Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña
ilustraciones, diagramas, mapas
- Autores:
-
Martínez Pérez, Katherine
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84218
- Palabra clave:
- 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Embalses - Cauce
Embalses
Reservoirs
Modelos de evolución del paisaje
Evolución del cauce
Embalse
Procesos fluviales
Modelos de transporte de sedimentos
Landscape evolution models
Channel evolution
Reservoir
Fluvial processes
Sediment transport models
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_fc75ef482cfe656f57810e36663363f4 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84218 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña |
dc.title.translated.eng.fl_str_mv |
Quantitative landscape evolution models and their applicability to changes induced in the channel upstream of a reservoir in mountain basins |
title |
Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña |
spellingShingle |
Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica 620 - Ingeniería y operaciones afines::624 - Ingeniería civil Embalses - Cauce Embalses Reservoirs Modelos de evolución del paisaje Evolución del cauce Embalse Procesos fluviales Modelos de transporte de sedimentos Landscape evolution models Channel evolution Reservoir Fluvial processes Sediment transport models |
title_short |
Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña |
title_full |
Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña |
title_fullStr |
Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña |
title_full_unstemmed |
Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña |
title_sort |
Modelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montaña |
dc.creator.fl_str_mv |
Martínez Pérez, Katherine |
dc.contributor.advisor.none.fl_str_mv |
Vélez Upegui, Jaime Ignacio Cataño Álvarez, Santiago |
dc.contributor.author.none.fl_str_mv |
Martínez Pérez, Katherine |
dc.contributor.researchgroup.spa.fl_str_mv |
Posgrado en Aprovechamiento de Recursos Hidráulicos |
dc.contributor.orcid.spa.fl_str_mv |
Vélez Upegui, Jaime Ignacio [0000-0002-2042-9459] Cataño Álvarez, Santiago [0000-0003-3844-5761] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica 620 - Ingeniería y operaciones afines::624 - Ingeniería civil |
topic |
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica 620 - Ingeniería y operaciones afines::624 - Ingeniería civil Embalses - Cauce Embalses Reservoirs Modelos de evolución del paisaje Evolución del cauce Embalse Procesos fluviales Modelos de transporte de sedimentos Landscape evolution models Channel evolution Reservoir Fluvial processes Sediment transport models |
dc.subject.armarc.none.fl_str_mv |
Embalses - Cauce |
dc.subject.lemb.none.fl_str_mv |
Embalses Reservoirs |
dc.subject.proposal.spa.fl_str_mv |
Modelos de evolución del paisaje Evolución del cauce Embalse Procesos fluviales Modelos de transporte de sedimentos |
dc.subject.proposal.eng.fl_str_mv |
Landscape evolution models Channel evolution Reservoir Fluvial processes Sediment transport models |
description |
ilustraciones, diagramas, mapas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-19T14:45:35Z |
dc.date.available.none.fl_str_mv |
2023-07-19T14:45:35Z |
dc.date.issued.none.fl_str_mv |
2023-01-31 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84218 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84218 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., & Istanbulluoglu, E. (2017). The Landlab v1.0 OverlandFlow component: A Python tool for computing shallow-water flow across watersheds. Geoscientific Model Development, 10(4), 1645–1663. https://doi.org/10.5194/gmd-10-1645-2017 ALOS PALSAR. (2011). Dataset: ALPSRP JAXA/METI. Retrieved from https://www.asf.alaska.edu Baker, V. R. (1998). Catastrophism and uniformitarianism: logical roots and current relevance in geology. Geological Society Special Publication, 143, 171–182. https://doi.org/10.1144/GSL.SP.1998.143.01.15 Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1–2), 33–45. https://doi.org/10.1016/j.jhydrol.2010.03.027 Benoit Bovy; Jean Braun; Guillaume Cordonnier; Raphael Lange; Xiaoping Yuan. (2020). The FastScape software stack: reusable tools for landscape evolution modelling. EGU General Assembly 2020. Biedenharn, D. S., Watson, C. C., & Thorne, C. R. (2008). Fundamentals of Fluvial Geomorphology. In Fundamentals of Fluvial Geomorphology. Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez‐Cendón, M. E., … Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 30, 1–10. Braun, J., & Sambridge, M. (1997). Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization. Basin Research, 9(1), 27–52. https://doi.org/10.1046/j.1365-2117.1997.00030.x Braun, J., & Willett, S. D. (2013). A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology, 180–181, 170–179. https://doi.org/10.1016/j.geomorph.2012.10.008 Braun, J., Zwartz, D., & Tomkin, J. H. (1999). A new surface-processes model combining glacial and fluvial erosion. Annals of Glaciology, 28, 282–290. https://doi.org/10.3189/172756499781821797 Bureau of Reclamation. (2020). SHR-2D User’s Manual: Sediment Transport and Mobile-Bed Modeling. U.S. Department of Interior. CAESAR-Lisflood. (n.d.). CAESAR-Lisflood wiki. Retrieved from https://sourceforge.net/p/caesar-lisflood/wiki/Instructions/ Castro, J. M., & Thorne, C. R. (2019). The stream evolution triangle: Integrating geology, hydrology, and biology. River Research and Applications, 35(4), 315–326. https://doi.org/10.1002/rra.3421 Cataño-Álvarez, S., & Vélez Upegui, J. I. (2016). Aggregated conceptual model of sediment transport for mountain basins in Antioquia- Colombia. Boletín de Ciencias de La Tierra, (39), 38–48. https://doi.org/10.15446/rbct.n39.52888 Cataño Álvarez, S. (2015). Modelo conceptual agregado de transporte de sedimentos para cuencas de montaña en Antioquia (Universidad Nacional de Colombia). https://doi.org/10.15446/rbct.n39.52888 Cataño Álvarez, S. (2021). Critical transition of incising gravel channel to evacuate alluvial lateral supply. Physical Geography. https://doi.org/10.1080/02723646.2021.1923368 Cataño Álvarez, S. (2022). Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins (Universidad Nacional de Colombia). Retrieved from https://repositorio.unal.edu.co/handle/unal/81480 Cataño Álvarez, S., Osorio Yepes, S., Montoya Monsalve, J. J., Contreras Trujillo, C. Y., Vargas Martínez, N. O., Zambrano, J., … Vélez Upegui, J. I. (2016). Modelo De Estimación Y Distribución Espacial De Tasas Medias De Producción De Sedimentos En Cuencas Tropicales De Montaña. XXVII CONGRESO LATINOAMERICANO DE HIDRÁULICA, (August 2021). Retrieved from http://ladhi2016.org/ Charlton, R. (2008). Fundamentals of fluvial geomorphology. London and New York: Routledge. Chen, A., Darbon, J., & Morel, J.-M. (2014). Landscape evolution models: A review of their fundamental equations. Geomorphology, 219, 68–86. Claessens, L., Schoorl, J. M., & Veldkamp, A. (2007). Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: An application for Northern New Zealand. Geomorphology, 87(1–2), 16–27. https://doi.org/10.1016/j.geomorph.2006.06.039 Cluer, B., & Thorne, C. R. (2014). A stream Evolution model integrating habitat and ecosystem benefits. River Research and Applications, 30(January), 135–154. https://doi.org/10.1002/rra Coulthard, T. (2001). Landscape evolution models: a software review. Hydrological Processes, 15(1), 165–173. https://doi.org/10.1007/BF01890548 Coulthard, T. J., Macklin, M. G., & Kirkby, M. J. (2002). A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms, 27(3), 269–288. https://doi.org/10.1002/esp.318 Coulthard, Tom J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A. M., & Hancock, G. R. (2013). Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: Implications for modelling landscape evolution. Earth Surface Processes and Landforms, 38(15), 1897–1906. https://doi.org/10.1002/esp.3478 Coulthard, Tom J., & Van De Wiel, M. J. (2006). A cellular model of river meandering. Earth Surface Processes and Landforms, 31(1), 123–132. https://doi.org/10.1002/esp.1315 Deltares. (2022). Delft3D Flow - User Manual. Densmore, A. L., Anderson, R. S., Ellis, M. A., & McAdoo, B. . (1997). Hillslope evolution by bedrock landslide. Science, 275, 369–372. https://doi.org/10.1126/science.275.5298.369 Einstein, A. H. (1950). The Bed-Load Function for Sediment Transportation in Open Channel Flows UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE. Technical Bulleting, 1026(1026), 7. Retrieved from https://naldc.nal.usda.gov/download/CAT86201017/PDF Farias, H. D., & Domínguez Ruben, L. G. (2014). Análisis conceptual y cuantificación de la relación de Lane para predecir tendencias evolutivas de cauces fluviales. Memorias Del 1er Congreso Iberoamericano Sobre Sedimentos y Ecología, 1–7. Retrieved from https://www.academia.edu/41133167/ANÁLISIS_CONCEPTUAL_Y_CUANTIFICACIÓN_DE_LA_RELACIÓN_DE_LANE_PARA_PREDECIR_TENDENCIAS_EVOLUTIVAS_DE_CAUCES_FLUVIALES FastScape Developers. (2019). Fastscape: a fast, versatile and user-friendly landscape evolution model. https://doi.org/https://zenodo.org/badge/133702738.svg Gibson, S. A., & Cai, C. (2017). Flow Dependence of Suspended Sediment Gradations. Water Resources Research, 53(11), 9546–9563. https://doi.org/10.1002/2016WR020135 Hancock, GR Willgoose, G. (2018). Sustainable mine rehabilitation – 25 years of the SIBERIA landform evolution and long-term erosion model. From Start to Finish: A Life-of-Mine Perspective. Australian Institute of Mining and Metallurgy, Carlton, 1–12. Hobley, D. E. J., Adams, J. M., Siddhartha Nudurupati, S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., & Tucker, G. E. (2017). Creative computing with Landlab: An open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surface Dynamics, 5(1), 21–46. https://doi.org/10.5194/esurf-5-21-2017 ISAGEN-UNAL. (2020). Estudios para modelación y análisis hidrosedimentológico de las cuencas tributarias al embalse Topocoro. Medellin: Universidad Nacional de Colombia, Sede Medellin. ISAGEN. (n.d.). Central Hidroelectrica Jaguas. Retrieved from www.isagen.com.co ISAGEN. (2014). Manual de llenado del embalse. Keesstra, S. D., Schoorl, J., & Temme, A. J. A. M. (2009). Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland. International Conference on Desertification, Advances in Studies on Desertification. Murcia, Spain. Lane, E. W. (1955). The importance of fluvial morphology in hydraulic Engineering (pp. 1–17). pp. 1–17. Proceedings of American Society of Civil Engineers. Leopold, L. B., & Maddock, T. J. (1953). The Hydraulic Geometry of Stream Channels and Some Physiographic Implications (USGS Numbered Series No. 252). Professional Paper. U. S. Government Printing Office, Washington, D.C, 57. Retrieved from 10.3133/pp252 Liro, M. (2014). Conceptual model for assessing the channel changes upstream from dam reservoir. Quaestiones Geographicae, 33(1), 61–74. https://doi.org/10.2478/quageo-2014-0007 LSDTopoTools Developers. (2019). Documentation for LSDTopoTools. Retrieved from https://lsdtopotools.github.io/LSDTT_documentation/ Mesa, O., Urrea, V., & Ochoa, A. (2021). Trends of hydroclimatic intensity in Colombia. Climate, 9(7). https://doi.org/10.3390/cli9070120 Mudd, S., Clubb, F. J., Jenkinson, J. A., & Valters, D. A. (2020). The MuddPILE (Parsimonious Integrated Landscape Evolution) Model. Retrieved from https://lsdtopotools.github.io/LSDTT_documentation/LSDTT_MuddPILE.html Nelson, J. M. (n.d.). FaSTMECH Model Notes. Colorado: U.S. Geological Survey. Pazzaglia, F. J. (2003). Landscape evolution models. Developments in Quaternary Science, 1(C), 247–274. https://doi.org/10.1016/S1571-0866(03)01012-1 Phillips, J. D. (2021). Landscape evolution: Landforms, Ecosystems, and Soils. Amsterdam. Recking, A. (2013). An analysis of nonlinearity effects on bed load transport prediction. Journal of Geophysical Research: Earth Surface, 118(3), 1264–1281. https://doi.org/10.1002/jgrf.20090 Romey, W. D. (1982). Earth in my Oatmeal. EOS Transactions, 63. Samuels, P. G. (1989). Backwater lengths in rivers. Proceedings - Institution of Civil Engineers. Part 2. Research and Theory, 87(February), 571–582. https://doi.org/10.1680/iicep.1989.3779 Schoorl, J. M., & Veldkamp, A. (2001). Linking land use and landscape process modelling: A case study for the Álora region (South Spain). Agriculture, Ecosystems and Environment, 85(1–3), 281–292. https://doi.org/10.1016/S0167-8809(01)00194-3 Schoorl, J. M., Veldkamp, A., & Bouma, J. (2002). Modeling Water and Soil Redistribution in a Dynamic Landscape Context. Soil Science Society of America Journal, 66(5), 1610–1619. https://doi.org/10.2136/sssaj2002.1610 