionic Hydroxyapatite Nanorod via the Regulation of Macrophage Polarization. J. Mater. Sci. Technol. 2023, 136, 109–120, doi:10.1016/J.JMST.2022.07.025. 63. Han, C.; Guo, M.; Bai, J.; Zhao, L.; Wang, L.; Song, W.; Zhang, P. Quercetin-Loaded Nanocomposite Microspheres for Chronologically Promoting Bone Repair via Synergistic Immunoregulation and Osteogenesis. Mater. Des. 2022, 222, 111045, doi:10.1016/J.MATDES.2022.111045. 64. Chai, Q.; Xu, H.; Xu, X.; Li, Z.; Bao, W.; Man, Z.; Li, W. Mussel-Inspired Alkaline Phosphatase-Specific Coating on Orthopedic Implants for Spatiotemporal Modulating Local Osteoimmune Microenvironment to Facilitate Osseointegration. Colloids Surfaces B Biointerfaces 2023, 225, 113284, doi:10.1016/j.colsurfb.2023.113284. 65. Wang, C.; Li, T.; Zeng, X.; Wu, L.; Gao, M.; Tong, N.; Duan, P.; Liu, J. Sustained Delivery of IL-10 by Self-Assembling Peptide Hydrogel to Reprogram Macrophages and Promote Diabetic Alveolar Bone Defect Healing. Dent. Mater. 2023, 39, 418–429, doi:10.1016/J.DENTAL.2023.03.014. 66. Qiao, D.; Cheng, S.; Xing, Z.; Zhang, Q.; Song, S.; Yan, F.; Zhang, Y. Bio-Inspired Glycosylated Nano-Hydroxyapatites Enhance Endogenous Bone Regeneration by Modulating Macrophage M2 Polarization. Acta Biomater. 2023, 162, 135–148, doi:10.1016/j.actbio.2023.03.027. 67. Wang, X.; Sun, X.; Lei, J.; Li, L.; Zhu, N.; Yu, Y.; Zeng, Y.; Kang, K.; Yi, Q.Y.; Wu, Y. Bioinspired Zwitterionic Lysine Glycopolymers: Enhancing Wound Repair through Microenvironment Modulation for Bacterial Elimination and Optimal Immunoregulation. Nano Today 2024, 57, 102354, doi:10.1016/J.NANTOD.2024.102354. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Química Farmacéutica |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/7be4a63a-3565-48fb-9e32-be4a6c641de9/download https://repositorio.unbosque.edu.co/bitstreams/a73f60a0-3ce3-419d-b334-87081f0c27fb/download https://repositorio.unbosque.edu.co/bitstreams/5f60bddb-80cb-4604-b4f4-8dc67ff80d08/download https://repositorio.unbosque.edu.co/bitstreams/2870ef95-3b8f-48f9-ab41-ba48c993a98d/download https://repositorio.unbosque.edu.co/bitstreams/0bac558a-1f87-4365-b170-d5bebb5b27d7/download https://repositorio.unbosque.edu.co/bitstreams/fa8f0877-2be3-4965-ad89-cdc05aec017f/download https://repositorio.unbosque.edu.co/bitstreams/984a2b66-e200-4443-b7f5-edfb2a8b1168/download |
bitstream.checksum.fl_str_mv |
abefb540aeaa34db54cd7847ff62608c 17cc15b951e7cc6b3728a574117320f9 1e3cb744409eafb10210b0c6ba4eaaf3 b7cc27d16d01ebfd51c44c3918bf0d96 5643bfd9bcf29d560eeec56d584edaa9 eb0db96d311688eced6f3dc60889cebd 48f051e2dac43ac3f7681f698bc0a29f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1834107916947292160 |
spelling |
Millán Cortés, Diana MilenaJiménez Cruz, Ronald AndrésHenao Hurtado, Isabela2025-05-19T16:52:24Z2025-05-19T16:52:24Z2025-05https://hdl.handle.net/20.500.12495/14389Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLa ingeniería de tejidos ha revolucionado el uso de biomateriales naturales y sintéticos para diseñar productos que reparen o reemplacen órganos o tejidos, para esto, se debe asegurar que el biomaterial sea biocompatible e imite las propiedades fisicoquímicas y mecánicas específicas para el tejido que se quiere reparar. Independientemente del tipo de biomaterial empleado para el diseño de productos de ingeniería de tejidos, estos están condicionados a la respuesta inmune del huésped generando una reacción a cuerpo extraño cuando son implantados. Estas respuestas dependen en gran parte de los macrófagos tisulares que polarizan hacia un perfil inflamatorio o antiinflamatorio. En este trabajo, se realizó una revisión narrativa sistematizada para comparar la diferencia en la polarización de macrófagos inducida por biomateriales naturales y sintéticos, y productos de ingeniería de tejidos diseñados con estos, y entender cómo las características de estos biomateriales inciden en su biocompatibilidad. Los artículos seleccionados demostraron que la composición de un producto de ingeniería de tejidos, propiedades fisicoquímicas (estructura, tamaño, porosidad, rugosidad, tasa de hinchamiento y degradación) y propiedades mecánicas (rigidez, resistencia a la tracción, resistencia a la compresión y viscoelasticidad) son los principales aspectos que determinan su funcionalidad; además, en algunos casos es requerida la funcionalización con cargas adicionales de componentes bioactivos (citoquinas, péptidos bioactivos, fármacos y nanopartículas) para potenciar la inmunomodulación y regeneración del tejido. Los resultados in vitro mostraron que principalmente en macrófagos Raw264.7, pudo lograrse una polarización eficiente al aumentar la expresión de genes como CD206, y liberación de señales como IL-10, Arg-1 y factores de crecimiento como TGF-β1/TGF-β3. Por otro lado, en los estudios in vivo predominó el estudio de defectos óseos, donde pudo evidenciarse que la polarización M2 de macrófagos favorecía la angiogénesis en las primeras semanas y la osteogénesis se alcanzaba generalmente un mes después de la implantación. A pesar de que se pudo comparar las diferencias entre biomateriales naturales y sintéticos, no podría determinarse cuál es mejor para lograr un mejor efecto inmunomodulador y reparador, ya que cada uno posee ventajas y desventajas que pueden complementarse al usar otro tipo de biomateriales y funcionalización con moléculas bioactivas.PregradoQuímico FarmacéuticoTissue engineering has revolutionized the use of natural and synthetic biomaterials to design products that repair or replace organs or tissues, for this, it must be ensured that the biomaterial is biocompatible and mimics the specific physicochemical and mechanical properties of the tissue to be repaired. Regardless of the type of biomaterial used for the design of tissue engineering products, they are conditioned to the immune response of the host, generating a foreign body reaction when implanted. These responses are largely dependent on tissue macrophages that polarize towards an inflammatory or anti-inflammatory profile. In this work, a systematized narrative review was conducted to compare the difference in macrophage polarization induced by natural and synthetic biomaterials and tissue engineering products designed with them, and to understand how the characteristics of these biomaterials impact their biocompatibility. The selected articles demonstrated that the composition of a tissue engineering product, physicochemical properties (structure, size, porosity, roughness, swelling