On a problem of krasnosel'skii and rutickii
In \cite[p. 30]{5}, M. A. Krasnosel'skii and Ya. B. Rutickii proposed a problem, which can be reformulated as follows. Let $f$ be an $N$-function such that $f(ts)\leq f(t)f(s)$, $s,t\geq 1$. Is there another $N$-function $F$ such that $F(st)\leq F(t)F(s)$, $s,t and gt;0$ and equivalent to $f$ o...
- Autores:
 - 
                   Bárcenas, Diomedes           
Finol, Carlos
 
- Tipo de recurso:
 - Article of journal
 
- Fecha de publicación:
 - 2011
 
- Institución:
 - Universidad Nacional de Colombia
 
- Repositorio:
 - Universidad Nacional de Colombia
 
- Idioma:
 -           spa          
 - OAI Identifier:
 - oai:repositorio.unal.edu.co:unal/39501
 - Acceso en línea:
 -           https://repositorio.unal.edu.co/handle/unal/39501
          
http://bdigital.unal.edu.co/29598/
 - Palabra clave:
 -           Orlicz Functions          
N-Functions
Submultiplicative Functions
Matuszewska--Orlicz indices
39B62
26B25
26A51
 - Rights
 - openAccess
 - License
 - Atribución-NoComercial 4.0 Internacional
 
| Summary: | In \cite[p. 30]{5}, M. A. Krasnosel'skii and Ya. B. Rutickii proposed a problem, which can be reformulated as follows. Let $f$ be an $N$-function such that $f(ts)\leq f(t)f(s)$, $s,t\geq 1$. Is there another $N$-function $F$ such that $F(st)\leq F(t)F(s)$, $s,t and gt;0$ and equivalent to $f$ on $[1,\infty)?$. We give a necessary and sufficient condition for a positive and constructive solution. | 
|---|