Schoorl, J., Temme, A., Gorp, W. Van, Baartmen, J., & Claessens, L. (2015). LAPSUS user Guide (v0.97). Wageningen University. Schumm, S. A. (1977). The Fluvial System. New York: Wiley. Schumm, S. A., Harvey, M. D., & Watson, C. C. (1984). Incised Channels: Morphology, Dynamics and control. Littleton, Colorado: Water Resources Publications. Simon, A. (1989). A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms, 14(1), 11–26. https://doi.org/10.1002/esp.3290140103 Simon, A., & Hupp, C. R. (1987). Channel Evolution in Modified Alluvial Streams. Transportation Research Record, (1151), 16–24. Sonneveld, M. P. W., Temme, A. J. A. M., Schoorl, J. M., Claessens, L., Viveen, W., Baartman, J. E. M., … Lesschen, J. P. (2010). Landscape - Soilscape Evolution Modelling: LAPSUS. Brisbane, Australia: 19th World Congress of Soil Science, Soil Solutions for a Changing World. Temme, A. J.A.M., Claessens, L., Veldkamp, A., & Schoorl, J. M. (2011). Evaluating choices in multi-process landscape evolution models. Geomorphology, 125(2), 271–281. https://doi.org/10.1016/j.geomorph.2010.10.007 Temme, Arnaud J.A.M., Schoorl, J. M., & Veldkamp, A. (2006). Algorithm for dealing with depressions in dynamic landscape evolution models. Computers and Geosciences, 32(4), 452–461. https://doi.org/10.1016/j.cageo.2005.08.001 Tucker, G. E., Lancaster, S. T., Gasparini, N. M., & Bras, R. L. (2001). The Channel-Hillslope Integrated Landscape Development Model(CHILD). In Landscape Erosion and Evolution Modeling. https://doi.org/10.1007/978-1-4615-0575-4 Tucker, G. E., & Slingerland, R. (1997). Drainage basin responses to climate change. Water Resources Research, 33(8), 2031–2047. https://doi.org/10.1029/97WR00409 US Army Corps of Engineers. (2020a). HEC-RAS Sediment Transport User’s Manual. Davis. US Army Corps of Engineers. (2020b). HEC-RAS Two-Dimensional Sediment Transport User’s Manual. US Army Corps of Engineers. (2021). HEC-RAS Hydraulic Reference Manual. Valters, D. (2016). Modelling Geomorphic Systems: Landscape Evolution. Geomorphological Techniques, 12(1880), 1–24. https://doi.org/10.13140/RG.2.1.1970.9047 van Gorp, W., Temme, A. J. A. M., Veldkamp, A., & Schoorl, J. M. (2015). Modelling long-term (300ka) upland catchment response to multiple lava damming events. Earth Surface Processes and Landforms, 40(7), 888–900. https://doi.org/10.1002/esp.3689 van Gorp, Wouter, Temme, A. J. A. M., Baartman, J. E. M., & Schoorl, J. M. (2014). Landscape evolution modelling of naturally dammed rivers. Earth Surface Processes and Landforms, 39(12), 1587–1600. https://doi.org/10.1002/esp.3547 Watson, C. C., Biedenharn, D. S., & Bledsoe, B. P. (2002). Use of incised channel evolution models in understanding rehabilitation alternatives. Journal of the American Water Resources Association, 38, 1–10. Wilcock, P. R., Asce, M., & Crowe, J. C. (2003). Surface-based Transport Model for Mixed-Size Sediment Surface-based Transport Model for Mixed-Size Sediment. 9429(February). https://doi.org/10.1061/(ASCE)0733-9429(2003)129 Willgoose, G. (2005). User Manual for SIBERIA (version 8.30). Australia: Telluric Research. Yang, C. T., & Ahn, J. (2011). GSTARS4-User’s Manual. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 128 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84218/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84218/2/1017216059.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84218/3/1017216059.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 544b887699e17dc5f7fa17c7cfcf54a9 d5252c47160d3b4b27255d3ce09965b6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089456096903168 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vélez Upegui, Jaime Ignacio1701acf8f87b39312eb4a6394d7cfe7aCataño Álvarez, Santiago626d8bf0048ade7ebf62bed702b4d94bMartínez Pérez, Katherine936d8f6788a313a4c9f5dcb651f3fc2fPosgrado en Aprovechamiento de Recursos HidráulicosVélez Upegui, Jaime Ignacio [0000-0002-2042-9459]Cataño Álvarez, Santiago [0000-0003-3844-5761]2023-07-19T14:45:35Z2023-07-19T14:45:35Z2023-01-31https://repositorio.unal.edu.co/handle/unal/84218Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasLos embalses modifican el nivel base de las corrientes y por lo tanto tienen impactos en la evolución del cauce aguas arriba, producto de la erosión y depositación de sedimentos por efectos del flujo del agua. La presente investigación se enfoca en la evolución del cauce aguas arriba de un embalse, evaluando la posibilidad de tener una aproximación cuantitativa adecuada de los cambios en la morfología del cauce a largo plazo humano (50 a 100 años). Para ello se exploró la utilidad de los modelos de evolución de paisaje y la aplicabilidad de modelos hidrodinámicos y de transporte de sedimentos diseñados para corto plazo. Fueron seleccionados los modelos más usados por la comunidad y que podían ser útiles al objeto del estudio y se aplicaron en un sitio de estudio para identificar sus capacidades y limitaciones. La evaluación de estos modelos indica que mientras que la mayoría de los modelos de evolución del paisaje son pensados para estudios de más largo plazo (escala geológica), la mayoría de los modelos hidrodinámicos que simulan transporte de sedimentos presentan limitaciones por estabilidad y largos tiempos de cómputo por lo que su aplicabilidad se restringe a estudios de corto plazo. Producto de la evaluación y comparación de los modelos, se encontró que el modelo HEC-RAS 1D puede configurarse en una herramienta que permite analizar tendencias de evolución del cauce aguas arriba de un embalse, y con información de calidad podría emplearse para predecir cambios morfológicos y tomar decisiones para la planificación de largo plazo de los proyectos. (Texto tomado de la fuente)Reservoirs modify base level of rivers and because of this have impacts on the upstream channel evolution, as a result of erosion and deposition of the water flow. This investigation focuses on the channel evolution upstream from dam reservoirs, evaluating the possibility of having a quantitative approximation adequate to morphology changes in the channel on a human long term (50 to 100 years). To accomplish this, the utility of landscape evolution models and the applicability of hydrodynamic and sediment transport models designed for short term simulations were explored. The models most used by the community and that could be useful for the purpose of this study were selected and applied to a study site to identify the models’ capacities and limitations. The evaluation of this models suggests that most of the landscape evolution models are designed for a long term in geological scale, while most of hydrodynamics models that simulate sediment transport have limitation for stability and long computational times and for this reason their applicability is restrained to short term studies. As a result of the evaluation and comparison of the models, it was found that the HEC-RAS 1D model can be configured in a tool that allows analyzing trends in the evolution of the channel upstream of a reservoir, and with detailed information it could be used to predict morphological changes and make decisions for long-term planning of projects.MaestríaMagíster en Ingeniería - Recursos HidráulicosHidráulica e HidrodinámicaÁrea Curricular de Medio Ambientexvii, 128 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica620 - Ingeniería y operaciones afines::624 - Ingeniería civilEmbalses - CauceEmbalsesReservoirsModelos de evolución del paisajeEvolución del cauceEmbalseProcesos fluvialesModelos de transporte de sedimentosLandscape evolution modelsChannel evolutionReservoirFluvial processesSediment transport modelsModelos cuantitativos de evolución del paisaje y su aplicabilidad a cambios inducidos en el cauce aguas arriba de un embalse en cuencas de montañaQuantitative landscape evolution models and their applicability to changes induced in the channel upstream of a reservoir in mountain basinsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAdams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., & Istanbulluoglu, E. (2017). The Landlab v1.0 OverlandFlow component: A Python tool for computing shallow-water flow across watersheds. Geoscientific Model Development, 10(4), 1645–1663. https://doi.org/10.5194/gmd-10-1645-2017ALOS PALSAR. (2011). Dataset: ALPSRP JAXA/METI. Retrieved from https://www.asf.alaska.eduBaker, V. R. (1998). Catastrophism and uniformitarianism: logical roots and current relevance in geology. Geological Society Special Publication, 143, 171–182. https://doi.org/10.1144/GSL.SP.1998.143.01.15Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1–2), 33–45. https://doi.org/10.1016/j.jhydrol.2010.03.027Benoit Bovy; Jean Braun; Guillaume Cordonnier; Raphael Lange; Xiaoping Yuan. (2020). The FastScape software stack: reusable tools for landscape evolution modelling. EGU General Assembly 2020.Biedenharn, D. S., Watson, C. C., & Thorne, C. R. (2008). Fundamentals of Fluvial Geomorphology. In Fundamentals of Fluvial Geomorphology.Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez‐Cendón, M. E., … Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 30, 1–10.Braun, J., & Sambridge, M. (1997). Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization. Basin Research, 9(1), 27–52. https://doi.org/10.1046/j.1365-2117.1997.00030.xBraun, J., & Willett, S. D. (2013). A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology, 180–181, 170–179. https://doi.org/10.1016/j.geomorph.2012.10.008Braun, J., Zwartz, D., & Tomkin, J. H. (1999). A new surface-processes model combining glacial and fluvial erosion. Annals of Glaciology, 28, 282–290. https://doi.org/10.3189/172756499781821797Bureau of Reclamation. (2020). SHR-2D User’s Manual: Sediment Transport and Mobile-Bed Modeling. U.S. Department of Interior.CAESAR-Lisflood. (n.d.). CAESAR-Lisflood wiki. Retrieved from https://sourceforge.net/p/caesar-lisflood/wiki/Instructions/Castro, J. M., & Thorne, C. R. (2019). The stream evolution triangle: Integrating geology, hydrology, and biology. River Research and Applications, 35(4), 315–326. https://doi.org/10.1002/rra.3421Cataño-Álvarez, S., & Vélez Upegui, J. I. (2016). Aggregated conceptual model of sediment transport for mountain basins in Antioquia- Colombia. Boletín de Ciencias de La Tierra, (39), 38–48. https://doi.org/10.15446/rbct.n39.52888Cataño Álvarez, S. (2015). Modelo conceptual agregado de transporte de sedimentos para cuencas de montaña en Antioquia (Universidad Nacional de Colombia). https://doi.org/10.15446/rbct.n39.52888Cataño Álvarez, S. (2021). Critical transition of incising gravel channel to evacuate alluvial lateral supply. Physical Geography. https://doi.org/10.1080/02723646.2021.1923368Cataño Álvarez, S. (2022). Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins (Universidad Nacional de Colombia). Retrieved from https://repositorio.unal.edu.co/handle/unal/81480Cataño Álvarez, S., Osorio Yepes, S., Montoya Monsalve, J. J., Contreras Trujillo, C. Y., Vargas Martínez, N. O., Zambrano, J., … Vélez Upegui, J. I. (2016). Modelo De Estimación Y Distribución Espacial De Tasas Medias De Producción De Sedimentos En Cuencas Tropicales De Montaña. XXVII CONGRESO LATINOAMERICANO DE HIDRÁULICA, (August 2021). Retrieved from http://ladhi2016.org/Charlton, R. (2008). Fundamentals of fluvial geomorphology. London and New York: Routledge.Chen, A., Darbon, J., & Morel, J.-M. (2014). Landscape evolution models: A review of their fundamental equations. Geomorphology, 219, 68–86.Claessens, L., Schoorl, J. M., & Veldkamp, A. (2007). Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: An application for Northern New Zealand. Geomorphology, 87(1–2), 16–27. https://doi.org/10.1016/j.geomorph.2006.06.039Cluer, B., & Thorne, C. R. (2014). A stream Evolution model integrating habitat and ecosystem benefits. River Research and Applications, 30(January), 135–154. https://doi.org/10.1002/rraCoulthard, T. (2001). Landscape evolution models: a software review. Hydrological Processes, 15(1), 165–173. https://doi.org/10.1007/BF01890548Coulthard, T. J., Macklin, M. G., & Kirkby, M. J. (2002). A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms, 27(3), 269–288. https://doi.org/10.1002/esp.318Coulthard, Tom J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A. M., & Hancock, G. R. (2013). Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: Implications for modelling landscape evolution. Earth Surface Processes and Landforms, 38(15), 1897–1906. https://doi.org/10.1002/esp.3478Coulthard, Tom J., & Van De Wiel, M. J. (2006). A cellular model of river meandering. Earth Surface Processes and Landforms, 31(1), 123–132. https://doi.org/10.1002/esp.1315Deltares. (2022). Delft3D Flow - User Manual.Densmore, A. L., Anderson, R. S., Ellis, M. A., & McAdoo, B. . (1997). Hillslope evolution by bedrock landslide. Science, 275, 369–372. https://doi.org/10.1126/science.275.5298.369Einstein, A. H. (1950). The Bed-Load Function for Sediment Transportation in Open Channel Flows UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE. Technical Bulleting, 1026(1026), 7. Retrieved from https://naldc.nal.usda.gov/download/CAT86201017/PDFFarias, H. D., & Domínguez Ruben, L. G. (2014). Análisis conceptual y cuantificación de la relación de Lane para predecir tendencias evolutivas de cauces fluviales. Memorias Del 1er Congreso Iberoamericano Sobre Sedimentos y Ecología, 1–7. Retrieved from https://www.academia.edu/41133167/ANÁLISIS_CONCEPTUAL_Y_CUANTIFICACIÓN_DE_LA_RELACIÓN_DE_LANE_PARA_PREDECIR_TENDENCIAS_EVOLUTIVAS_DE_CAUCES_FLUVIALESFastScape Developers. (2019). Fastscape: a fast, versatile and user-friendly landscape evolution model. https://doi.org/https://zenodo.org/badge/133702738.svgGibson, S. A., & Cai, C. (2017). Flow Dependence of Suspended Sediment Gradations. Water Resources Research, 53(11), 9546–9563. https://doi.org/10.1002/2016WR020135Hancock, GR Willgoose, G. (2018). Sustainable mine rehabilitation – 25 years of the SIBERIA landform evolution and long-term erosion model. From Start to Finish: A Life-of-Mine Perspective. Australian Institute of Mining and Metallurgy, Carlton, 1–12.Hobley, D. E. J., Adams, J. M., Siddhartha Nudurupati, S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., & Tucker, G. E. (2017). Creative computing with Landlab: An open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surface Dynamics, 5(1), 21–46. https://doi.org/10.5194/esurf-5-21-2017ISAGEN-UNAL. (2020). Estudios para modelación y análisis hidrosedimentológico de las cuencas tributarias al embalse Topocoro. Medellin: Universidad Nacional de Colombia, Sede Medellin.ISAGEN. (n.d.). Central Hidroelectrica Jaguas. Retrieved from www.isagen.com.coISAGEN. (2014). Manual de llenado del embalse.Keesstra, S. D., Schoorl, J., & Temme, A. J. A. M. (2009). Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland. International Conference on Desertification, Advances in Studies on Desertification. Murcia, Spain.Lane, E. W. (1955). The importance of fluvial morphology in hydraulic Engineering (pp. 1–17). pp. 1–17. Proceedings of American Society of Civil Engineers.Leopold, L. B., & Maddock, T. J. (1953). The Hydraulic Geometry of Stream Channels and Some Physiographic Implications (USGS Numbered Series No. 252). Professional Paper. U. S. Government Printing Office, Washington, D.C, 57. Retrieved from 10.3133/pp252Liro, M. (2014). Conceptual model for assessing the channel changes upstream from dam reservoir. Quaestiones Geographicae, 33(1), 61–74. https://doi.org/10.2478/quageo-2014-0007LSDTopoTools Developers. (2019). Documentation for LSDTopoTools. Retrieved from https://lsdtopotools.github.io/LSDTT_documentation/Mesa, O., Urrea, V., & Ochoa, A. (2021). Trends of hydroclimatic intensity in Colombia. Climate, 9(7). https://doi.org/10.3390/cli9070120Mudd, S., Clubb, F. J., Jenkinson, J. A., & Valters, D. A. (2020). The MuddPILE (Parsimonious Integrated Landscape Evolution) Model. Retrieved from https://lsdtopotools.github.io/LSDTT_documentation/LSDTT_MuddPILE.htmlNelson, J. M. (n.d.). FaSTMECH Model Notes. Colorado: U.S. Geological Survey.Pazzaglia, F. J. (2003). Landscape evolution models. Developments in Quaternary Science, 1(C), 247–274. https://doi.org/10.1016/S1571-0866(03)01012-1Phillips, J. D. (2021). Landscape evolution: Landforms, Ecosystems, and Soils. Amsterdam.Recking, A. (2013). An analysis of nonlinearity effects on bed load transport prediction. Journal of Geophysical Research: Earth Surface, 118(3), 1264–1281. https://doi.org/10.1002/jgrf.20090Romey, W. D. (1982). Earth in my Oatmeal. EOS Transactions, 63.Samuels, P. G. (1989). Backwater lengths in rivers. Proceedings - Institution of Civil Engineers. Part 2. Research and Theory, 87(February), 571–582. https://doi.org/10.1680/iicep.1989.3779Schoorl, J. M., & Veldkamp, A. (2001). Linking land use and landscape process modelling: A case study for the Álora region (South Spain). Agriculture, Ecosystems and Environment, 85(1–3), 281–292. https://doi.org/10.1016/S0167-8809(01)00194-3Schoorl, J. M., Veldkamp, A., & Bouma, J. (2002). Modeling Water and Soil Redistribution in a Dynamic Landscape Context. Soil Science Society of America Journal, 66(5), 1610–1619. https://doi.org/10.2136/sssaj2002.1610Schoorl, J., Temme, A., Gorp, W. Van, Baartmen, J., & Claessens, L. (2015). LAPSUS user Guide (v0.97). Wageningen University.Schumm, S. A. (1977). The Fluvial System. New York: Wiley.Schumm, S. A., Harvey, M. D., & Watson, C. C. (1984). Incised Channels: Morphology, Dynamics and control. Littleton, Colorado: Water Resources Publications.Simon, A. (1989). A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms, 14(1), 11–26. https://doi.org/10.1002/esp.3290140103Simon, A., & Hupp, C. R. (1987). Channel Evolution in Modified Alluvial Streams. Transportation Research Record, (1151), 16–24.Sonneveld, M. P. W., Temme, A. J. A. M., Schoorl, J. M., Claessens, L., Viveen, W., Baartman, J. E. M., … Lesschen, J. P. (2010). Landscape - Soilscape Evolution Modelling: LAPSUS. Brisbane, Australia: 19th World Congress of Soil Science, Soil Solutions for a Changing World.Temme, A. J.A.M., Claessens, L., Veldkamp, A., & Schoorl, J. M. (2011). Evaluating choices in multi-process landscape evolution models. Geomorphology, 125(2), 271–281. https://doi.org/10.1016/j.geomorph.2010.10.007Temme, Arnaud J.A.M., Schoorl, J. M., & Veldkamp, A. (2006). Algorithm for dealing with depressions in dynamic landscape evolution models. Computers and Geosciences, 32(4), 452–461. https://doi.org/10.1016/j.cageo.2005.08.001Tucker, G. E., Lancaster, S. T., Gasparini, N. M., & Bras, R. L. (2001). The Channel-Hillslope Integrated Landscape Development Model(CHILD). In Landscape Erosion and Evolution Modeling. https://doi.org/10.1007/978-1-4615-0575-4Tucker, G. E., & Slingerland, R. (1997). Drainage basin responses to climate change. Water Resources Research, 33(8), 2031–2047. https://doi.org/10.1029/97WR00409US Army Corps of Engineers. (2020a). HEC-RAS Sediment Transport User’s Manual. Davis.US Army Corps of Engineers. (2020b). HEC-RAS Two-Dimensional Sediment Transport User’s Manual.US Army Corps of Engineers. (2021). HEC-RAS Hydraulic Reference Manual. Valters, D. (2016). Modelling Geomorphic Systems: Landscape Evolution. Geomorphological Techniques, 12(1880), 1–24. https://doi.org/10.13140/RG.2.1.1970.9047van Gorp, W., Temme, A. J. A. M., Veldkamp, A., & Schoorl, J. M. (2015). Modelling long-term (300ka) upland catchment response to multiple lava damming events. Earth Surface Processes and Landforms, 40(7), 888–900. https://doi.org/10.1002/esp.3689van Gorp, Wouter, Temme, A. J. A. M., Baartman, J. E. M., & Schoorl, J. M. (2014). Landscape evolution modelling of naturally dammed rivers. Earth Surface Processes and Landforms, 39(12), 1587–1600. https://doi.org/10.1002/esp.3547Watson, C. C., Biedenharn, D. S., & Bledsoe, B. P. (2002). Use of incised channel evolution models in understanding rehabilitation alternatives. Journal of the American Water Resources Association, 38, 1–10.Wilcock, P. R., Asce, M., & Crowe, J. C. (2003). Surface-based Transport Model for Mixed-Size Sediment Surface-based Transport Model for Mixed-Size Sediment. 9429(February). https://doi.org/10.1061/(ASCE)0733-9429(2003)129Willgoose, G. (2005). User Manual for SIBERIA (version 8.30). Australia: Telluric Research.Yang, C. T., & Ahn, J. (2011). GSTARS4-User’s Manual.EstudiantesInvestigadoresMaestrosPúblico generalResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84218/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1017216059.2023.pdf1017216059.2023.pdfTesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf3667662https://repositorio.unal.edu.co/bitstream/unal/84218/2/1017216059.2023.pdf544b887699e17dc5f7fa17c7cfcf54a9MD52THUMBNAIL1017216059.2023.pdf.jpg1017216059.2023.pdf.jpgGenerated Thumbnailimage/jpeg5712https://repositorio.unal.edu.co/bitstream/unal/84218/3/1017216059.2023.pdf.jpgd5252c47160d3b4b27255d3ce09965b6MD53unal/84218oai:repositorio.unal.edu.co:unal/842182023-08-12 23:04:07.05Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |