Bioclimatic evaluation and optimization of the Non-Centrifugal Cane Sugar (NCS) Factory in Caparrapí, Colombia

ilustraciones

Autores:
Alvarez Carpintero, Juan David
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83877
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83877
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Bioclimatología
Explotaciones agrarias
Centrifugación
bioclimatology
farms
centrifuging
Jaggery
CFD
Sugar cane
WBGT Index
Noise
Temperature
Relative humidity
Panela
CFD
Caña de azúcar
Índice WBGT
Ruido
Temperatura
Humedad relativa
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_fdbc27d448e1b92b5c17ff5ef1163bad
oai_identifier_str oai:repositorio.unal.edu.co:unal/83877
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Bioclimatic evaluation and optimization of the Non-Centrifugal Cane Sugar (NCS) Factory in Caparrapí, Colombia
dc.title.translated.spa.fl_str_mv Evaluación bioclimática y optimización de una Central de Mieles de Panela en Caparrapí, Colombia
title Bioclimatic evaluation and optimization of the Non-Centrifugal Cane Sugar (NCS) Factory in Caparrapí, Colombia
spellingShingle Bioclimatic evaluation and optimization of the Non-Centrifugal Cane Sugar (NCS) Factory in Caparrapí, Colombia
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Bioclimatología
Explotaciones agrarias
Centrifugación
bioclimatology
farms
centrifuging
Jaggery
CFD
Sugar cane
WBGT Index
Noise
Temperature
Relative humidity
Panela
CFD
Caña de azúcar
Índice WBGT
Ruido
Temperatura
Humedad relativa
title_short Bioclimatic evaluation and optimization of the Non-Centrifugal Cane Sugar (NCS) Factory in Caparrapí, Colombia
title_full Bioclimatic evaluation and optimization of the Non-Centrifugal Cane Sugar (NCS) Factory in Caparrapí, Colombia
title_fullStr Bioclimatic evaluation and optimization of the Non-Centrifugal Cane Sugar (NCS) Factory in Caparrapí, Colombia
title_full_unstemmed Bioclimatic evaluation and optimization of the Non-Centrifugal Cane Sugar (NCS) Factory in Caparrapí, Colombia
title_sort Bioclimatic evaluation and optimization of the Non-Centrifugal Cane Sugar (NCS) Factory in Caparrapí, Colombia
dc.creator.fl_str_mv Alvarez Carpintero, Juan David
dc.contributor.advisor.spa.fl_str_mv Osorio Hernanadez, Robinson
Camacho Tamayo, Jesús Hernán
dc.contributor.author.spa.fl_str_mv Alvarez Carpintero, Juan David
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Bioclimatología
Explotaciones agrarias
Centrifugación
bioclimatology
farms
centrifuging
Jaggery
CFD
Sugar cane
WBGT Index
Noise
Temperature
Relative humidity
Panela
CFD
Caña de azúcar
Índice WBGT
Ruido
Temperatura
Humedad relativa
dc.subject.agrovoc.spa.fl_str_mv Bioclimatología
Explotaciones agrarias
Centrifugación
dc.subject.agrovoc.eng.fl_str_mv bioclimatology
farms
centrifuging
dc.subject.proposal.eng.fl_str_mv Jaggery
CFD
Sugar cane
WBGT Index
Noise
Temperature
Relative humidity
dc.subject.proposal.spa.fl_str_mv Panela
CFD
Caña de azúcar
Índice WBGT
Ruido
Temperatura
Humedad relativa
description ilustraciones
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-25T22:08:21Z
dc.date.available.none.fl_str_mv 2023-05-25T22:08:21Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83877
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83877
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv Agrosavia
Agrovoc
dc.relation.references.spa.fl_str_mv Aguilar-Rivera, N., & Olvera-Vargas, L. A. (2021). Innovations for Sustainable Production of Traditional and Artisan Unrefined Non-centrifugal Cane Sugar in Mexico. In World sustainability series (pp. 313–330). doi: 10.1007/978-3-030-78825-4 19
Ahlawat, A., Wiedensohler, A., Mishra, S. K., et al. (2020). An overview on the role of relative humidity in airborne transmission of sars-cov-2 in indoor environments. Aerosol and Air Quality Research, 20(9), 1856–1861. doi: https://doi.org/10.4209/aaqr.2020.06.0302
Alarcón, A. L., Orjuela, A., Narváez, P. C., & Camacho, E. C. (2020). Thermal and rheological properties of juices and syrups during non-centrifugal sugar cane (jaggery) production. Food and Bioproducts Processing, 121, 76–90. doi: https://doi.org/10.1016/j.fbp.2020.01.016
Asikin, Y., Hirose, N., Tamaki, H., Ito, S., Oku, H., & Wada, K. (2016). Effects of different drying–solidification processes on physical properties, volatile fraction, and antioxidant activity of non-centrifugal cane brown sugar. LWT - Food Science and Technology, 66, 340-347. Retrieved from https://www.sciencedirect.com/science/article/pii/S0023643815302577 doi: https://doi.org/10.1016/j.lwt.2015.10.039
Asikin, Y., Takahashi, M., Hirose, N., Hou, D.-X., Takara, K., & Wada, K. (2012). Wax, policosanol, and long-chain aldehydes of different sugarcane (saccharum officinarum l.) cultivars. European Journal of Lipid Science and Technology, 114(5), 583-591. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.201100300 doi: https://doi.org/10.1002/ejlt.201100300
Attri, M. K., & Varma, A. (2018). Comparative study of growth of piriformospora indica by using different sources of jaggery. Journal of PurE and aPPliEd Microbiology, 12(2), 933–942. doi: http://dx.doi.org/10.22207/JPAM.12.2.56
Budd, G. M. (2008). Wet-bulb globe temperature (wbgt)—its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20-32. Retrieved from https://www.sciencedirect.com/science/article/pii/S1440244007001478 (Heat Stress in Sport) doi: https://doi.org/10.1016/j.jsams.2007.07.003
Bustos-Vanegas, J. D., Hempel, S., Janke, D., Doumbia, M., Streng, J., & Amon, T. (2019). Numerical simulation of airflow in animal occupied zones in a dairy cattle building. Biosystems Engineering, 186, 100–105. doi: https://doi.org/10.1016/j.biosystemseng.2019.07.002
Cai, X., Lu, Y., & Wang, J. (2018). The impact of temperature on manufacturing worker productivity: Evidence from personnel data. Journal of Comparative Economics, 46(4), 889–905. doi: 10.1016/j.jce.2018.06.003
Dziubata, Z., Trokhaniak, V., Rogovskii, I., Titova, L., Luzan, P., & Popyk, P. (2020). Using cfd simulation to investigate the impact of fresh air valves on poultry house aerodynamics in case of a side ventilation system. doi: https://doi.org/10.35633/inmateh-62-16
Ebadi, S., & Azlan, A. (2021). Nutritional composition and role of non-centrifugal sugar (ncs) in human health. Current Nutrition & Food Science, 17(3).
Ekka, J. P., & Palanisamy, M. (2020). Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. Thermal Science and Engineering Progress, 19, 100607. doi: https://doi.org/10.1016/j.tsep.2020.100607
FAO. (2022). Crops and livestock products database. Retrieved junio 18, 2022, from https://www.fao.org/faostat/en/#data/QCL/visualize (Production/Yield quantities of Sugar Raw Centrifugal in Colombia. Ultima actualización: 07/02/2022.)
Fedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PAN-´ ELA. BOGOTA, D.C.. Unpublished writing
Flórez-Martínez, D. H., Contreras-Pedraza, C. A., & Rodríguez, J. (2021). A systematic analysis of non-centrifugal sugar cane processing: Research and new trends. Trends in Food Science & Technology, 107, 415-428. Retrieved from https://www.sciencedirect.com/science/article/pii/S0924224420306828 doi: https://doi.org/10.1016/j.tifs.2020.11.011
Fox, B., Bellini, G., & Pellegrini, L. (2014). Chapter 14 - drying. In H. C. Vogel & C. M. Todaro (Eds.), Fermentation and biochemical engineering handbook (third edition) (Third Edition ed., p. 283-305). Boston: William Andrew Publishing. Retrieved from https://www.sciencedirect.com/science/article/pii/B9781455725533000143 doi: https://doi.org/10.1016/B978-1-4557-2553-3.00014-3
García, J. M., Narváez, P. C., Heredia, F. J., Orjuela, A., & Osorio, C.´ (2017). Physicochemical and sensory (aroma and colour) characterisation of a noncentrifugal cane sugar (“panela”) beverage. Food Chemistry, 228, 7–13. doi: 10.1016/j.foodchem.2017.01.134
Ghernaout, B., Attia, M. E., Bouabdallah, S., Driss, Z., & Benali, M. L. (2020). Heat and fluid flow in an agricultural greenhouse. Int. J. Heat Technol, 3, 92–98. doi: https://doi.org/10.18280/ijht.380110
Guerra García, L. M., Osorio Hernández, R., Osorio Saraz, J. A., Carlo, J. C., & Damasceno, F. A. (2022). Bioclimatic performance of wet coffee processing facilities: conditions for workers and coffee. Revista Facultad Nacional de Agronomía Medellín, 75(1), 9763– 9772. doi: https://doi.org/10.15446/rfnam.v75n1.96247
Guo, H., Aviv, D., Loyola, M., Teitelbaum, E., Houchois, N., & Meggers, F. (2020). On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review. Renewable and Sustainable Energy Reviews, 117, 109207. doi: https://doi.org/10.1016/j.rser.2019.06.014
Guzmán, C. H., Carrera, J. L., Dur´an, H. A., Berumen, J., Ortiz, A. A., Guirette, O. A., ... others (2018). Implementation of virtual sensors for monitoring temperature in greenhouses using cfd and control. Sensors, 19(1), 60. doi: https://doi.org/10.3390/s19010060
Hanif, M. A., Nadeem, F., Tariq, R., & Rashid, U. (2022). Chapter 4 - solar thermal energy and photovoltaic systems. In M. A. Hanif, F. Nadeem, R. Tariq, & U. Rashid (Eds.), Renewable and alternative energy resources (p. 171-261). Academic Press. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780128181508000071 doi: https://doi.org/10.1016/B978-0-12-818150-8.00007-1
Jaffe, W. R. (2012). Health effects of non-centrifugal sugar (ncs): a review. Sugar tech, 14(2), 87–94. doi: http://dx.doi.org/10.1007/s12355-012-0145-1
Jaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007
Jung, W., & Kim, H. (2022). Evaluation of heat stress levels inside greenhouses during summer in korea. International Journal of Environmental Research and Public Health, 19(19), 12497. doi: https://doi.org/10.3390/ijerph191912497
Junzeng, X., Qi, W., Shizhang, P., & Yanmei, Y. (2012). Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Engineering, 28, 43-48. Retrieved from https://www.sciencedirect.com/science/article/pii/S187770581200690X (2012 International Conference on Modern Hydraulic Engineering) doi: https://doi.org/10.1016/j.proeng.2012.01.680
Kim, R.-w., Kim, J.-g., Lee, I.-b., Yeo, U.-h., & Lee, S.-y. (2019). Development of a vr simulator for educating cfd-computed internal environment of piglet house. biosystems engineering, 188, 243–264. doi: https://doi.org/10.1016/j.biosystemseng.2019.10.024
Kumar, R., & Kumar, M. (2021a). Performance evaluation of improved and traditional two pan jaggery making plants: A comparative study. Sustainable Energy Technologies and Assessments, 47, 101462. doi: https://doi.org/10.1016/j.seta.2021.101462
Kumar, R., & Kumar, M. (2021b). Thermoeconomic analysis of a modified jaggery making plant. Heat Transfer, 50(5), 4871–4891.
Legg, R. (2017). Chapter 1 - properties of humid air. In R. Legg (Ed.), Air conditioning system design (p. 1-28). Butterworth-Heinemann. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780081011232000017 doi: https://doi.org/10.1016/B978-0-08-101123-2.00001-7
Lingayat, A. B., Chandramohan, V., Raju, V., & Meda, V. (2020). A review on indirect type solar dryers for agricultural crops–dryer setup, its performance, energy storage and important highlights. Applied Energy, 258, 114005. doi: https://doi.org/10.1016/j.apenergy.2019.114005
Lintermann, A. (2021). Computational meshing for cfd simulations. In K. Inthavong, N. Singh, E. Wong, & J. Tu (Eds.), Clinical and biomedical engineering in the human nose: A computational fluid dynamics approach (pp. 85–115). Singapore: Springer Singapore. Retrieved from https://doi.org/10.1007/978-981-15-6716-2 6 doi: 10.1007/978-981-15-6716-2 6
Lipczynska, A., Schiavon, S., & Graham, L. T. (2018). Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Building and Environment, 135, 202–212. doi: https://doi.org/10.1016/j.buildenv.2018.03.013
Manavvi, S., & Rajasekar, E. (2020). Estimating outdoor mean radiant temperature in a humid subtropical climate. Building and Environment, 171, 106658. doi: https://doi.org/10.1016/j.buildenv.2020.106658
Mendieta, O., García, M., Peña, A., & Rodríguez, J. (2016). Las buenas prácticas de manufactura en la producción de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).
Ministerio de Agricultura y Desarrollo Rural. (2018). Cadena Agroindustrial De La Panela. El Renacer del Campo, 2018.
Ministerio de Agricultura y Desarrollo Rural. (2019). Cadena agroindustrial de la panela.
Ministerio de Protección Social. (2006). Resolución Número 779 de 2006. Retrieved from https://fedepanela.org.co/gremio/descargas/resolucion-779-de-2006/
Ministerio de Protección Social. (2008). Resolución Número 3462 de 2008. Retrieved from https://fedepanela.org.co/gremio/descargas/resolucion-3462-de-2008/
Ministerio de Protección Social. (2009). Resolución Número 3544 de 2009. Retrieved from https://fedepanela.org.co/gremio/descargas/resolucion-3544-de-2009/
Ministerio de Trabajo y Seguridad Social. (1979). RESOLUCION´ 2400 DE 1979. BOGOTA,´ D.C.. Retrieved from https://minvivienda.gov.co/sites/default/files/normativa/2400 1979.pdf
Ministerio do Trabalho e Providencia. (2021). Portaria n.º 426 de 07 de outubro de 2021. Retrieved from https://www.gov.br/trabalho-e-previdencia/pt-br/composicao/orgaos-espec ificos/secretaria-de-trabalho/inspecao/seguranca-e-saude-no-trabalho/ss t-portarias/2021/portaria-mtp-no-426-anexos-i-vibracao-e-iii-calor-da-n r-09.pdf (Anexo 3)
Mobtaker, H. G., Ajabshirchi, Y., Ranjbar, S. F., & Matloobi, M. (2019). Simulation of thermal performance of solar greenhouse in north-west of iran: An experimental validation. Renewable Energy, 135, 88–97.
Mujica, M., Guerra, M., & Soto, N. (2008). Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia, 33, 598–603.
OLIVEIRA, B. F. A., Silveira, I. H., Feitosa, R. C., Horta, M. A. P., Junger, W. L., & Hacon, S. (2019). Human heat stress risk prediction in the brazilian semiarid region based on the wet-bulb globe temperature. Anais da Academia Brasileira de Ciencias, 91. doi: https://doi.org/10.1590/0001-3765201920180748
Orlov, A., Daloz, A. S., Sillmann, J., Thiery, W., Douzal, C., Lejeune, Q., & Schleussner, C. (2021). Global economic responses to heat stress impacts on worker productivity in crop production. Economics of Disasters and Climate Change, 5(3), 367–390. doi: https://doi.org/10.1007/s41885-021-00091-6
Osorio, G. (2007). Manual: Buenas Practicas Agrícolas -BPA- y Buenas Prácticas de Manufactura -BPM-en la Producción de Caña y Panela. (Primera ed.). FAO.
Parkes, M. G., Azevedo, D. L., Domingos, T., & Teixeira, R. F. (2022). Narratives and benefits of agricultural technology in urban buildings: A review. Atmosphere, 13(8), 1250.
Rao, G. P., & Singh, P. (2022). Value Addition and Fortification in Non-Centrifugal Sugar (Jaggery): A Potential Source of Functional and Nutraceutical Foods. Sugar Tech, 24(2), 387–396. Retrieved from https://doi.org/10.1007/s12355-021-01020-3 doi: 10.1007/s12355-021-01020-3
Rodríguez, G., García, H., Roa, Z., & Santacoloma, P. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en a´reas rurales de Am´erica Latina Producción de panela como estrategia de diversificación en áreas rurales de America Latina. FAO, 98.
Rozo, T. (2013). Manual técnico de buenas prácticas de manufactura (BPM) para el proceso tecnológico de producción de panela. Retrieved from https://www.onfandina.com/images/Publicaciones/Panela /Manual Técnico BPM Trapiches.pdf
Saberian, A., & Sajadiye, S. M. (2019). The effect of dynamic solar heat load on the greenhouse microclimate using cfd simulation. Renewable Energy, 138, 722–737. doi: https://doi.org/10.1016/j.renene.2019.01.108
Sadiq, L. S., Hashim, Z., & Osman, M. (2019). The impact of heat on health and productivity among maize farmers in a tropical climate area. Journal of environmental and public health, 2019. doi: https://doi.org/10.1155/2019/9896410
Salehi, F. (2020). Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. International Journal of Fruit Science, 20(3), 586–602. doi: https://doi.org/10.1080/15538362.2019.1616243
Samet, J. M., Marbury, M. C., & Spengler, J. D. (1987). State of Art: Indoor Air Pollution. The American Review of Respiratory Disease(136), 1486–1508.
Shrivastava, A., & Singh, P. (2020, 12). Jaggery (gur): The ancient indian open-pan noncentrifugal sugar. In (p. 283-307). doi: 10.1007/978-981-15-6663-9 19
Stull, R. (2011). Wet-bulb temperature from relative humidity and air temperature. Journal of Applied Meteorology and Climatology, 50(11), 2267–2269. doi: 10.1175/JAMC-D11-0143.1
Takakura, J., Fujimori, S., Takahashi, K., Hijioka, Y., & Honda, Y. (2019). Site-specific hourly resolution wet bulb globe temperature reconstruction from gridded daily resolution climate variables for planning climate change adaptation measures. International journal of biometeorology, 63(6), 787–800. doi: https://doi.org/10.1007/s00484-019-01692-3
Tarazona Parra, G. A. (2011). Manejo fotosanitario del cultivo de caña panelera - Medidas para la temporada invernal. BOGOTA, D.C.
Tarigan, E. (2018). Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage. Case studies in thermal engineering, 12, 149–165.
Tong, X., Hong, S.-W., & Zhao, L. (2019). Cfd modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation. Biosystems engineering, 178, 275–293. doi: https://doi.org/10.1016/j.biosystemseng.2018.08.008
Tran, V. T., Duong, Y. H., & Le, T. M. (2021). The influence of meshing strategies on the numerical simulation of solar greenhouse dryer. In Iop conference series: Earth and environmental science (Vol. 947, p. 012007).
Tu, J., Yeoh, G. H., & Liu, C. (2018). Computational fluid dynamics: a practical approach. Butterworth-Heinemann.
Tun, A. (2019). Review of the specific heat of food models. (3), 82–86. doi: https://doi.org/10.17586/1606-4313-2019-18-3-82-86
Tyagi, S., Kamboj, S., Himanshu, Tyagi, N., Narayanan, R., & Tyagi, V. (2022). Technological advancements in jaggery-making processes and emission reduction potential via clean combustion for sustainable jaggery production: An overview. Journal of Environmental Management, 301, 113792. Retrieved from https://www.sciencedirect.com/science/article/pii/S0301479721018545 doi: https://doi.org/10.1016/j.jenvman.2021.113792
Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodr´ıguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009
Weerawatanakorn, M., Asikin, Y., Takahashi, M., Tamaki, H., Wada, K., Ho, C.-T., & Chuekittisak, R. (2016). Physico-chemical properties, wax composition, aroma profiles, and antioxidant activity of granulated non-centrifugal sugars from sugarcane cultivars of Thailand. Journal of Food Science and Technology, 53(11), 4084–4092. Retrieved from https://doi.org/10.1007/s13197-016-2415-5 doi: 10.1007/s13197-016-24155
Xie, Q., Ni, J.-Q., Bao, J., & Su, Z. (2019). A thermal environmental model for indoor air temperature prediction and energy consumption in pig building. Building and Environment, 161, 106238. doi: https://doi.org/10.1016/j.buildenv.2019.106238
Xu, H. J., Xing, Z. B., Wang, F., & Cheng, Z. (2019). Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chemical Engineering Science, 195, 462–483.
Yaciuk, G. (1981). 24 - solar crop drying. In A. JANZEN & R. SWARTMAN (Eds.), Solar energy conversion ii (p. 377-396). Pergamon. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780080253886500490 doi: https://doi.org/10.1016/B978-0-08-025388-6.50049-0
Yoshida, S., Yoshida, A., & Kinoshita, S. (2020). Chapter 5 - evaluation methods of adaptation cities. In H. Takebayashi & M. Moriyama (Eds.), Adaptation measures for urban heat islands (p. 115-159). Academic Press. doi: https://doi.org/10.1016/B978-0-12-817624-5.00005-1
Zhang, Y., Yasutake, D., Hidaka, K., Kitano, M., & Okayasu, T. (2020). Cfd analysis for evaluating and optimizing spatial distribution of co2 concentration in a strawberry greenhouse under different co2 enrichment methods. Computers and Electronics in Agriculture, 179, 105811. doi: https://doi.org/10.1016/j.compag.2020.105811
Zhou, B., Wang, X., Mondaca, M. R., Rong, L., & Choi, C. Y. (2019). Assessment of optimal airflow baffle locations and angles in mechanically-ventilated dairy houses using computational fluid dynamics. Computers and Electronics in Agriculture, 165, 104930. doi: https://doi.org/10.1016/j.compag.2019.104930
Aguilar-Rivera, N., & Olvera-Vargas, L. A. (2021). Innovations for Sustainable Production of Traditional and Artisan Unrefined Non-centrifugal Cane Sugar in Mexico. In World sustainability series (pp. 313–330). doi: 10.1007/978-3-030-78825-4 19
Alfarawi, S. S., El-sawi, A., & Omar, H. (2021). Exploring discontinuous meshing for cfd modelling of counter flow heat exchanger. Journal of Advanced Research in Numerical Heat Transfer, 5(1), 26–34.
Ashrae. (2017). Ashrae handbook fundamentals 2017: Inch-pound edition. American Society of Heating, Refrigerating and Air-Conditioning Engineers. Retrieved from https://books.google.com.co/books?id=6VhRswEACAAJ
ASTM. (2002). Guide for statistical evaluation of indoor air quality models (d5157-97). American Society for Testing Materials. Retrieved from https://www.astm.org/d5157-19.html doi: https://doi.org/10.1520/D5157-19
Bakker, A., Siegel, J. A., Mendell, M. J., Prussin, A. J., Marr, L. C., & Peccia, J. (2020). Bacterial and fungal ecology on air conditioning cooling coils is influenced by climate and building factors. Indoor air, 30(2), 326–334. doi: https://doi.org/10.1111/ina.12632
Bustos-Vanegas, J. D., Hempel, S., Janke, D., Doumbia, M., Streng, J., & Amon, T. (2019). Numerical simulation of airflow in animal occupied zones in a dairy cattle building. Biosystems Engineering, 186, 100–105. doi: https://doi.org/10.1016/j.biosystemseng.2019.07.002
Cai, X., Lu, Y., & Wang, J. (2018). The impact of temperature on manufacturing worker productivity: Evidence from personnel data. Journal of Comparative Economics, 46(4), 889–905. doi: 10.1016/j.jce.2018.06.003
Cheng, Q., Feng, H., Meng, H., & Zhou, H. (2021). Cfd study of the effect of inlet position and flap on the airflow and temperature in a laying hen house in summer. Biosystems Engineering, 203, 109–123. doi: https://doi.org/10.1016/j.biosystemseng.2021.01.009
Duran, P., Merker, A., Briceño, G., Colon, E., Line, D., Abad, V., ... Hagenas, L. (2016). Colombian reference growth curves for height, weight, body mass index and head circumference. Acta Paediatrica, 105(3), e116-e125. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/apa.13269 doi: https://doi.org/10.1111/apa.13269
Dziubata, Z., Trokhaniak, V., Rogovskii, I., Titova, L., Luzan, P., & Popyk, P. (2020). Using cfd simulation to investigate the impact of fresh air valves on poultry house aerodynamics in case of a side ventilation system. doi: https://doi.org/10.35633/inmateh-62-16
Espitia, J., Velasquez, F., Lopez, R., Escobar, S., & Rodrıguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274, 109843. Retrieved from https://www.sciencedirect.com/science/article/pii/S0260877419304868 doi: https://doi.org/10.1016/j.jfoodeng.2019.109843
Fedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PANELA. BOGOTA, D.C.. Unpublished writing.´
IDEAM. (2015a). Mapa de precipitaci´on total anual (mm). Cundinamarca, Colombia.
IDEAM. (2015b). Mapa de temperatura media anual (◦c). Cundinamarca, Colombia.
Jeong, K., Kessen, M. J., Bilirgen, H., & Levy, E. K. (2010). Analytical modeling of water condensation in condensing heat exchanger. International Journal of Heat and Mass Transfer, 53(11-12), 2361–2368. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.004
Junzeng, X., Qi, W., Shizhang, P., & Yanmei, Y. (2012). Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Engineering, 28, 43-48. Retrieved from https://www.sciencedirect.com/science/article/pii/S187770581200690X (2012 International Conference on Modern Hydraulic Engineering) doi: https://doi.org/10.1016/j.proeng.2012.01.680
Kim, R.-w., Kim, J.-g., Lee, I.-b., Yeo, U.-h., & Lee, S.-y. (2019). Development of a vr simulator for educating cfd-computed internal environment of piglet house. biosystems engineering, 188, 243–264. doi: https://doi.org/10.1016/j.biosystemseng.2019.10.024
Lintermann, A. (2021). Computational meshing for cfd simulations. In K. Inthavong, N. Singh, E. Wong, & J. Tu (Eds.), Clinical and biomedical engineering in the human nose: A computational fluid dynamics approach (pp. 85–115). Singapore: Springer Singapore. Retrieved from https://doi.org/10.1007/978-981-15-6716-2 6 doi: 10.1007/978-981-15-6716-2 6
Mendieta, O., García, M., Peña, A., & Rodríguez, J. (2016). Las buenas practicas de manufactura en la producci´on de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).
Ministerio de Agricultura y Desarrollo Rural. (2018). Cadena Agroindustrial De La Panela. El Renacer del Campo, 2018.
Ministerio de Trabajo y Seguridad Social. (1979). RESOLUCION´ 2400 DE 1979. BOGOTA,´ D.C.. Retrieved from https://minvivienda.gov.co/sites/default/files/normativa/2400 1979.pdf
Mishra, P., & Aharwal, K. R. (2018, aug). A review on selection of turbulence model for cfd analysis of air flow within a cold storage. IOP Conference Series: Materials Science and Engineering, 402(1), 012145. doi: https://dx.doi.org/10.1088/1757-899X/402/1/012145
Mujica, M., Guerra, M., & Soto, N. (2008). Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia, 33, 598–603.
Murray, F. W. (1967). On the computation of saturation vapor pressure. Journal of Applied Meteorology and Climatology, 6(1), 203 - 204. doi: https://10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
Osorio, J. A., Ferreira, I. d. F., Olivera, K. S., Barreto, L., & Norton, T. (2016, 01). A CFD based approach for determination of ammonia concentration profile and flux from poultry houses with natural ventilation. Revista Facultad Nacional de Agronomia Medellín, 69, 7825 - 7834. doi: http://dx.doi.org/10.15446/rfna.v69n1.54750
Osorio-Hernandez, R., Osorio-Saraz, J., Sullivan-Oliveira, K., Aristizaba, I., & Arango, J. (2020). Computational fluid dynamics assessment of effect of different openings configurations on the thermal environment of a facility for coffee wet processing. Journal of Agricultural Engineering, 51(1), 21–26. doi: 10.4081/jae.2020.892
Pasanen, P., Pasanen, A.-L., & Jantunen, M. (1993). Water condensation promotes fungal growth in ventilation ducts. Indoor Air, 3(2), 106–112. doi: https://doi.org/10.1111/j.1600-0668.1993.t01-2-00005.x
Rocha, D. K. S. O., Martins, J. H., Martins, M. A., Saraz, J. A. O., & Filho, A. F. L. (2013). Three-dimensional modeling and simulation of heat and mass transfer processes in porous media: An application for maize stored in a flat bin. Drying Technology, 31(10), 1099-1106. doi: https://doi.org/10.1080/07373937.2013.775145
Singh, S., Dubey, A., Tiwari, L., & Verma, A. (2009). Microbial profile of stored jaggery: a traditional indian sweetener. Sugar Tech, 11(2), 213–216. doi: https://doi.org/10.1007/s12355-009-0034-4
Solís-Fuentes, J. A., Hernández-Ceja, Y., del Rosario Herna´ndez-Medel, M., García-Gómez, R. S., Bernal-Gonz´alez, M., Mendoza-P´erez, S., & del Carmen Dura´n-Dom´ınguezde Bazu´a, M. (2019). Quality improvement of jaggery, a traditional sweetener, using bagasse activated carbon. Food Bioscience, 32, 100444. Retrieved from https://www.sciencedirect.com/science/article/pii/S2212429218308071 doi: https://doi.org/10.1016/j.fbio.2019.100444
Swaab, D., Hofman, M., Mirmiran, M., Ravid, R., & van Leeuwen, F. (1992). Anatomy of the human hypothalamus (chiasmatic and tuberal region). The Human Hypothalamus in Health and Disease, 3
Taylor, N. A. (2006). Challenges to temperature regulation when working in hot environments. Industrial health, 44(3), 331–344. doi: https://doi.org/10.2486/indhealth.44.331
Teixeira, L., Talaia, M., & Meles, B. (2017). Assessment of thermal comfort in a portuguese metalworking industry. Occupational Ergonomics, 13(S1), 59–70. doi: https://doi.org/10.3233/OER-170254
Tong, X., Hong, S.-W., & Zhao, L. (2019). Cfd modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation. Biosystems engineering, 178, 275–293. doi: https://doi.org/10.1016/j.biosystemseng.2018.08.008
Varela-Aldás, J., Fuentes, E. M., Ruales, B., & Ichina, C. (2020). Construction of a wbgt index meter using low cost devices. In International conference on information technology & systems (pp. 459–468). doi: https://doi.org/10.1007/978-3-030-40690-5 45
Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodr´ıguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009
Wolkoff, P., Azuma, K., & Carrer, P. (2021). Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. International Journal of Hygiene and Environmental Health, 233, 113709. doi: https://doi.org/10.1016/j.ijheh.2021.113709
Xie, Q., Ni, J.-Q., Bao, J., & Su, Z. (2019). A thermal environmental model for indoor air temperature prediction and energy consumption in pig building. Building and Environment, 161, 106238. doi: https://doi.org/10.1016/j.buildenv.2019.106238
Yin, Y., Wang, R., Zhai, X., & Ishugah, T. (2014). Experimental investigation on the heat transfer performance and water condensation phenomenon of radiant cooling panels. Building and environment, 71, 15–23. doi: https://doi.org/10.1016/j.buildenv.2013.09.016
Zhou, B., Wang, X., Mondaca, M. R., Rong, L., & Choi, C. Y. (2019). Assessment of optimal airflow baffle locations and angles in mechanically-ventilated dairy houses using computational fluid dynamics. Computers and Electronics in Agriculture, 165, 104930. doi: https://doi.org/10.1016/j.compag.2019.104930
Zidan, D., & Azlan, A. (2022). Non-centrifugal sugar (ncs) and health: a review on functional components and health benefits. Applied Sciences, 12(1), 460. doi: https://doi.org/10.3390/app12010460
Abreu, P. G. d., Abreu, V. M. N., Franciscon, L., Coldebella, A., & Amaral, A. G. d. (2011, dez.). Estimativa da temperatura de globo negro a partir da temperatura de bulbo seco. Revista Engenharia na Agricultura - REVENG, 19(6), 557–563. doi: https://10.13083/reveng.v19i6.273
Ahmed, H. O., Bindekhain, J. A., Alshuweihi, M. I., Yunis, M. A., & Matar, N. R. (2020). Assessment of thermal exposure level among construction workers in uae using wbgt, hsi and twl indices. Industrial health, 58(2), 170–181.
Alfarawi, S. S., El-sawi, A., & Omar, H. (2021). Exploring discontinuous meshing for cfd modelling of counter flow heat exchanger. Journal of Advanced Research in Numerical Heat Transfer, 5(1), 26–34.
ASTM. (2002). Guide for statistical evaluation of indoor air quality models (d5157-97). American Society for Testing Materials. Retrieved from https://www.astm.org/d5157-19.html doi: https://doi.org/10.1520/D5157-19
Budd, G. M. (2008). Wet-bulb globe temperature (wbgt)—its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20-32. Retrieved from https://www.sciencedirect.com/science/article/pii/S1440244007001478 (Heat Stress in Sport) doi: https://doi.org/10.1016/j.jsams.2007.07.003
Dimiceli, V. E., Piltz, S. F., & Amburn, S. A. (2013). Black globe temperature estimate for the wbgt index. In H. K. Kim, S.-I. Ao, & B. B. Rieger (Eds.), Iaeng transactions on engineering technologies: Special edition of the world congress on engineering and computer science 2011 (pp. 323–334). Dordrecht: Springer Netherlands. Retrieved from https://doi.org/10.1007/978-94-007-4786-9 26 doi: 10.1007/978-94-007-4786-9 26
Espitia, J., Velasquez, F., Lopez, R., Escobar, S., & Rodrıguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274, 109843. Retrieved from https://www.sciencedirect.com/science/article/pii/S0260877419304868 doi: https://doi.org/10.1016/j.jfoodeng.2019.109843
Fedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PANELA. BOGOTA, D.C.. Unpublished writing.´
Ghani, S., Mahgoub, A. O., Bakochristou, F., & ElBialy, E. A. (2021). Assessment of thermal comfort indices in an open air-conditioned stadium in hot and arid environment. Journal of Building Engineering, 40, 102378. Retrieved from https://www.sciencedirect.com/science/article/pii/S2352710221002345 doi: https://doi.org/10.1016/j.jobe.2021.102378
IDEAM. (2015a). Mapa de precipitacion total anual (mm). Cundinamarca, Colombia.
IDEAM. (2015b). Mapa de temperatura media anual (◦c). Cundinamarca, Colombia.
Junzeng, X., Qi, W., Shizhang, P., & Yanmei, Y. (2012). Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Engineering, 28, 43-48. Retrieved from https://www.sciencedirect.com/science/article/pii/S187770581200690X (2012 International Conference on Modern Hydraulic Engineering) doi: https://doi.org/10.1016/j.proeng.2012.01.680
Jaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007
Kakaei, H., Omidi, F., Ghasemi, R., Sabet, M. R., & Golbabaei, F. (2019). Changes of wbgt as a heat stress index over the time: A systematic review and meta-analysis. Urban Climate, 27, 284–292.
Lintermann, A. (2021). Computational meshing for cfd simulations. In K. Inthavong, N. Singh, E. Wong, & J. Tu (Eds.), Clinical and biomedical engineering in the human nose: A computational fluid dynamics approach (pp. 85–115). Singapore: Springer Singapore. Retrieved from https://doi.org/10.1007/978-981-15-6716-2 6 doi: 10.1007/978-981-15-6716-2 6
Mendieta, O., Garcıa, M., Peña, A., & Rodríguez, J. (2016). Las buenas practicas de manufactura en la produccion de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).
Ministerio de Agricultura y Desarrollo Rural. (2019). Cadena agroindustrial de la panela.
Ministerio de Trabajo y Seguridad Social. (1979). RESOLUCION´ 2400 DE 1979. BOGOTA,´ D.C.. Retrieved from https://minvivienda.gov.co/sites/default/files/normativa/2400 1979.pdf
Ministerio do Trabalho e Previdencia. (2021). Portaria n.º 426 de 07 de outubro de 2021. Retrieved from https://www.gov.br/trabalho-e-previdencia/pt-br/composicao/orgaos-espec ificos/secretaria-de-trabalho/inspecao/seguranca-e-saude-no-trabalho/ss t-portarias/2021/portaria-mtp-no-426-anexos-i-vibracao-e-iii-calor-da-n r-09.pdf (Anexo 3)
Mishra, P., & Aharwal, K. R. (2018, aug). A review on selection of turbulence model for cfd analysis of air flow within a cold storage. IOP Conference Series: Materials Science and Engineering, 402(1), 012145. doi: https://dx.doi.org/10.1088/1757-899X/402/1/012145
Murray, F. W. (1967). On the computation of saturation vapor pressure. Journal of Applied Meteorology and Climatology, 6(1), 203 - 204. doi: https://10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
Osorio, J. A., Ferreira, I. d. F., Olivera, K. S., Barreto, L., & Norton, T. (2016, 01). A CFD based approach for determination of ammonia concentration profile and flux from poultry houses with natural ventilation. Revista Facultad Nacional de Agronomıa Medellın, 69, 7825 - 7834. doi: http://dx.doi.org/10.15446/rfna.v69n1.54750
Osorio-Hernandez, R., Osorio-Saraz, J., Sullivan-Oliveira, K., Aristizaba, I., & Arango, J. (2020). Computational fluid dynamics assessment of effect of different openings configurations on the thermal environment of a facility for coffee wet processing. Journal of Agricultural Engineering, 51(1), 21–26. doi: 10.4081/jae.2020.892
Rocha, D. K. S. O., Martins, J. H., Martins, M. A., Saraz, J. A. O., & Filho, A. F. L. (2013). Three-dimensional modeling and simulation of heat and mass transfer processes in porous media: An application for maize stored in a flat bin. Drying Technology, 31(10), 1099-1106. doi: https://doi.org/10.1080/07373937.2013.775145
Schickele, E. (1947). Environment and fatal heat stroke: an analysis of 157 cases occurring in the army in the us during world war ii. The Military Surgeon (United States), 100(3), 235–256.
Stull, R. (2011). Wet-bulb temperature from relative humidity and air temperature. Journal of Applied Meteorology and Climatology, 50(11), 2267–2269. doi: 10.1175/JAMC-D11-0143.1
Tong, X., Hong, S.-W., & Zhao, L. (2019). Cfd modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation. Biosystems engineering, 178, 275–293. doi: https://doi.org/10.1016/j.biosystemseng.2018.08.008
Velasquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodrıguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009
Wolkoff, P., Azuma, K., & Carrer, P. (2021). Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. International Journal of Hygiene and Environmental Health, 233, 113709. doi: https://doi.org/10.1016/j.ijheh.2021.113709
Xue, H., & TY, B. (2002). An occupant-coupled cfd model for local wbgt analysis in a ventilated enclosure. Journal of the Human-Environment System, 5(2), 79–86. doi: https://doi.org/10.1618/jhes.5.79
Yaglou, C., Minaed, D., et al. (1957). Control of heat casualties at military training centers. Arch. Indust. Health, 16(4), 302–16.
Yoshida, S., Yoshida, A., & Kinoshita, S. (2020). Chapter 5 - evaluation methods of adaptation cities. In H. Takebayashi & M. Moriyama (Eds.), Adaptation measures for urban heat islands (p. 115-159). Academic Press. doi: https://doi.org/10.1016/B978-0-12-817624-5.00005-1
Yuan, J., Farnham, C., & Emura, K. (2021). Effect of different reflection directional characteristics of building facades on outdoor thermal environment and indoor heat loads by cfd analysis. Urban Climate, 38, 100875. doi: https://doi.org/10.1016/j.uclim.2021.100875
Fedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PANELA. BOGOTA, D.C.. Unpublished writing.´
García, J. M., Narváez, P. C., Heredia, F. J., Orjuela, A., & Osorio, C.´ (2017). Physicochemical and sensory (aroma and colour) characterisation of a noncentrifugal cane sugar (“panela”) beverage. Food Chemistry, 228, 7–13. doi: 10.1016/j.foodchem.2017.01.134
Hasibuan, C., Sutrisno, F., & Pranatal, B. (2020, 02). The instensity measurement and noise mapping in fatty acid plant area at pt. xyz. Simetrikal: Journal of Engineering and Technology, 2, 20-27. doi: 10.32734/jet.v2i1.3556
IDEAM. (2015a). Mapa de precipitaci´on total anual (mm). Cundinamarca, Colombia.
IDEAM. (2015b). Mapa de temperatura media anual (◦c). Cundinamarca, Colombia.
Jaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007
King, E., Murphy, E., & Rice, H. (2010, 11). Implementation of the eu environmental noise directive: Lessons from the first phase of strategic noise mapping and action planning in ireland. Journal of environmental management, 92, 756-64. doi: 10.1016/j.jenvman.2010.10.034
Lim, M., Lee, Y., Lee, F. W., & Heng, G. (2018, 01). Strategic noise mapping prediction for a rubber manufacturing factory in malaysia. E3S Web of Conferences, 65, 05019. doi: 10.1051/e3sconf/20186505019
Luzzi, S., & Vassiliev, A. V. (2005). A comparison of noise mapping methods in italian and russian experiences. In (p. 1051-1056). S. Hirzel Verlag. Retrieved from https://books.google.com.co/books?id=EJ88HQAACAAJ
Mendieta, O., García, M., Peña, A., & Rodr´ıguez, J. (2016). Las buenas practicas de manufactura en la produccion de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).
Ministerio de Agricultura y Desarrollo Rural. (2019). Cadena agroindustrial de la panela.
Ministerio de Ambiente, vivienda y Desarrollo Territorial. (2006). RESOLUCION 0627 DE 2006. BOGOTA, D.C..´
Mujica, M., Guerra, M., & Soto, N. (2008). Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia, 33, 598–603.
NIOSH. (1998). Occupational Noise Exposure (No. 98-126). Cincinnati: National Institute for Occupational Safety and Health. doi: 10.1121/1.4778162
Organización Internacional del Trabajo. (2010). La salud y la seguridad en el trabajo: El ruido en el lugar de trabajo. Organizacio´n Internacional del Trabajo.
Rodriguez, G., Garcia, H., Roa, Z., & Santacoloma, P. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de Am´erica Latina Producción de panela como estrategia de diversificación en áreas rurales de America Latina. FAO, 98.
Solís-Fuentes, J. A., Hernández-Ceja, Y., del Rosario Hernández-Medel, M., García-Gómez, R. S., Bernal-González, M., Mendoza-Pérez, S., & del Carmen Durán-Domínguezde Bazúa, M. (2019). Quality improvement of jaggery, a traditional sweetener, using bagasse activated carbon. Food Bioscience, 32, 100444. Retrieved from https://www.sciencedirect.com/science/article/pii/S2212429218308071 doi: https://doi.org/10.1016/j.fbio.2019.100444
Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodríguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009
Ahmed, S. S., & Gadelmoula, A. M. (2022). Industrial noise monitoring using noise mapping technique: a case study on a concrete block-making factory. International Journal of Environmental Science and Technology, 19(2), 851–862. Retrieved from https://doi.org/10.1007/s13762-020-02982-9 doi: 10.1007/s13762-020-02982-9
Alvarez-Carpintero, J., & Osorio-Hernandez, R. (2021, July). Thermal analysis for an unrefined sugar cane processing factory in colombia by using cfd. In Proceedings of the European Conference on Agricultural Engineering AgEng2021 (pp. 733–739). Universidade de Evora.´
Conde-Santos, L., Matias, C., Vieira, F., & Valado, F. (2008, October). Noise mapping of industrial sources. In (p. 1-12). Retrieved from https://dialnet.unirioja.es/servlet/libro?codigo=788358
Espitia, J., Velasquez, F., Lopez, R., Escobar, S., & Rodrıguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274, 109843. Retrieved from https://www.sciencedirect.com/science/article/pii/S0260877419304868 doi: https://doi.org/10.1016/j.jfoodeng.2019.109843
dc.relation.references.spaspa.fl_str_mv Villagran-Munar, E. A., & Bojaca´-Aldana, C. R. (2019). Determination of the thermal behavior of a colombian hanging greenhouse applying cfd simulation. Revista Ciencias T´ecnicas Agropecuarias, 28(3), 1–10.
Jaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007
Kolokotroni, M., & Littler, J. (1995). Effectiveness of extractor fans in reducing airborne moisture in homes. Indoor Air, 5(1), 69-75. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0668.1995.00011.x doi: https://doi.org/10.1111/j.1600-0668.1995.00011.x
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 87 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.spa.fl_str_mv Colombia
dc.coverage.region.spa.fl_str_mv Caparrapí
Cundinamarca
dc.coverage.tgn.none.fl_str_mv http://vocab.getty.edu/page/tgn/1000583
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícola
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83877/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83877/2/1072714611.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83877/3/1072714611.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
c03399d94f82427fefa186599406d7e8
1509f074bab99d522ad93f9b5971c00f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090203695939584
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Hernanadez, Robinsonf33a8353c83e27ed224651069601fa4a600Camacho Tamayo, Jesús Hernánbc7a14390e8a65e360fcb20eab761a0eAlvarez Carpintero, Juan Davide9e9ac81191db52e6817c8b9fa166bb06002023-05-25T22:08:21Z2023-05-25T22:08:21Z2023https://repositorio.unal.edu.co/handle/unal/83877Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesNon-Centrifugal Cane Sugar production in Colombia is an important economic and social factor for the 350,000 peasant families that subsist on this activity. In Colombia, the implementation of industrial factories, called Centrales, has tried to improve the economy of the workers who carry out these activities without technification. So far, there are no bioclimatic studies applied to this type of agroindustrial facilities. Thus, the objective of this study was to develop a computational model to represent the real environment, in the specific case of the Sugarcane Honey Plant, in order to predict its environmental behavior under different scenarios. The results showed adequate temperature levels for the 7am and 9am hours, but with high relative humidity, favoring water vapor condensation, dripping and fungus proliferation. At 2pm, the results showed high temperature values, generating thermal stress in the workers, due to the nature of the work activities at the plant. The proposed alternatives show an improvement in the plant’s environment; however, it is necessary to implement other measures to reduce the thermal stress of the workers.La producción de panela en Colombia es un importante factor económico y social para las 350.0000 familias campesinas que subsisten de esta actividad. En Colombia, la implementación de fábricas industriales, llamadas Centrales, han intentado mejorar la economía de los trabajadores que ejercen estas actividades sin tecnificación. Hasta el momento no existen estudios de bioclimática aplicada a este tipo de instalaciones agroindustriales. De esta manera, el objetivo del presente estudio fue desarrollar un modelo computacional que representara el entorno real, en el caso específico de la Central de Mieles de Caña, con el fin de predecir su comportamiento ambiental bajo diferentes escenarios. Los resultados mostraron niveles de temperatura adecuados para los horarios de 7 am y 9 am, pero con altas humedades relativas, favoreciendo la condensación de vapor de agua, el goteo y la proliferación de hongos. En horarios de 2 pm, los resultados mostraron valores de temperatura altos, generando estrés térmico en los trabajadores, debido a la naturaleza de las actividades laborales en la Central. Las alternativas propuestas muestran un mejoramiento del ambiente de la Central, no obstante, es necesario acoplar otras medidas para reducir el estrés térmico de los operarios. (Texto tomado de la fuente).Incluye anexosMaestríaMagíster en Ingeniería - Ingeniería de BiosistemasConstrucciones ruralesxii, 87 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaBioclimatologíaExplotaciones agrariasCentrifugaciónbioclimatologyfarmscentrifugingJaggeryCFDSugar caneWBGT IndexNoiseTemperatureRelative humidityPanelaCFDCaña de azúcarÍndice WBGTRuidoTemperaturaHumedad relativaBioclimatic evaluation and optimization of the Non-Centrifugal Cane Sugar (NCS) Factory in Caparrapí, ColombiaEvaluación bioclimática y optimización de una Central de Mieles de Panela en Caparrapí, ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaCaparrapíCundinamarcahttp://vocab.getty.edu/page/tgn/1000583AgrosaviaAgrovocAguilar-Rivera, N., & Olvera-Vargas, L. A. (2021). Innovations for Sustainable Production of Traditional and Artisan Unrefined Non-centrifugal Cane Sugar in Mexico. In World sustainability series (pp. 313–330). doi: 10.1007/978-3-030-78825-4 19Ahlawat, A., Wiedensohler, A., Mishra, S. K., et al. (2020). An overview on the role of relative humidity in airborne transmission of sars-cov-2 in indoor environments. Aerosol and Air Quality Research, 20(9), 1856–1861. doi: https://doi.org/10.4209/aaqr.2020.06.0302Alarcón, A. L., Orjuela, A., Narváez, P. C., & Camacho, E. C. (2020). Thermal and rheological properties of juices and syrups during non-centrifugal sugar cane (jaggery) production. Food and Bioproducts Processing, 121, 76–90. doi: https://doi.org/10.1016/j.fbp.2020.01.016Asikin, Y., Hirose, N., Tamaki, H., Ito, S., Oku, H., & Wada, K. (2016). Effects of different drying–solidification processes on physical properties, volatile fraction, and antioxidant activity of non-centrifugal cane brown sugar. LWT - Food Science and Technology, 66, 340-347. Retrieved from https://www.sciencedirect.com/science/article/pii/S0023643815302577 doi: https://doi.org/10.1016/j.lwt.2015.10.039Asikin, Y., Takahashi, M., Hirose, N., Hou, D.-X., Takara, K., & Wada, K. (2012). Wax, policosanol, and long-chain aldehydes of different sugarcane (saccharum officinarum l.) cultivars. European Journal of Lipid Science and Technology, 114(5), 583-591. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.201100300 doi: https://doi.org/10.1002/ejlt.201100300Attri, M. K., & Varma, A. (2018). Comparative study of growth of piriformospora indica by using different sources of jaggery. Journal of PurE and aPPliEd Microbiology, 12(2), 933–942. doi: http://dx.doi.org/10.22207/JPAM.12.2.56Budd, G. M. (2008). Wet-bulb globe temperature (wbgt)—its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20-32. Retrieved from https://www.sciencedirect.com/science/article/pii/S1440244007001478 (Heat Stress in Sport) doi: https://doi.org/10.1016/j.jsams.2007.07.003Bustos-Vanegas, J. D., Hempel, S., Janke, D., Doumbia, M., Streng, J., & Amon, T. (2019). Numerical simulation of airflow in animal occupied zones in a dairy cattle building. Biosystems Engineering, 186, 100–105. doi: https://doi.org/10.1016/j.biosystemseng.2019.07.002Cai, X., Lu, Y., & Wang, J. (2018). The impact of temperature on manufacturing worker productivity: Evidence from personnel data. Journal of Comparative Economics, 46(4), 889–905. doi: 10.1016/j.jce.2018.06.003Dziubata, Z., Trokhaniak, V., Rogovskii, I., Titova, L., Luzan, P., & Popyk, P. (2020). Using cfd simulation to investigate the impact of fresh air valves on poultry house aerodynamics in case of a side ventilation system. doi: https://doi.org/10.35633/inmateh-62-16Ebadi, S., & Azlan, A. (2021). Nutritional composition and role of non-centrifugal sugar (ncs) in human health. Current Nutrition & Food Science, 17(3).Ekka, J. P., & Palanisamy, M. (2020). Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. Thermal Science and Engineering Progress, 19, 100607. doi: https://doi.org/10.1016/j.tsep.2020.100607FAO. (2022). Crops and livestock products database. Retrieved junio 18, 2022, from https://www.fao.org/faostat/en/#data/QCL/visualize (Production/Yield quantities of Sugar Raw Centrifugal in Colombia. Ultima actualización: 07/02/2022.)Fedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PAN-´ ELA. BOGOTA, D.C.. Unpublished writingFlórez-Martínez, D. H., Contreras-Pedraza, C. A., & Rodríguez, J. (2021). A systematic analysis of non-centrifugal sugar cane processing: Research and new trends. Trends in Food Science & Technology, 107, 415-428. Retrieved from https://www.sciencedirect.com/science/article/pii/S0924224420306828 doi: https://doi.org/10.1016/j.tifs.2020.11.011Fox, B., Bellini, G., & Pellegrini, L. (2014). Chapter 14 - drying. In H. C. Vogel & C. M. Todaro (Eds.), Fermentation and biochemical engineering handbook (third edition) (Third Edition ed., p. 283-305). Boston: William Andrew Publishing. Retrieved from https://www.sciencedirect.com/science/article/pii/B9781455725533000143 doi: https://doi.org/10.1016/B978-1-4557-2553-3.00014-3García, J. M., Narváez, P. C., Heredia, F. J., Orjuela, A., & Osorio, C.´ (2017). Physicochemical and sensory (aroma and colour) characterisation of a noncentrifugal cane sugar (“panela”) beverage. Food Chemistry, 228, 7–13. doi: 10.1016/j.foodchem.2017.01.134Ghernaout, B., Attia, M. E., Bouabdallah, S., Driss, Z., & Benali, M. L. (2020). Heat and fluid flow in an agricultural greenhouse. Int. J. Heat Technol, 3, 92–98. doi: https://doi.org/10.18280/ijht.380110Guerra García, L. M., Osorio Hernández, R., Osorio Saraz, J. A., Carlo, J. C., & Damasceno, F. A. (2022). Bioclimatic performance of wet coffee processing facilities: conditions for workers and coffee. Revista Facultad Nacional de Agronomía Medellín, 75(1), 9763– 9772. doi: https://doi.org/10.15446/rfnam.v75n1.96247Guo, H., Aviv, D., Loyola, M., Teitelbaum, E., Houchois, N., & Meggers, F. (2020). On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review. Renewable and Sustainable Energy Reviews, 117, 109207. doi: https://doi.org/10.1016/j.rser.2019.06.014Guzmán, C. H., Carrera, J. L., Dur´an, H. A., Berumen, J., Ortiz, A. A., Guirette, O. A., ... others (2018). Implementation of virtual sensors for monitoring temperature in greenhouses using cfd and control. Sensors, 19(1), 60. doi: https://doi.org/10.3390/s19010060Hanif, M. A., Nadeem, F., Tariq, R., & Rashid, U. (2022). Chapter 4 - solar thermal energy and photovoltaic systems. In M. A. Hanif, F. Nadeem, R. Tariq, & U. Rashid (Eds.), Renewable and alternative energy resources (p. 171-261). Academic Press. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780128181508000071 doi: https://doi.org/10.1016/B978-0-12-818150-8.00007-1Jaffe, W. R. (2012). Health effects of non-centrifugal sugar (ncs): a review. Sugar tech, 14(2), 87–94. doi: http://dx.doi.org/10.1007/s12355-012-0145-1Jaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007Jung, W., & Kim, H. (2022). Evaluation of heat stress levels inside greenhouses during summer in korea. International Journal of Environmental Research and Public Health, 19(19), 12497. doi: https://doi.org/10.3390/ijerph191912497Junzeng, X., Qi, W., Shizhang, P., & Yanmei, Y. (2012). Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Engineering, 28, 43-48. Retrieved from https://www.sciencedirect.com/science/article/pii/S187770581200690X (2012 International Conference on Modern Hydraulic Engineering) doi: https://doi.org/10.1016/j.proeng.2012.01.680Kim, R.-w., Kim, J.-g., Lee, I.-b., Yeo, U.-h., & Lee, S.-y. (2019). Development of a vr simulator for educating cfd-computed internal environment of piglet house. biosystems engineering, 188, 243–264. doi: https://doi.org/10.1016/j.biosystemseng.2019.10.024Kumar, R., & Kumar, M. (2021a). Performance evaluation of improved and traditional two pan jaggery making plants: A comparative study. Sustainable Energy Technologies and Assessments, 47, 101462. doi: https://doi.org/10.1016/j.seta.2021.101462Kumar, R., & Kumar, M. (2021b). Thermoeconomic analysis of a modified jaggery making plant. Heat Transfer, 50(5), 4871–4891.Legg, R. (2017). Chapter 1 - properties of humid air. In R. Legg (Ed.), Air conditioning system design (p. 1-28). Butterworth-Heinemann. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780081011232000017 doi: https://doi.org/10.1016/B978-0-08-101123-2.00001-7Lingayat, A. B., Chandramohan, V., Raju, V., & Meda, V. (2020). A review on indirect type solar dryers for agricultural crops–dryer setup, its performance, energy storage and important highlights. Applied Energy, 258, 114005. doi: https://doi.org/10.1016/j.apenergy.2019.114005Lintermann, A. (2021). Computational meshing for cfd simulations. In K. Inthavong, N. Singh, E. Wong, & J. Tu (Eds.), Clinical and biomedical engineering in the human nose: A computational fluid dynamics approach (pp. 85–115). Singapore: Springer Singapore. Retrieved from https://doi.org/10.1007/978-981-15-6716-2 6 doi: 10.1007/978-981-15-6716-2 6Lipczynska, A., Schiavon, S., & Graham, L. T. (2018). Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Building and Environment, 135, 202–212. doi: https://doi.org/10.1016/j.buildenv.2018.03.013Manavvi, S., & Rajasekar, E. (2020). Estimating outdoor mean radiant temperature in a humid subtropical climate. Building and Environment, 171, 106658. doi: https://doi.org/10.1016/j.buildenv.2020.106658Mendieta, O., García, M., Peña, A., & Rodríguez, J. (2016). Las buenas prácticas de manufactura en la producción de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).Ministerio de Agricultura y Desarrollo Rural. (2018). Cadena Agroindustrial De La Panela. El Renacer del Campo, 2018.Ministerio de Agricultura y Desarrollo Rural. (2019). Cadena agroindustrial de la panela.Ministerio de Protección Social. (2006). Resolución Número 779 de 2006. Retrieved from https://fedepanela.org.co/gremio/descargas/resolucion-779-de-2006/Ministerio de Protección Social. (2008). Resolución Número 3462 de 2008. Retrieved from https://fedepanela.org.co/gremio/descargas/resolucion-3462-de-2008/Ministerio de Protección Social. (2009). Resolución Número 3544 de 2009. Retrieved from https://fedepanela.org.co/gremio/descargas/resolucion-3544-de-2009/Ministerio de Trabajo y Seguridad Social. (1979). RESOLUCION´ 2400 DE 1979. BOGOTA,´ D.C.. Retrieved from https://minvivienda.gov.co/sites/default/files/normativa/2400 1979.pdfMinisterio do Trabalho e Providencia. (2021). Portaria n.º 426 de 07 de outubro de 2021. Retrieved from https://www.gov.br/trabalho-e-previdencia/pt-br/composicao/orgaos-espec ificos/secretaria-de-trabalho/inspecao/seguranca-e-saude-no-trabalho/ss t-portarias/2021/portaria-mtp-no-426-anexos-i-vibracao-e-iii-calor-da-n r-09.pdf (Anexo 3)Mobtaker, H. G., Ajabshirchi, Y., Ranjbar, S. F., & Matloobi, M. (2019). Simulation of thermal performance of solar greenhouse in north-west of iran: An experimental validation. Renewable Energy, 135, 88–97.Mujica, M., Guerra, M., & Soto, N. (2008). Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia, 33, 598–603.OLIVEIRA, B. F. A., Silveira, I. H., Feitosa, R. C., Horta, M. A. P., Junger, W. L., & Hacon, S. (2019). Human heat stress risk prediction in the brazilian semiarid region based on the wet-bulb globe temperature. Anais da Academia Brasileira de Ciencias, 91. doi: https://doi.org/10.1590/0001-3765201920180748Orlov, A., Daloz, A. S., Sillmann, J., Thiery, W., Douzal, C., Lejeune, Q., & Schleussner, C. (2021). Global economic responses to heat stress impacts on worker productivity in crop production. Economics of Disasters and Climate Change, 5(3), 367–390. doi: https://doi.org/10.1007/s41885-021-00091-6Osorio, G. (2007). Manual: Buenas Practicas Agrícolas -BPA- y Buenas Prácticas de Manufactura -BPM-en la Producción de Caña y Panela. (Primera ed.). FAO.Parkes, M. G., Azevedo, D. L., Domingos, T., & Teixeira, R. F. (2022). Narratives and benefits of agricultural technology in urban buildings: A review. Atmosphere, 13(8), 1250.Rao, G. P., & Singh, P. (2022). Value Addition and Fortification in Non-Centrifugal Sugar (Jaggery): A Potential Source of Functional and Nutraceutical Foods. Sugar Tech, 24(2), 387–396. Retrieved from https://doi.org/10.1007/s12355-021-01020-3 doi: 10.1007/s12355-021-01020-3Rodríguez, G., García, H., Roa, Z., & Santacoloma, P. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en a´reas rurales de Am´erica Latina Producción de panela como estrategia de diversificación en áreas rurales de America Latina. FAO, 98.Rozo, T. (2013). Manual técnico de buenas prácticas de manufactura (BPM) para el proceso tecnológico de producción de panela. Retrieved from https://www.onfandina.com/images/Publicaciones/Panela /Manual Técnico BPM Trapiches.pdfSaberian, A., & Sajadiye, S. M. (2019). The effect of dynamic solar heat load on the greenhouse microclimate using cfd simulation. Renewable Energy, 138, 722–737. doi: https://doi.org/10.1016/j.renene.2019.01.108Sadiq, L. S., Hashim, Z., & Osman, M. (2019). The impact of heat on health and productivity among maize farmers in a tropical climate area. Journal of environmental and public health, 2019. doi: https://doi.org/10.1155/2019/9896410Salehi, F. (2020). Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. International Journal of Fruit Science, 20(3), 586–602. doi: https://doi.org/10.1080/15538362.2019.1616243Samet, J. M., Marbury, M. C., & Spengler, J. D. (1987). State of Art: Indoor Air Pollution. The American Review of Respiratory Disease(136), 1486–1508.Shrivastava, A., & Singh, P. (2020, 12). Jaggery (gur): The ancient indian open-pan noncentrifugal sugar. In (p. 283-307). doi: 10.1007/978-981-15-6663-9 19Stull, R. (2011). Wet-bulb temperature from relative humidity and air temperature. Journal of Applied Meteorology and Climatology, 50(11), 2267–2269. doi: 10.1175/JAMC-D11-0143.1Takakura, J., Fujimori, S., Takahashi, K., Hijioka, Y., & Honda, Y. (2019). Site-specific hourly resolution wet bulb globe temperature reconstruction from gridded daily resolution climate variables for planning climate change adaptation measures. International journal of biometeorology, 63(6), 787–800. doi: https://doi.org/10.1007/s00484-019-01692-3Tarazona Parra, G. A. (2011). Manejo fotosanitario del cultivo de caña panelera - Medidas para la temporada invernal. BOGOTA, D.C.Tarigan, E. (2018). Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage. Case studies in thermal engineering, 12, 149–165.Tong, X., Hong, S.-W., & Zhao, L. (2019). Cfd modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation. Biosystems engineering, 178, 275–293. doi: https://doi.org/10.1016/j.biosystemseng.2018.08.008Tran, V. T., Duong, Y. H., & Le, T. M. (2021). The influence of meshing strategies on the numerical simulation of solar greenhouse dryer. In Iop conference series: Earth and environmental science (Vol. 947, p. 012007).Tu, J., Yeoh, G. H., & Liu, C. (2018). Computational fluid dynamics: a practical approach. Butterworth-Heinemann.Tun, A. (2019). Review of the specific heat of food models. (3), 82–86. doi: https://doi.org/10.17586/1606-4313-2019-18-3-82-86Tyagi, S., Kamboj, S., Himanshu, Tyagi, N., Narayanan, R., & Tyagi, V. (2022). Technological advancements in jaggery-making processes and emission reduction potential via clean combustion for sustainable jaggery production: An overview. Journal of Environmental Management, 301, 113792. Retrieved from https://www.sciencedirect.com/science/article/pii/S0301479721018545 doi: https://doi.org/10.1016/j.jenvman.2021.113792Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodr´ıguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009Weerawatanakorn, M., Asikin, Y., Takahashi, M., Tamaki, H., Wada, K., Ho, C.-T., & Chuekittisak, R. (2016). Physico-chemical properties, wax composition, aroma profiles, and antioxidant activity of granulated non-centrifugal sugars from sugarcane cultivars of Thailand. Journal of Food Science and Technology, 53(11), 4084–4092. Retrieved from https://doi.org/10.1007/s13197-016-2415-5 doi: 10.1007/s13197-016-24155Xie, Q., Ni, J.-Q., Bao, J., & Su, Z. (2019). A thermal environmental model for indoor air temperature prediction and energy consumption in pig building. Building and Environment, 161, 106238. doi: https://doi.org/10.1016/j.buildenv.2019.106238Xu, H. J., Xing, Z. B., Wang, F., & Cheng, Z. (2019). Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chemical Engineering Science, 195, 462–483.Yaciuk, G. (1981). 24 - solar crop drying. In A. JANZEN & R. SWARTMAN (Eds.), Solar energy conversion ii (p. 377-396). Pergamon. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780080253886500490 doi: https://doi.org/10.1016/B978-0-08-025388-6.50049-0Yoshida, S., Yoshida, A., & Kinoshita, S. (2020). Chapter 5 - evaluation methods of adaptation cities. In H. Takebayashi & M. Moriyama (Eds.), Adaptation measures for urban heat islands (p. 115-159). Academic Press. doi: https://doi.org/10.1016/B978-0-12-817624-5.00005-1Zhang, Y., Yasutake, D., Hidaka, K., Kitano, M., & Okayasu, T. (2020). Cfd analysis for evaluating and optimizing spatial distribution of co2 concentration in a strawberry greenhouse under different co2 enrichment methods. Computers and Electronics in Agriculture, 179, 105811. doi: https://doi.org/10.1016/j.compag.2020.105811Zhou, B., Wang, X., Mondaca, M. R., Rong, L., & Choi, C. Y. (2019). Assessment of optimal airflow baffle locations and angles in mechanically-ventilated dairy houses using computational fluid dynamics. Computers and Electronics in Agriculture, 165, 104930. doi: https://doi.org/10.1016/j.compag.2019.104930Aguilar-Rivera, N., & Olvera-Vargas, L. A. (2021). Innovations for Sustainable Production of Traditional and Artisan Unrefined Non-centrifugal Cane Sugar in Mexico. In World sustainability series (pp. 313–330). doi: 10.1007/978-3-030-78825-4 19Alfarawi, S. S., El-sawi, A., & Omar, H. (2021). Exploring discontinuous meshing for cfd modelling of counter flow heat exchanger. Journal of Advanced Research in Numerical Heat Transfer, 5(1), 26–34.Ashrae. (2017). Ashrae handbook fundamentals 2017: Inch-pound edition. American Society of Heating, Refrigerating and Air-Conditioning Engineers. Retrieved from https://books.google.com.co/books?id=6VhRswEACAAJASTM. (2002). Guide for statistical evaluation of indoor air quality models (d5157-97). American Society for Testing Materials. Retrieved from https://www.astm.org/d5157-19.html doi: https://doi.org/10.1520/D5157-19Bakker, A., Siegel, J. A., Mendell, M. J., Prussin, A. J., Marr, L. C., & Peccia, J. (2020). Bacterial and fungal ecology on air conditioning cooling coils is influenced by climate and building factors. Indoor air, 30(2), 326–334. doi: https://doi.org/10.1111/ina.12632Bustos-Vanegas, J. D., Hempel, S., Janke, D., Doumbia, M., Streng, J., & Amon, T. (2019). Numerical simulation of airflow in animal occupied zones in a dairy cattle building. Biosystems Engineering, 186, 100–105. doi: https://doi.org/10.1016/j.biosystemseng.2019.07.002Cai, X., Lu, Y., & Wang, J. (2018). The impact of temperature on manufacturing worker productivity: Evidence from personnel data. Journal of Comparative Economics, 46(4), 889–905. doi: 10.1016/j.jce.2018.06.003Cheng, Q., Feng, H., Meng, H., & Zhou, H. (2021). Cfd study of the effect of inlet position and flap on the airflow and temperature in a laying hen house in summer. Biosystems Engineering, 203, 109–123. doi: https://doi.org/10.1016/j.biosystemseng.2021.01.009Duran, P., Merker, A., Briceño, G., Colon, E., Line, D., Abad, V., ... Hagenas, L. (2016). Colombian reference growth curves for height, weight, body mass index and head circumference. Acta Paediatrica, 105(3), e116-e125. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/apa.13269 doi: https://doi.org/10.1111/apa.13269Dziubata, Z., Trokhaniak, V., Rogovskii, I., Titova, L., Luzan, P., & Popyk, P. (2020). Using cfd simulation to investigate the impact of fresh air valves on poultry house aerodynamics in case of a side ventilation system. doi: https://doi.org/10.35633/inmateh-62-16Espitia, J., Velasquez, F., Lopez, R., Escobar, S., & Rodrıguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274, 109843. Retrieved from https://www.sciencedirect.com/science/article/pii/S0260877419304868 doi: https://doi.org/10.1016/j.jfoodeng.2019.109843Fedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PANELA. BOGOTA, D.C.. Unpublished writing.´IDEAM. (2015a). Mapa de precipitaci´on total anual (mm). Cundinamarca, Colombia.IDEAM. (2015b). Mapa de temperatura media anual (◦c). Cundinamarca, Colombia.Jeong, K., Kessen, M. J., Bilirgen, H., & Levy, E. K. (2010). Analytical modeling of water condensation in condensing heat exchanger. International Journal of Heat and Mass Transfer, 53(11-12), 2361–2368. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.004Junzeng, X., Qi, W., Shizhang, P., & Yanmei, Y. (2012). Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Engineering, 28, 43-48. Retrieved from https://www.sciencedirect.com/science/article/pii/S187770581200690X (2012 International Conference on Modern Hydraulic Engineering) doi: https://doi.org/10.1016/j.proeng.2012.01.680Kim, R.-w., Kim, J.-g., Lee, I.-b., Yeo, U.-h., & Lee, S.-y. (2019). Development of a vr simulator for educating cfd-computed internal environment of piglet house. biosystems engineering, 188, 243–264. doi: https://doi.org/10.1016/j.biosystemseng.2019.10.024Lintermann, A. (2021). Computational meshing for cfd simulations. In K. Inthavong, N. Singh, E. Wong, & J. Tu (Eds.), Clinical and biomedical engineering in the human nose: A computational fluid dynamics approach (pp. 85–115). Singapore: Springer Singapore. Retrieved from https://doi.org/10.1007/978-981-15-6716-2 6 doi: 10.1007/978-981-15-6716-2 6Mendieta, O., García, M., Peña, A., & Rodríguez, J. (2016). Las buenas practicas de manufactura en la producci´on de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).Ministerio de Agricultura y Desarrollo Rural. (2018). Cadena Agroindustrial De La Panela. El Renacer del Campo, 2018.Ministerio de Trabajo y Seguridad Social. (1979). RESOLUCION´ 2400 DE 1979. BOGOTA,´ D.C.. Retrieved from https://minvivienda.gov.co/sites/default/files/normativa/2400 1979.pdfMishra, P., & Aharwal, K. R. (2018, aug). A review on selection of turbulence model for cfd analysis of air flow within a cold storage. IOP Conference Series: Materials Science and Engineering, 402(1), 012145. doi: https://dx.doi.org/10.1088/1757-899X/402/1/012145Mujica, M., Guerra, M., & Soto, N. (2008). Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia, 33, 598–603.Murray, F. W. (1967). On the computation of saturation vapor pressure. Journal of Applied Meteorology and Climatology, 6(1), 203 - 204. doi: https://10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2Osorio, J. A., Ferreira, I. d. F., Olivera, K. S., Barreto, L., & Norton, T. (2016, 01). A CFD based approach for determination of ammonia concentration profile and flux from poultry houses with natural ventilation. Revista Facultad Nacional de Agronomia Medellín, 69, 7825 - 7834. doi: http://dx.doi.org/10.15446/rfna.v69n1.54750Osorio-Hernandez, R., Osorio-Saraz, J., Sullivan-Oliveira, K., Aristizaba, I., & Arango, J. (2020). Computational fluid dynamics assessment of effect of different openings configurations on the thermal environment of a facility for coffee wet processing. Journal of Agricultural Engineering, 51(1), 21–26. doi: 10.4081/jae.2020.892Pasanen, P., Pasanen, A.-L., & Jantunen, M. (1993). Water condensation promotes fungal growth in ventilation ducts. Indoor Air, 3(2), 106–112. doi: https://doi.org/10.1111/j.1600-0668.1993.t01-2-00005.xRocha, D. K. S. O., Martins, J. H., Martins, M. A., Saraz, J. A. O., & Filho, A. F. L. (2013). Three-dimensional modeling and simulation of heat and mass transfer processes in porous media: An application for maize stored in a flat bin. Drying Technology, 31(10), 1099-1106. doi: https://doi.org/10.1080/07373937.2013.775145Singh, S., Dubey, A., Tiwari, L., & Verma, A. (2009). Microbial profile of stored jaggery: a traditional indian sweetener. Sugar Tech, 11(2), 213–216. doi: https://doi.org/10.1007/s12355-009-0034-4Solís-Fuentes, J. A., Hernández-Ceja, Y., del Rosario Herna´ndez-Medel, M., García-Gómez, R. S., Bernal-Gonz´alez, M., Mendoza-P´erez, S., & del Carmen Dura´n-Dom´ınguezde Bazu´a, M. (2019). Quality improvement of jaggery, a traditional sweetener, using bagasse activated carbon. Food Bioscience, 32, 100444. Retrieved from https://www.sciencedirect.com/science/article/pii/S2212429218308071 doi: https://doi.org/10.1016/j.fbio.2019.100444Swaab, D., Hofman, M., Mirmiran, M., Ravid, R., & van Leeuwen, F. (1992). Anatomy of the human hypothalamus (chiasmatic and tuberal region). The Human Hypothalamus in Health and Disease, 3Taylor, N. A. (2006). Challenges to temperature regulation when working in hot environments. Industrial health, 44(3), 331–344. doi: https://doi.org/10.2486/indhealth.44.331Teixeira, L., Talaia, M., & Meles, B. (2017). Assessment of thermal comfort in a portuguese metalworking industry. Occupational Ergonomics, 13(S1), 59–70. doi: https://doi.org/10.3233/OER-170254Tong, X., Hong, S.-W., & Zhao, L. (2019). Cfd modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation. Biosystems engineering, 178, 275–293. doi: https://doi.org/10.1016/j.biosystemseng.2018.08.008Varela-Aldás, J., Fuentes, E. M., Ruales, B., & Ichina, C. (2020). Construction of a wbgt index meter using low cost devices. In International conference on information technology & systems (pp. 459–468). doi: https://doi.org/10.1007/978-3-030-40690-5 45Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodr´ıguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009Wolkoff, P., Azuma, K., & Carrer, P. (2021). Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. International Journal of Hygiene and Environmental Health, 233, 113709. doi: https://doi.org/10.1016/j.ijheh.2021.113709Xie, Q., Ni, J.-Q., Bao, J., & Su, Z. (2019). A thermal environmental model for indoor air temperature prediction and energy consumption in pig building. Building and Environment, 161, 106238. doi: https://doi.org/10.1016/j.buildenv.2019.106238Yin, Y., Wang, R., Zhai, X., & Ishugah, T. (2014). Experimental investigation on the heat transfer performance and water condensation phenomenon of radiant cooling panels. Building and environment, 71, 15–23. doi: https://doi.org/10.1016/j.buildenv.2013.09.016Zhou, B., Wang, X., Mondaca, M. R., Rong, L., & Choi, C. Y. (2019). Assessment of optimal airflow baffle locations and angles in mechanically-ventilated dairy houses using computational fluid dynamics. Computers and Electronics in Agriculture, 165, 104930. doi: https://doi.org/10.1016/j.compag.2019.104930Zidan, D., & Azlan, A. (2022). Non-centrifugal sugar (ncs) and health: a review on functional components and health benefits. Applied Sciences, 12(1), 460. doi: https://doi.org/10.3390/app12010460Abreu, P. G. d., Abreu, V. M. N., Franciscon, L., Coldebella, A., & Amaral, A. G. d. (2011, dez.). Estimativa da temperatura de globo negro a partir da temperatura de bulbo seco. Revista Engenharia na Agricultura - REVENG, 19(6), 557–563. doi: https://10.13083/reveng.v19i6.273Ahmed, H. O., Bindekhain, J. A., Alshuweihi, M. I., Yunis, M. A., & Matar, N. R. (2020). Assessment of thermal exposure level among construction workers in uae using wbgt, hsi and twl indices. Industrial health, 58(2), 170–181.Alfarawi, S. S., El-sawi, A., & Omar, H. (2021). Exploring discontinuous meshing for cfd modelling of counter flow heat exchanger. Journal of Advanced Research in Numerical Heat Transfer, 5(1), 26–34.ASTM. (2002). Guide for statistical evaluation of indoor air quality models (d5157-97). American Society for Testing Materials. Retrieved from https://www.astm.org/d5157-19.html doi: https://doi.org/10.1520/D5157-19Budd, G. M. (2008). Wet-bulb globe temperature (wbgt)—its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20-32. Retrieved from https://www.sciencedirect.com/science/article/pii/S1440244007001478 (Heat Stress in Sport) doi: https://doi.org/10.1016/j.jsams.2007.07.003Dimiceli, V. E., Piltz, S. F., & Amburn, S. A. (2013). Black globe temperature estimate for the wbgt index. In H. K. Kim, S.-I. Ao, & B. B. Rieger (Eds.), Iaeng transactions on engineering technologies: Special edition of the world congress on engineering and computer science 2011 (pp. 323–334). Dordrecht: Springer Netherlands. Retrieved from https://doi.org/10.1007/978-94-007-4786-9 26 doi: 10.1007/978-94-007-4786-9 26Espitia, J., Velasquez, F., Lopez, R., Escobar, S., & Rodrıguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274, 109843. Retrieved from https://www.sciencedirect.com/science/article/pii/S0260877419304868 doi: https://doi.org/10.1016/j.jfoodeng.2019.109843Fedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PANELA. BOGOTA, D.C.. Unpublished writing.´Ghani, S., Mahgoub, A. O., Bakochristou, F., & ElBialy, E. A. (2021). Assessment of thermal comfort indices in an open air-conditioned stadium in hot and arid environment. Journal of Building Engineering, 40, 102378. Retrieved from https://www.sciencedirect.com/science/article/pii/S2352710221002345 doi: https://doi.org/10.1016/j.jobe.2021.102378IDEAM. (2015a). Mapa de precipitacion total anual (mm). Cundinamarca, Colombia.IDEAM. (2015b). Mapa de temperatura media anual (◦c). Cundinamarca, Colombia.Junzeng, X., Qi, W., Shizhang, P., & Yanmei, Y. (2012). Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Engineering, 28, 43-48. Retrieved from https://www.sciencedirect.com/science/article/pii/S187770581200690X (2012 International Conference on Modern Hydraulic Engineering) doi: https://doi.org/10.1016/j.proeng.2012.01.680Jaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007Kakaei, H., Omidi, F., Ghasemi, R., Sabet, M. R., & Golbabaei, F. (2019). Changes of wbgt as a heat stress index over the time: A systematic review and meta-analysis. Urban Climate, 27, 284–292.Lintermann, A. (2021). Computational meshing for cfd simulations. In K. Inthavong, N. Singh, E. Wong, & J. Tu (Eds.), Clinical and biomedical engineering in the human nose: A computational fluid dynamics approach (pp. 85–115). Singapore: Springer Singapore. Retrieved from https://doi.org/10.1007/978-981-15-6716-2 6 doi: 10.1007/978-981-15-6716-2 6Mendieta, O., Garcıa, M., Peña, A., & Rodríguez, J. (2016). Las buenas practicas de manufactura en la produccion de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).Ministerio de Agricultura y Desarrollo Rural. (2019). Cadena agroindustrial de la panela.Ministerio de Trabajo y Seguridad Social. (1979). RESOLUCION´ 2400 DE 1979. BOGOTA,´ D.C.. Retrieved from https://minvivienda.gov.co/sites/default/files/normativa/2400 1979.pdfMinisterio do Trabalho e Previdencia. (2021). Portaria n.º 426 de 07 de outubro de 2021. Retrieved from https://www.gov.br/trabalho-e-previdencia/pt-br/composicao/orgaos-espec ificos/secretaria-de-trabalho/inspecao/seguranca-e-saude-no-trabalho/ss t-portarias/2021/portaria-mtp-no-426-anexos-i-vibracao-e-iii-calor-da-n r-09.pdf (Anexo 3)Mishra, P., & Aharwal, K. R. (2018, aug). A review on selection of turbulence model for cfd analysis of air flow within a cold storage. IOP Conference Series: Materials Science and Engineering, 402(1), 012145. doi: https://dx.doi.org/10.1088/1757-899X/402/1/012145Murray, F. W. (1967). On the computation of saturation vapor pressure. Journal of Applied Meteorology and Climatology, 6(1), 203 - 204. doi: https://10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2Osorio, J. A., Ferreira, I. d. F., Olivera, K. S., Barreto, L., & Norton, T. (2016, 01). A CFD based approach for determination of ammonia concentration profile and flux from poultry houses with natural ventilation. Revista Facultad Nacional de Agronomıa Medellın, 69, 7825 - 7834. doi: http://dx.doi.org/10.15446/rfna.v69n1.54750Osorio-Hernandez, R., Osorio-Saraz, J., Sullivan-Oliveira, K., Aristizaba, I., & Arango, J. (2020). Computational fluid dynamics assessment of effect of different openings configurations on the thermal environment of a facility for coffee wet processing. Journal of Agricultural Engineering, 51(1), 21–26. doi: 10.4081/jae.2020.892Rocha, D. K. S. O., Martins, J. H., Martins, M. A., Saraz, J. A. O., & Filho, A. F. L. (2013). Three-dimensional modeling and simulation of heat and mass transfer processes in porous media: An application for maize stored in a flat bin. Drying Technology, 31(10), 1099-1106. doi: https://doi.org/10.1080/07373937.2013.775145Schickele, E. (1947). Environment and fatal heat stroke: an analysis of 157 cases occurring in the army in the us during world war ii. The Military Surgeon (United States), 100(3), 235–256.Stull, R. (2011). Wet-bulb temperature from relative humidity and air temperature. Journal of Applied Meteorology and Climatology, 50(11), 2267–2269. doi: 10.1175/JAMC-D11-0143.1Tong, X., Hong, S.-W., & Zhao, L. (2019). Cfd modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation. Biosystems engineering, 178, 275–293. doi: https://doi.org/10.1016/j.biosystemseng.2018.08.008Velasquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodrıguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009Wolkoff, P., Azuma, K., & Carrer, P. (2021). Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. International Journal of Hygiene and Environmental Health, 233, 113709. doi: https://doi.org/10.1016/j.ijheh.2021.113709Xue, H., & TY, B. (2002). An occupant-coupled cfd model for local wbgt analysis in a ventilated enclosure. Journal of the Human-Environment System, 5(2), 79–86. doi: https://doi.org/10.1618/jhes.5.79Yaglou, C., Minaed, D., et al. (1957). Control of heat casualties at military training centers. Arch. Indust. Health, 16(4), 302–16.Yoshida, S., Yoshida, A., & Kinoshita, S. (2020). Chapter 5 - evaluation methods of adaptation cities. In H. Takebayashi & M. Moriyama (Eds.), Adaptation measures for urban heat islands (p. 115-159). Academic Press. doi: https://doi.org/10.1016/B978-0-12-817624-5.00005-1Yuan, J., Farnham, C., & Emura, K. (2021). Effect of different reflection directional characteristics of building facades on outdoor thermal environment and indoor heat loads by cfd analysis. Urban Climate, 38, 100875. doi: https://doi.org/10.1016/j.uclim.2021.100875Fedepanela. (2019). PROTOCOLO DE TRAZABILIDAD PARA OBTENCION DE PANELA. BOGOTA, D.C.. Unpublished writing.´García, J. M., Narváez, P. C., Heredia, F. J., Orjuela, A., & Osorio, C.´ (2017). Physicochemical and sensory (aroma and colour) characterisation of a noncentrifugal cane sugar (“panela”) beverage. Food Chemistry, 228, 7–13. doi: 10.1016/j.foodchem.2017.01.134Hasibuan, C., Sutrisno, F., & Pranatal, B. (2020, 02). The instensity measurement and noise mapping in fatty acid plant area at pt. xyz. Simetrikal: Journal of Engineering and Technology, 2, 20-27. doi: 10.32734/jet.v2i1.3556IDEAM. (2015a). Mapa de precipitaci´on total anual (mm). Cundinamarca, Colombia.IDEAM. (2015b). Mapa de temperatura media anual (◦c). Cundinamarca, Colombia.Jaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007King, E., Murphy, E., & Rice, H. (2010, 11). Implementation of the eu environmental noise directive: Lessons from the first phase of strategic noise mapping and action planning in ireland. Journal of environmental management, 92, 756-64. doi: 10.1016/j.jenvman.2010.10.034Lim, M., Lee, Y., Lee, F. W., & Heng, G. (2018, 01). Strategic noise mapping prediction for a rubber manufacturing factory in malaysia. E3S Web of Conferences, 65, 05019. doi: 10.1051/e3sconf/20186505019Luzzi, S., & Vassiliev, A. V. (2005). A comparison of noise mapping methods in italian and russian experiences. In (p. 1051-1056). S. Hirzel Verlag. Retrieved from https://books.google.com.co/books?id=EJ88HQAACAAJMendieta, O., García, M., Peña, A., & Rodr´ıguez, J. (2016). Las buenas practicas de manufactura en la produccion de panela (1st ed.; Corpoica, Ed.). Mosquera (Colombia).Ministerio de Agricultura y Desarrollo Rural. (2019). Cadena agroindustrial de la panela.Ministerio de Ambiente, vivienda y Desarrollo Territorial. (2006). RESOLUCION 0627 DE 2006. BOGOTA, D.C..´Mujica, M., Guerra, M., & Soto, N. (2008). Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia, 33, 598–603.NIOSH. (1998). Occupational Noise Exposure (No. 98-126). Cincinnati: National Institute for Occupational Safety and Health. doi: 10.1121/1.4778162Organización Internacional del Trabajo. (2010). La salud y la seguridad en el trabajo: El ruido en el lugar de trabajo. Organizacio´n Internacional del Trabajo.Rodriguez, G., Garcia, H., Roa, Z., & Santacoloma, P. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de Am´erica Latina Producción de panela como estrategia de diversificación en áreas rurales de America Latina. FAO, 98.Solís-Fuentes, J. A., Hernández-Ceja, Y., del Rosario Hernández-Medel, M., García-Gómez, R. S., Bernal-González, M., Mendoza-Pérez, S., & del Carmen Durán-Domínguezde Bazúa, M. (2019). Quality improvement of jaggery, a traditional sweetener, using bagasse activated carbon. Food Bioscience, 32, 100444. Retrieved from https://www.sciencedirect.com/science/article/pii/S2212429218308071 doi: https://doi.org/10.1016/j.fbio.2019.100444Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodríguez, J. (2019). Noncentrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(November 2018), 32–40. doi: 10.1016/j.jfoodeng.2019.03.009Ahmed, S. S., & Gadelmoula, A. M. (2022). Industrial noise monitoring using noise mapping technique: a case study on a concrete block-making factory. International Journal of Environmental Science and Technology, 19(2), 851–862. Retrieved from https://doi.org/10.1007/s13762-020-02982-9 doi: 10.1007/s13762-020-02982-9Alvarez-Carpintero, J., & Osorio-Hernandez, R. (2021, July). Thermal analysis for an unrefined sugar cane processing factory in colombia by using cfd. In Proceedings of the European Conference on Agricultural Engineering AgEng2021 (pp. 733–739). Universidade de Evora.´Conde-Santos, L., Matias, C., Vieira, F., & Valado, F. (2008, October). Noise mapping of industrial sources. In (p. 1-12). Retrieved from https://dialnet.unirioja.es/servlet/libro?codigo=788358Espitia, J., Velasquez, F., Lopez, R., Escobar, S., & Rodrıguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274, 109843. Retrieved from https://www.sciencedirect.com/science/article/pii/S0260877419304868 doi: https://doi.org/10.1016/j.jfoodeng.2019.109843Villagran-Munar, E. A., & Bojaca´-Aldana, C. R. (2019). Determination of the thermal behavior of a colombian hanging greenhouse applying cfd simulation. Revista Ciencias T´ecnicas Agropecuarias, 28(3), 1–10.Jaffe, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43, 194–202. doi: 10.1016/j.jfca.2015.06.007Kolokotroni, M., & Littler, J. (1995). Effectiveness of extractor fans in reducing airborne moisture in homes. Indoor Air, 5(1), 69-75. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0668.1995.00011.x doi: https://doi.org/10.1111/j.1600-0668.1995.00011.xAdministradoresBibliotecariosConsejerosEstudiantesGrupos comunitariosInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83877/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1072714611.2023.pdf1072714611.2023.pdfTesis de Maestría en Ingeniería - Ingeniería de Biosistemasapplication/pdf18226050https://repositorio.unal.edu.co/bitstream/unal/83877/2/1072714611.2023.pdfc03399d94f82427fefa186599406d7e8MD52THUMBNAIL1072714611.2023.pdf.jpg1072714611.2023.pdf.jpgGenerated Thumbnailimage/jpeg5769https://repositorio.unal.edu.co/bitstream/unal/83877/3/1072714611.2023.pdf.jpg1509f074bab99d522ad93f9b5971c00fMD53unal/83877oai:repositorio.unal.edu.co:unal/838772024-08-07 23:11:10.881Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=