and degradation rate) and mechanical properties (stiffness, tensile strength, compressive strength and viscoelasticity) are the main aspects that determine its functionality; furthermore, in some cases functionalization with additional loads of bioactive components (cytokines, bioactive peptides, drugs and nanoparticles) is required to enhance immunomodulation and tissue regeneration. In vitro results showed that mainly in Raw264.7 macrophages, efficient polarization could be achieved by increasing the expression of genes such as CD206, and release of signals such as IL-10, Arg-1 and growth factors such as TGF-β1/TGF-β3. On the other hand, in vivo studies were dominated by the study of bone defects, where it was evident that M2 polarization of macrophages favored angiogenesis in the first weeks and osteogenesis was generally achieved one month after implantation. Although it was possible to compare the differences between natural and synthetic biomaterials, it could not be determined which one is better to achieve a better immunomodulatory and reparative effect, since each one has advantages and disadvantages that can be complemented by using other types of biomaterials and functionalization with bioactive molecules.application/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2BiomaterialesIngeniería de tejidosMacrófagosPolarizaciónInmunomodulaciónBiocompatibilidad615.19BiomaterialsTissue engineeringMacrophagesPolarizationImmunomodulationBiocompatibilityEstudio comparativo de la polarización de macrófagos in vitro e in vivo inducida por biomateriales de origen natural y sintético y productos de ingeniería de tejidos. Una Revisión narrativa sistematizadaComparative study of in vitro and in vivo macrophage polarization induced by biomaterials of natural and synthetic origin and tissue engineering products. A systematized narrative reviewQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. Williams, D.F. Strategies for the Specification of Tissue Engineering Biomaterials; Elsevier Inc., 2014; ISBN 9780123985231.2. Chandra, P.K.; Soker, S.; Atala, A. Tissue Engineering: Current Status and Future Perspectives. Princ. Tissue Eng. 2020, 1–35, doi:10.1016/B978-0-12-818422-6.00004-6.3. Thankam, F.G.; Sharma, C.P.; Chandy, T.; Thomas, V. Genesis and Historic Evolution of Tissue Engineering and Regenerative Medicine. Tissue Eng. Curr. Status Challenges 2022, 1–7, doi:10.1016/B978-0-12-824064-9.00018-6.4. Mo, X.; Sun, B.; Wu, T.; Li, D. Electrospun Nanofibers for Tissue Engineering. Electrospinning Nanofabrication Appl. 2019, 719–734, doi:10.1016/B978-0-323-51270-1.00024-8.5. Hasnain, M.S.; Ahmad, S.A.; Chaudhary, N.; Hoda, M.N.; Nayak, A.K. Biodegradable Polymer Matrix Nanocomposites for Bone Tissue Engineering. Appl. Nanocomposite Mater. Orthop. 2019, 1–37, doi:10.1016/B978-0-12-813740-6.00001-6.6. Wardhana, A.; Valeria, M. Tissue Engineering and Regenerative Medicine: A Review. J. Plast. Rekonstruksi 2020, 7, 10–17, doi:10.14228/JPR.V7I1.278.7. Pandya, P.; Parihar, V.S.; Kellomȁki, M.; Ghosh, S. Biomaterials and Bioengineering: A Detailed Overview. Med. Nanobiotechnology 2025, 1–31, doi:10.1016/B978-0-443-21507-0.00002-7.8. Tang, X.; Qin, H.; Gu, X.; Fu, X. China’s Landscape in Regenerative Medicine. Biomaterials 2017, 124, 78–94, doi:10.1016/J.BIOMATERIALS.2017.01.044.9. Murphy, C.M.; O’Brien, F.J.; Little, D.G.; Schindeler, A. Cell-Scaffold Interactions in the Bone Tissue Engineering Triad. Eur. Cells Mater. 2013, 26, 120–132, doi:10.22203/ECM.V026A09.10. Mariani, E.; Lisignoli, G.; Borzì, R.M.; Pulsatelli, L. Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int. J. Mol. Sci. 2019, Vol. 20, Page 636 2019, 20, 636, doi:10.3390/IJMS20030636.11. Aldana, A.A.; Bauer, J.; Baker, M.B. Synthetic Biomaterials. Tissue Eng. Third Ed. 2023, 173–212, doi:10.1016/B978-0-12-824459-3.00006-8.12. Ashammakhi, N.; Ghavaminejad, A.; Tutar, R.; Fricker, A.; Roy, I.; Chatzistavrou, X.; Hoque Apu, E.; Nguyen, K.L.; Ahsan, T.; Pountos, I.; et al. Highlights on Advancing Frontiers in Tissue Engineering. https://home.liebertpub.com/teb 2022, 28, 633–664, doi:10.1089/TEN.TEB.2021.0012.13. Curvello, R.; Raghuwanshi, V.S.; Garnier, G. Engineering Nanocellulose Hydrogels for Biomedical Applications. Adv. Colloid Interface Sci. 2019, 267, 47–61, doi:10.1016/J.CIS.2019.03.002.14. Hannen, R.; Connelly, J.; Myers, S.; Ojeh, N. Skin Tissue Engineering and Keratinocyte Stem Cell Therapy. Tissue Eng. Third Ed. 2023, 491–532, doi:10.1016/B978-0-12-824459-3.00031-7.15. Stocco, T.D.; Bassous, N.; Oliveira Lobo, A. Nanostructured Materials for Bone Tissue Replacement. Nanomedicine Technol. Appl. 2023, 189–211, doi:10.1016/B978-0-12-818627-5.00003-8.16. Gong, T.; Xie, J.; Liao, J.; Zhang, T.; Lin, S.; Lin, Y. Nanomaterials and Bone Regeneration. Bone Res. 2015, 3, 15029, doi:10.1038/boneres.2015.29.17. Maheshwari, N.; Tekade, M.; Chourasiya, Y.; Sharma, M.C.; Deb, P.K.; Tekade, R.K. Nanotechnology in Tissue Engineering. Biomater. Bionanotechnol. 2019, 225–261, doi:10.1016/B978-0-12-814427-5.00007-X.18. Hasan, A.; Morshed, M.; Memic, A.; Hassan, S.; Webster, T.J.; Marei, H.E.S. Nanoparticles in Tissue Engineering: Applications, Challenges and Prospects. Int. J. Nanomedicine 2018, 13, 5637, doi:10.2147/IJN.S153758.19. Lee, C.; Judd, J. Biphasic Glucomannan Scaffolds and Methods of Use 2024.20. Radhakrishnan, A.; Sreekumaran, S.; Anjali, S.; Resmi, R.; Saravana, R.P. Emerging Strategies in Bone Tissue Engineering. Tissue Eng. Curr. Status Challenges 2022, 469–492, doi:10.1016/B978-0-12-824064-9.00013-7.21. Sharma, N.R.; Subburaj, K.; Sandhu, K.; Sharma, V. Applications of 3D Printing in Biomedical Engineering; Sharma, N.R., Subburaj, K., Sandhu, K., Sharma, V., Eds.; 1st ed.; Springer Singapore: Singapore, 2021; ISBN 978-981-33-6887-3.22. Larouche, J.; Sheoran, S.; Maruyama, K.; Martino, M.M. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv. Wound Care 2018, 7, 209, doi:10.1089/WOUND.2017.0761.23. Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2018, 99, 665, doi:10.1152/PHYSREV.00067.2017.24. Martin, K.E.; García, A.J. Macrophage Phenotypes in Tissue Repair and the Foreign Body Response: Implications for Biomaterial-Based Regenerative Medicine Strategies. Acta Biomater. 2021, 133, 4–16, doi:10.1016/J.ACTBIO.2021.03.038.25. Rayahin, J.E.; Gemeinhart, R.A. Activation of Macrophages in Response to Biomaterials. Results Probl. Cell Differ. 2017, 62, 317–351, doi:10.1007/978-3-319-54090-0_13.26. Witherel, C.E.; Abebayehu, D.; Barker, T.H.; Spiller, K.L. Macrophage and Fibroblast Interactions in Biomaterial-Mediated Fibrosis. Adv. Healthc. Mater. 2019, 8, 1801451, doi:10.1002/ADHM.201801451.27. Graney, P.L.; Ben-Shaul, S.; Landau, S.; Bajpai, A.; Singh, B.; Eager, J.; Cohen, A.; Levenberg, S.; Spiller, K.L. Macrophages of Diverse Phenotypes Drive Vascularization of Engineered Tissues. Sci. Adv. 2020, 6, eaay6391, doi:10.1126/SCIADV.AAY6391.28. Yepes-Nuñez, J.J.; Urrútia, G.; Romero-García, M.; Alonso-Fernández, S. Declaración PRISMA 2020: Una Guía Actualizada Para La Publicación de Revisiones Sistemáticas. Rev. Española Cardiol. 2021, 74, 790–799, doi:10.1016/J.RECESP.2021.06.016.29. Mohamed Shaffril, H.A.; Samsuddin, S.F.; Abu Samah, A. The ABC of Systematic Literature Review: The Basic Methodological Guidance for Beginners. Qual. Quant. 2021, 55, 1319–1346, doi:10.1007/S11135-020-01059-6/METRICS.30. Li, J.J.; Zreiqat, H. Tissue Response to Biomaterials. Encycl. Biomed. Eng. 2019, 1–3, 270–277, doi:10.1016/B978-0-12-801238-3.99880-5.31. Spiller, K.L.; Anfang, R.R.; Spiller, K.J.; Ng, J.; Nakazawa, K.R.; Daulton, J.W.; Vunjak-Novakovic, G. The Role of Macrophage Phenotype in Vascularization of Tissue Engineering Scaffolds. Biomaterials 2014, 35, 4477–4488, doi:10.1016/J.BIOMATERIALS.2014.02.012.32. Vishwakarma, A.; Bhise, N.S.; Evangelista, M.B.; Rouwkema, J.; Dokmeci, M.R.; Ghaemmaghami, A.M.; Vrana, N.E.; Khademhosseini, A. Engineering Immunomodulatory Biomaterials To Tune the Inflammatory Response. Trends Biotechnol. 2016, 34, 470–482, doi:10.1016/J.TIBTECH.2016.03.009.33. Zheng, W.; Huang, H.; Guo, F.; Yuan, C.; Zhou, Q. Biomaterials Modulate Macrophage Polarization and Inflammatory Responses. Recent Adv. Microb. Divers. Macrophages their Role Inflamm. 2022, 99–110, doi:10.1016/B978-0-12-822368-0.00006-2.34. Tan, J.; Zhang, Q.-Y.; Song, Y.-T.; Huang, K.; Jiang, Y.-L.; Chen, J.; Wang, R.; Zou, C.-Y.; Li, Q.-J.; Qin, B.-Q.; et al. Accelerated Bone Defect Regeneration through Sequential Activation of the M1 and M2 Phenotypes of Macrophages by a Composite BMP-2@SIS Hydrogel: An Immunomodulatory Perspective. Compos. Part B Eng. 2022, 243, 110149, doi:10.1016/j.compositesb.2022.110149.35. Ni, R.; Luo, Y.; Jiang, L.; Mao, X.; Feng, Y.; Tuersun, S.; Hu, Z.; Zhu, Y. Repairing Gastric Ulcer with Hyaluronic Acid/Extracellular Matrix Composite through Promoting M2-Type Polarization of Macrophages. Int. J. Biol. Macromol. 2023, 245, 125556, doi:10.1016/J.IJBIOMAC.2023.125556.36. Tian, G.; Jiang, S.; Li, J.; Wei, F.; Li, X.; Ding, Y.; Yang, Z.; Sun, Z.; Zha, K.; Wang, F.X.; et al. Cell-Free Decellularized Cartilage Extracellular Matrix Scaffolds Combined with Interleukin 4 Promote Osteochondral Repair through Immunomodulatory Macrophages: In Vitro and in Vivo Preclinical Study. Acta Biomater. 2021, 127, 131–145, doi:10.1016/J.ACTBIO.2021.03.054.37. Yi, P.; Chen, S.; Zhao, Y.; Ku, W.; Lu, H.; Yu, D.; Zhao, W. An Injectable Dental Pulp-Derived Decellularized Matrix Hydrogel Promotes Dentin Repair through Modulation of Macrophage Response. Biomater. Adv. 2024, 161, 213883, doi:10.1016/J.BIOADV.2024.213883.38. Qiu, P.; Li, M.; Chen, K.; Fang, B.; Chen, P.; Tang, Z.; Lin, X.; Fan, S. Periosteal Matrix-Derived Hydrogel Promotes Bone Repair through an Early Immune Regulation Coupled with Enhanced Angio- and Osteogenesis. Biomaterials 2020, 227, 119552, doi:10.1016/J.BIOMATERIALS.2019.119552.39. Yang, L.; Jin, S.; Shi, L.; Ullah, I.; Yu, K.; Zhang, W.; Bo, L.; Zhang, X.; Guo, X. Cryogenically 3D Printed Biomimetic Scaffolds Containing Decellularized Small Intestinal Submucosa and Sr2+/Fe3+ Co-Substituted Hydroxyapatite for Bone Tissue Engineering. Chem. Eng. J. 2022, 431, 133459, doi:10.1016/J.CEJ.2021.133459.40. Dai, M.; Sui, B.; Hua, Y.; Zhang, Y.; Bao, B.; Lin, Q.; Liu, X.; Zhu, L.; Sun, J. A Well Defect-Suitable and High-Strength Biomimetic Squid Type II Gelatin Hydrogel Promoted in Situ Costal Cartilage Regeneration via Dynamic Immunomodulation and Direct Induction Manners. Biomaterials 2020, 240, 119841, doi:10.1016/j.biomaterials.2020.119841.41. Mao, X.; Yao, L.; Li, M.; Zhang, X.; Weng, B.; Zhu, W.; Ni, R.; Chen, K.; Yi, L.; Zhao, J.; et al. Enhancement of Tendon Repair Using Tendon-Derived Stem Cells in Small Intestinal Submucosa via M2 Macrophage Polarization. Cells 2022, 11, doi:10.3390/cells11172770.42. Khosrowpour, Z.; Hashemi, S.M.; Mohammadi-Yeganeh, S.; Simorgh, S.; Eftekhari, B.S.; Brouki Milan, P.; Kundu, S.C.; Gholipourmalekabadi, M. Decellularized Placental Sponge: A Platform for Coculture of Mesenchymal Stem Cells/Macrophages to Assess an M2 Phenotype and Osteogenic Differentiation In Vitro and In Vivo. ACS Omega 2024, 9, 5298–5318, doi:10.1021/acsomega.3c06175.43. Kumar, M.; Gupta, P.; Bhattacharjee, S.; Nandi, S.K.; Mandal, B.B. Immunomodulatory Injectable Silk Hydrogels Maintaining Functional Islets and Promoting Anti-Inflammatory M2 Macrophage Polarization. Biomaterials 2018, 187, 1–17, doi:10.1016/j.biomaterials.2018.09.037.44. Chen, S.; Lei, W.; Liu, Q.; Wang, X.; Chen, K.; Lin, X.; Wang, X. Silk-Based Nanocomposite Hydrogel Balances Immune Homeostasis via Targeting Mitochondria for Diabetic Wound Healing. Chem. Eng. J. 2024, 498, 155884, doi:10.1016/J.CEJ.2024.155884.45. Patel, D.K.; Dutta, S.D.; Hexiu, J.; Ganguly, K.; Lim, K.T. 3D-Printable Chitosan/Silk Fibroin/Cellulose Nanoparticle Scaffolds for Bone Regeneration via M2 Macrophage Polarization. Carbohydr. Polym. 2022, 281, 119077, doi:10.1016/J.CARBPOL.2021.119077.46. Jiang, L.B.; Ding, S.L.; Ding, W.; Su, D.H.; Zhang, F.X.; Zhang, T.W.; Yin, X.F.; Xiao, L.; Li, Y.L.; Yuan, F.L.; et al. Injectable Sericin Based Nanocomposite Hydrogel for Multi-Modal Imaging-Guided Immunomodulatory Bone Regeneration. Chem. Eng. J. 2021, 418, 129323, doi:10.1016/J.CEJ.2021.129323.47. Pei, D.; Zeng, Z.; Geng, Z.; Cai, K.; Lu, D.; Guo, C.; Guo, H.; Huang, J.; Gao, B.; Yu, S. Modulation of Macrophage Polarization by Secondary Cross-Linked Hyaluronan-Dopamine Hydrogels. Int. J. Biol. Macromol. 2024, 270, 132417, doi:10.1016/J.IJBIOMAC.2024.132417.48. Du, J.; Chu, Y.; Hu, Y.; Liu, J.; Liu, H.; Wang, H.; Yang, C.; Wang, Z.; Yu, A.; Ran, J. A Multifunctional Self-Reinforced Injectable Hydrogel for Enhancing Repair of Infected Bone Defects by Simultaneously Targeting Macrophages, Bacteria, and Bone Marrow Stromal Cells. Acta Biomater. 2024, 189, 232–253, doi:10.1016/J.ACTBIO.2024.10.014.49. Yang, D.; Shou, Z.; Xie, X.; Tang, Y.; Li, Z.; Chen, H.; Tang, S.; Zan, X. Gelatin-Based Dynamic Response Antioxidant, Anti-Inflammatory Multifunctional Hydrogel for Enhanced Diabetic Wound Repair. Int. J. Biol. Macromol. 2024, 260, 129453, doi:10.1016/J.IJBIOMAC.2024.129453.50. Namazi, S.S.; Mahmoud, A.H.; Dal-Fabbro, R.; Han, Y.; Xu, J.; Sasaki, H.; Fenno, J.C.; Bottino, M.C. Multifunctional and Biodegradable Methacrylated Gelatin/Aloe Vera Nanofibers for Endodontic Disinfection and Immunomodulation. Biomater. Adv. 2023, 150, 213427, doi:10.1016/J.BIOADV.2023.213427.51. Zhu, G.; Zhang, R.; Xie, Q.; Li, P.; Wang, F.; Wang, L.; Li, C. Shish-Kebab Structure Fiber with Nano and Micro Diameter Regulate Macrophage Polarization for Anti-Inflammatory and Bone Differentiation. Mater. Today Bio 2023, 23, 100880, doi:10.1016/J.MTBIO.2023.100880.52. Ren, Y.; Chen, Y.; Chen, W.; Deng, H.; Li, P.; Liu, Y.; Gao, C.; Tian, G.; Ning, C.; Yuan, Z.; et al. Hydrophilic Nanofibers with Aligned Topography Modulate Macrophage-Mediated Host Responses via the NLRP3 Inflammasome. J. Nanobiotechnology 2023, 21, doi:10.1186/s12951-023-02024-9.53. Jiang, J.; Liu, W.; Xiong, Z.; Hu, Y.; Xiao, J. Effects of Biomimetic Hydroxyapatite Coatings on Osteoimmunomodulation. Biomater. Adv. 2022, 134, 112640, doi:10.1016/j.msec.2021.112640.54. Liu, X.; Chen, W.; Shao, B.; Zhang, X.; Wang, Y.; Zhang, S.; Wu, W. Mussel Patterned with 4D Biodegrading Elastomer Durably Recruits Regenerative Macrophages to Promote Regeneration of Craniofacial Bone. Biomaterials 2021, 276, 120998, doi:10.1016/J.BIOMATERIALS.2021.120998.55. Liu, Y.; Cao, L.; Zhang, S.; Ji, L.; Wang, J.; Liu, C. Effect of Hierarchical Porous Scaffold on Osteoimmunomodulation and Bone Formation. Appl. Mater. Today 2020, 20, 100779, doi:10.1016/j.apmt.2020.100779.56. Sridharan, R.; Cavanagh, B.; Cameron, A.R.; Kelly, D.J.; O’Brien, F.J. Material Stiffness Influences the Polarization State, Function and Migration Mode of Macrophages. Acta Biomater. 2019, 89, 47–59, doi:10.1016/J.ACTBIO.2019.02.048.57. Vassey, M.J.; Figueredo, G.P.; Scurr, D.J.; Vasilevich, A.S.; Vermeulen, S.; Carlier, A.; Luckett, J.; Beijer, N.R.M.; Williams, P.; Winkler, D.A.; et al. Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation. Adv. Sci. 2020, 7, doi:10.1002/ADVS.201903392.58. Wu, M.; Wang, Y.; Liu, H.; Chen, F.; Zhang, Y.; Wu, P.; Deng, Z.; Cai, L. Engineering Mussel-Inspired Multifunctional Nanocomposite Hydrogels to Orchestrate Osteoimmune Microenvironment and Promote Bone Healing. Mater. Des. 2023, 227, 111705, doi:10.1016/j.matdes.2023.111705.59. Zhang, W.; Xia, S.; Weng, T.; Yang, M.; Shao, J.; Zhang, M.; Wang, J.; Xu, P.; Wei, J.; Jin, R.; et al. Antibacterial Coaxial Hydro-Membranes Accelerate Diabetic Wound Healing by Tuning Surface Immunomodulatory Functions. Mater. Today Bio 2022, 16, 100395, doi:10.1016/J.MTBIO.2022.100395.60. Li, X.; Xu, K.; He, Y.; Tao, B.; Li, K.; Lin, C.; Hu, J.; Wu, J.; Wu, Y.; Liu, S.; et al. ROS-Responsive Hydrogel Coating Modified Titanium Promotes Vascularization and Osteointegration of Bone Defects by Orchestrating Immunomodulation. Biomaterials 2022, 287, 121683, doi:10.1016/J.BIOMATERIALS.2022.121683.61. Li, W.; Zhou, P.; Yan, B.; Qi, M.; Chen, Y.; Shang, L.; Guan, J.; Zhang, L.; Mao, Y. Disc Regeneration by Injectable Fucoidan-Methacrylated Dextran Hydrogels through Mechanical Transduction and Macrophage Immunomodulation. J. Tissue Eng. 2023, 14, doi:10.1177/20417314231180050.62. Zhao, D.W.; Yu, M.Z.; Zhao, Y.X.; Hu, R.; Xu, P.C.; Sun, Z.Y.; Bian, K.; Liu, C.; Cheng, L. Improvement of Bone Formation by Bionic Hydroxyapatite Nanorod via the Regulation of Macrophage Polarization. J. Mater. Sci. Technol. 2023, 136, 109–120, doi:10.1016/J.JMST.2022.07.025.63. Han, C.; Guo, M.; Bai, J.; Zhao, L.; Wang, L.; Song, W.; Zhang, P. Quercetin-Loaded Nanocomposite Microspheres for Chronologically Promoting Bone Repair via Synergistic Immunoregulation and Osteogenesis. Mater. Des. 2022, 222, 111045, doi:10.1016/J.MATDES.2022.111045.64. Chai, Q.; Xu, H.; Xu, X.; Li, Z.; Bao, W.; Man, Z.; Li, W. Mussel-Inspired Alkaline Phosphatase-Specific Coating on Orthopedic Implants for Spatiotemporal Modulating Local Osteoimmune Microenvironment to Facilitate Osseointegration. Colloids Surfaces B Biointerfaces 2023, 225, 113284, doi:10.1016/j.colsurfb.2023.113284.65. Wang, C.; Li, T.; Zeng, X.; Wu, L.; Gao, M.; Tong, N.; Duan, P.; Liu, J. Sustained Delivery of IL-10 by Self-Assembling Peptide Hydrogel to Reprogram Macrophages and Promote Diabetic Alveolar Bone Defect Healing. Dent. Mater. 2023, 39, 418–429, doi:10.1016/J.DENTAL.2023.03.014.66. Qiao, D.; Cheng, S.; Xing, Z.; Zhang, Q.; Song, S.; Yan, F.; Zhang, Y. Bio-Inspired Glycosylated Nano-Hydroxyapatites Enhance Endogenous Bone Regeneration by Modulating Macrophage M2 Polarization. Acta Biomater. 2023, 162, 135–148, doi:10.1016/j.actbio.2023.03.027.67. Wang, X.; Sun, X.; Lei, J.; Li, L.; Zhu, N.; Yu, Y.; Zeng, Y.; Kang, K.; Yi, Q.Y.; Wu, Y. Bioinspired Zwitterionic Lysine Glycopolymers: Enhancing Wound Repair through Microenvironment Modulation for Bacterial Elimination and Optimal Immunoregulation. Nano Today 2024, 57, 102354, doi:10.1016/J.NANTOD.2024.102354.spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1154251https://repositorio.unbosque.edu.co/bitstreams/7be4a63a-3565-48fb-9e32-be4a6c641de9/downloadabefb540aeaa34db54cd7847ff62608cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/a73f60a0-3ce3-419d-b334-87081f0c27fb/download17cc15b951e7cc6b3728a574117320f9MD57Carta de autorizacion.pdfapplication/pdf152264https://repositorio.unbosque.edu.co/bitstreams/5f60bddb-80cb-4604-b4f4-8dc67ff80d08/download1e3cb744409eafb10210b0c6ba4eaaf3MD59Anexo 1 acta de aprobacion.pdfapplication/pdf1746168https://repositorio.unbosque.edu.co/bitstreams/2870ef95-3b8f-48f9-ab41-ba48c993a98d/downloadb7cc27d16d01ebfd51c44c3918bf0d96MD510CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repositorio.unbosque.edu.co/bitstreams/0bac558a-1f87-4365-b170-d5bebb5b27d7/download5643bfd9bcf29d560eeec56d584edaa9MD58TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain102258https://repositorio.unbosque.edu.co/bitstreams/fa8f0877-2be3-4965-ad89-cdc05aec017f/downloadeb0db96d311688eced6f3dc60889cebdMD511THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5430https://repositorio.unbosque.edu.co/bitstreams/984a2b66-e200-4443-b7f5-edfb2a8b1168/download48f051e2dac43ac3f7681f698bc0a29fMD51220.500.12495/14389oai:repositorio.unbosque.edu.co:20.500.12495/143892025-05-20 05:04:18.778http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |