Soluciones simétricas de algunos problemas elípticos
In this paper we study solutions to the Neumann problem (I) ∆u= F(u) in Ω, ∂u/∂n = G(u) on Ω, and the Dirichlet problema (II) ∆u=F(u) in Ω, u=c n ∂Ω where Ω is a bounded domain in Rn with a smooth bo...
- Autores:
-
Quintero H., José Raúl
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1993
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43591
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43591
http://bdigital.unal.edu.co/33689/
- Palabra clave:
- Bounded domain
soft limit
derivative
continuous function
hyperplane
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_ea792e5b4a1889df5f911e1b3248c9a1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/43591 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quintero H., José Raúlc9d21feb-3cc1-4e98-87ad-8ae455d8dfa93002019-06-28T12:10:41Z2019-06-28T12:10:41Z1993https://repositorio.unal.edu.co/handle/unal/43591http://bdigital.unal.edu.co/33689/In this paper we study solutions to the Neumann problem (I) ∆u= F(u) in Ω, ∂u/∂n = G(u) on Ω, and the Dirichlet problema (II) ∆u=F(u) in Ω, u=c n ∂Ω where Ω is a bounded domain in Rn with a smooth boundary ∂ Ω ∂/ ∂n is the derivative with respect to the outward normal n and c ϵ R. If Ω is the unit ball and if either F(t) = f(t) and G(t) = g(t) or F(t) = /(t) . t and G(t) = 9(t) . t where f is a strictly increasing continuous function and g is a strictly decreasing continuous function, we prove that solutions to problems (I) and (II) are radially symmetric about the origen. If Ω is the unit ball and F is a continuous function that does not change sign, we prove that solutions of (II) are radially symmetric about the origen. If Ω ⊂ Rn is a symmetric bounded domain with respect to a hyperplane T and f ϵ C(Ω x R,R), g ϵC (∂Ω x R, R) are functions that satisfy the same monoton..icity properties in the second variable as before, then we prove that solutions are symmetric with respect to the hyperplane T. If F satisfies the same condition as in the first case and G ≡ 0, we prove that the only solutions of (I) are constant functions. Furthermore, we find a formula for solutions of (I) in the unitary ball that allow us to deduce some non-existence results. We find conditions on F and G in order for (I) to have no solutions in any bounded domain.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/33579Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 27, núm. 1-2 (1993); 95-109 0034-7426Quintero H., José Raúl (1993) Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas; Vol. 27, núm. 1-2 (1993); 95-109 0034-7426 .Soluciones simétricas de algunos problemas elípticosArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTBounded domainsoft limitderivativecontinuous functionhyperplaneORIGINAL33579-124684-1-PB.pdfapplication/pdf4875378https://repositorio.unal.edu.co/bitstream/unal/43591/1/33579-124684-1-PB.pdf0ec3caf5f9d8220929f078bcaa9f7af3MD51THUMBNAIL33579-124684-1-PB.pdf.jpg33579-124684-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6150https://repositorio.unal.edu.co/bitstream/unal/43591/2/33579-124684-1-PB.pdf.jpg8cf34407738234a51b80ad8e025f46f5MD52unal/43591oai:repositorio.unal.edu.co:unal/435912023-02-13 23:04:18.697Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Soluciones simétricas de algunos problemas elípticos |
title |
Soluciones simétricas de algunos problemas elípticos |
spellingShingle |
Soluciones simétricas de algunos problemas elípticos Bounded domain soft limit derivative continuous function hyperplane |
title_short |
Soluciones simétricas de algunos problemas elípticos |
title_full |
Soluciones simétricas de algunos problemas elípticos |
title_fullStr |
Soluciones simétricas de algunos problemas elípticos |
title_full_unstemmed |
Soluciones simétricas de algunos problemas elípticos |
title_sort |
Soluciones simétricas de algunos problemas elípticos |
dc.creator.fl_str_mv |
Quintero H., José Raúl |
dc.contributor.author.spa.fl_str_mv |
Quintero H., José Raúl |
dc.subject.proposal.spa.fl_str_mv |
Bounded domain soft limit derivative continuous function hyperplane |
topic |
Bounded domain soft limit derivative continuous function hyperplane |
description |
In this paper we study solutions to the Neumann problem (I) ∆u= F(u) in Ω, ∂u/∂n = G(u) on Ω, and the Dirichlet problema (II) ∆u=F(u) in Ω, u=c n ∂Ω where Ω is a bounded domain in Rn with a smooth boundary ∂ Ω ∂/ ∂n is the derivative with respect to the outward normal n and c ϵ R. If Ω is the unit ball and if either F(t) = f(t) and G(t) = g(t) or F(t) = /(t) . t and G(t) = 9(t) . t where f is a strictly increasing continuous function and g is a strictly decreasing continuous function, we prove that solutions to problems (I) and (II) are radially symmetric about the origen. If Ω is the unit ball and F is a continuous function that does not change sign, we prove that solutions of (II) are radially symmetric about the origen. If Ω ⊂ Rn is a symmetric bounded domain with respect to a hyperplane T and f ϵ C(Ω x R,R), g ϵC (∂Ω x R, R) are functions that satisfy the same monoton..icity properties in the second variable as before, then we prove that solutions are symmetric with respect to the hyperplane T. If F satisfies the same condition as in the first case and G ≡ 0, we prove that the only solutions of (I) are constant functions. Furthermore, we find a formula for solutions of (I) in the unitary ball that allow us to deduce some non-existence results. We find conditions on F and G in order for (I) to have no solutions in any bounded domain. |
publishDate |
1993 |
dc.date.issued.spa.fl_str_mv |
1993 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T12:10:41Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T12:10:41Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/43591 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/33689/ |
url |
https://repositorio.unal.edu.co/handle/unal/43591 http://bdigital.unal.edu.co/33689/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/recolma/article/view/33579 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Revista Colombiana de Matemáticas; Vol. 27, núm. 1-2 (1993); 95-109 0034-7426 |
dc.relation.references.spa.fl_str_mv |
Quintero H., José Raúl (1993) Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas; Vol. 27, núm. 1-2 (1993); 95-109 0034-7426 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/43591/1/33579-124684-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/43591/2/33579-124684-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
0ec3caf5f9d8220929f078bcaa9f7af3 8cf34407738234a51b80ad8e025f46f5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089626560757760 |