Síntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.

ilustraciones, diagramas, tablas

Autores:
Coral Coral, Jhon Dario
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81916
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81916
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::547 - Química orgánica
570 - Biología::576 - Genética y evolución
Fisicoquímica
Chemistry, physical and theoretical
Triamtereno
Perfil de dilución
Caracterización espectroscópica
Estabilidad fotoquímica
Ensayos citotóxicos y genotóxicos
Hemólisis
Síntesis de compuestos
Triamterene
Dilution profile
spectroscopic characterization
Photochemical stability
Cytotoxic and genotoxic assays
Synthesis of compounds
Hemolysis
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_cd3e32e6a2802934e328a7f428d0f58e
oai_identifier_str oai:repositorio.unal.edu.co:unal/81916
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.
dc.title.translated.eng.fl_str_mv Synthesis and characterization of new triamterene compounds with ZnCl2 and/or MnCl2: Evaluation of photosensitizing character and cytotoxic and genotoxic effects.
title Síntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.
spellingShingle Síntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.
540 - Química y ciencias afines::547 - Química orgánica
570 - Biología::576 - Genética y evolución
Fisicoquímica
Chemistry, physical and theoretical
Triamtereno
Perfil de dilución
Caracterización espectroscópica
Estabilidad fotoquímica
Ensayos citotóxicos y genotóxicos
Hemólisis
Síntesis de compuestos
Triamterene
Dilution profile
spectroscopic characterization
Photochemical stability
Cytotoxic and genotoxic assays
Synthesis of compounds
Hemolysis
title_short Síntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.
title_full Síntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.
title_fullStr Síntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.
title_full_unstemmed Síntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.
title_sort Síntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.
dc.creator.fl_str_mv Coral Coral, Jhon Dario
dc.contributor.advisor.none.fl_str_mv Valencia Uribe, Gloria Cristina
López Ortiz, Juan Bautista
dc.contributor.author.none.fl_str_mv Coral Coral, Jhon Dario
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Biotecnología Animal (Giba)
Aplicaciones en Fotoquímica - GIAFOT
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::547 - Química orgánica
570 - Biología::576 - Genética y evolución
topic 540 - Química y ciencias afines::547 - Química orgánica
570 - Biología::576 - Genética y evolución
Fisicoquímica
Chemistry, physical and theoretical
Triamtereno
Perfil de dilución
Caracterización espectroscópica
Estabilidad fotoquímica
Ensayos citotóxicos y genotóxicos
Hemólisis
Síntesis de compuestos
Triamterene
Dilution profile
spectroscopic characterization
Photochemical stability
Cytotoxic and genotoxic assays
Synthesis of compounds
Hemolysis
dc.subject.lemb.none.fl_str_mv Fisicoquímica
Chemistry, physical and theoretical
dc.subject.proposal.spa.fl_str_mv Triamtereno
Perfil de dilución
Caracterización espectroscópica
Estabilidad fotoquímica
Ensayos citotóxicos y genotóxicos
Hemólisis
Síntesis de compuestos
dc.subject.proposal.eng.fl_str_mv Triamterene
Dilution profile
spectroscopic characterization
Photochemical stability
Cytotoxic and genotoxic assays
Synthesis of compounds
Hemolysis
description ilustraciones, diagramas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-16T16:44:22Z
dc.date.available.none.fl_str_mv 2022-08-16T16:44:22Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81916
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81916
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acuña Cueva, E. R., Faure, R., Illán Cabeza, N. A., Jiménez Pulido, S. B., Moreno Carretero, M. N., & Quirós Olozábal, M. (2003). Synthesis and characterization of several lumazine derivative complexes of Co(II), Ni(II), Cu(II), Cd(II), Pd(II) and Pt(II). X-ray structures of a mononuclear copper complex and a dinuclear cadmium complex. Inorganica Chimica Acta, 351(1), 356–362. https://doi.org/10.1016/S0020-1693(03)00172-5
Amin, P. O., Muhammadsharif, F. F., Raza Saeed, S., Ketuly, K., & Sulaiman, K. (2021). The Effect of Donor- pi -Acceptor Unit on the Optoelectronic Parameters of Poly ( Triamterene-co-Terephthalate ): Betalain Dye Composite System. March. https://www.researchgate.net/publication/350342735_The_Effect_of_Donor-pi-Acceptor_Unit_on_the_Optoelectronic_Parameters_of_PolyTriamterene-co-TerephthalateBetalain_Dye_Composite_System
Bawa, Y. (2007). Solvent inclusion properties of Triamterene crystal forms and solubility differences between Roxithromycin polymorphic forms. In Thesis (Issue April). http://repository.nwu.ac.za/handle/10394/1469
Castillo, J., Rozo, C., Bertel, L., Rindzevicius, T., Mendez, S., Martinez, F., & Boisen, A. (2016). Orientation of Pterin-6-Carboxylic Acid on Gold Capped Silicon Nanopillars Platforms: Surface Enhanced Raman Spectroscopy and Density Functional Theory Studies. J. Braz. Chem. Soc., 27(5), 971–977. https://doi.org/10.5935/0103-5053.20150352
Dahl, O., Ziedrich, K. H., Marek, G. J., & Paradies, H. H. (1989). Physicochemical and structural studies of triamterene. Journal of Pharmaceutical Sciences, 78(7), 598–606. https://doi.org/10.1002/jps.2600780719
Díaz, N. A., Ruiz, J. A. B., Reyes, E. F., Cejudo, A. G., Novo, J. J., Peinado, J. P., Meléndez-Valdés, F. T., & Fiñana, I. T. (2010). Espectrofometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas (pp. 1–8). https://www.uco.es/dptos/bioquimica-biol-mol/practicasgenerales.htm
el Azzouzi, N., el Fadli, Z., & Metni, M. R. (2017). Synthesis and chemical characterization of some transition metal complexes with a 6-acetyl-1,3,7-trimetyllumazine ligand. Journal of Materials and Environmental Science, 8(12), 4323–4328. https://doi.org/10.26872/jmes.2017.8.12.455
El-Tabl, H. M., El-Saied, F. A., & Ayad, M. I. (2002). Manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II), and uranyl(VI) complexes of n-(4-formylantipyrine)benzothiazol-2-ylacetohydrazide. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 32(7), 1245–1262. https://doi.org/10.1081/SIM-120014301
Entradas, T., Waldron, S., & Volk, M. (2020). The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. Journal of Photochemistry and Photobiology B: Biology, 204, 111787. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2020.111787
Fiori, J., Ballardini, R., Andrisano, V., & Cavrini, V. (2003). Photostability studies on the furosemide-triamterene drug association. Farmaco, 58(9), 867–873. https://doi.org/10.1016/S0014-827X(03)00098-3
Grisales, D. (2020). Determinación del carácter fotosensibilizador del oxígeno molecular singulete en el desarrollo de fototoxicidad asociada al uso de Triamtereno y de su combinación con la Hidroclorotiazida.
Jensen, A. W. (1999). Drugs: Photochemistry and Photostability Edited by A. Albini and E. Fasani (Dell’ Universita Di Pavia). Journal of the American Chemical Society, 121(37), 8678–8678. https://doi.org/10.1021/ja9857559
Jiménez Pulido, S. B., Linares Ordóñez, F. M., Martínez Martos, J. M., Moreno Carretero, M. N., Quirós Olozábal, M., & Ramírez Expósito, M. J. (2008). Metal complexes with the ligand derived from 6-acetyl-1,3,7-trimethyllumazine and benzohydrazide. Molecular structures of two new Co(II) and Rh(III) complexes and analysis of in vitro antitumor activity. Journal of Inorganic Biochemistry, 102(8), 1677–1683. https://doi.org/10.1016/j.jinorgbio.2008.04.004
Jiménez Pulido, S. B., Linares Ordóñez, F. M., & Moreno Carretero, M. N. (2009). Novel coordination behavior of a pteridine-benzoylhydrazone ligand (BZLMH): Theoretical calculations, XRD structures and luminescence studies. Polyhedron, 28(13), 2641–2648. https://doi.org/10.1016/j.poly.2009.05.061
Kapoor, V. K. (1994). Triamterene. In H. G. B. T.-A. P. of D. S. and E. Brittain (Ed.), Analytical Profiles of Drug Substances and Excipients (Vol. 23, pp. 571–605). Academic Press. https://doi.org/https://doi.org/10.1016/S0099-5428(08)60613-9
León, I. E., Cadavid-Vargas, J. F., di Virgilio, A. L., & Etcheverry, S. (2016). Vanadium, ruthenium and copper compounds: A new class of non-platinum Metallodrugs with anticancer activity. Current Medicinal Chemistry, 23(30). https://doi.org/10.2174/0929867323666160824162546
Llopis, M. J., Alzuet, G., Martin, A., Borrás, J., García-Granda, S., & Díaz, R. (1993). Halocuprates(II) of triamterinium, a diprotonated pteridine derivative. Crystal structure of (triamterinium)CuCl4. Electronic and EPR characterization of (triamterinium)CuX4 (X = Cl, Br). Polyhedron, 12(20), 2499–2506. https://doi.org/10.1016/S0277-5387(00)83075-2
Makuła, P., Pacia, M., & Macyk, W. (2018). How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-VIS Spectra. Journal of Physical Chemistry Letters, 9(23), 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892
Mukne, A. P., & Nagarsenker, M. (2004). Triamterene-β-cyclodextrin systems: Preparation, characterization and in vivo evaluation. AAPS PharmSciTech, 5(1), 142–150. https://doi.org/10.1208/pt050119
Netzer, T., Ullrich, F., Knauf, H., & Mutschler, E. (1995). Potassium-Retaining Diuretics: Triamterene. In R. F. Greger, H. Knauf, & E. Mutschler (Eds.), Handbook of Experimental Pharmacology (1st ed., pp. 396–421). Springer. https://doi.org/10.1007/978-3-642-79565-7
Onoda, H., Inoue, Y., Ezawa, T., Murata, I., Chantadee, T., Limmatvapirat, S., Oguchi, T., & Kanamoto, I. (2020). Preparation and characterization of triamterene complex with ascorbic acid derivatives. Drug Development and Industrial Pharmacy, 46(12), 2032–2040. https://doi.org/10.1080/03639045.2020.1842439
Parnis, J. M., & Oldham, K. B. (2013). Beyond the beer-lambert law: The dependence of absorbance on time in photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 267, 6–10. https://doi.org/10.1016/j.jphotochem.2013.06.006
Payan, A. (2015). Síntesis y caracterización estructural de un compuesto de coordinación con el ligando 6-metoxiquinolina y evaluación del carácter fotosensibilizador de oxígeno molecular singulete.
Peng, B., Wang, J.-R., & Mei, X. (2018). Triamterene–furosemide salt: structural aspects and physicochemical evaluation. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 74(6), 738–741. https://doi.org/10.1107/S2052520618013185
Peng, B., Zhang, Z., Wang, J. R., Li, M., Zhang, Q., & Mei, X. (2019). Confocal Raman micro-spectral evidence and physicochemical evaluation of triamterene salts. Analyst, 144(2), 530–535. https://doi.org/10.1039/c8an01579a
Quintero, B., & Miranda, M. A. (2000). Mechanisms of photosensitization induced by drugs: A general survey. Ars Pharmaceutica, 41(1), 27–46.
Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric identification of organic compounds (Seventh ed). John Wiley & sons, INC.
Sperati, C. J., Zhang, C., Delsante, M., Gupta, R., Bagnasco, S., & Barman, I. (2018). Raman Spectroscopy for the Diagnosis of Intratubular Triamterene Crystallization. Kidney International Reports, 3(4), 997–1003. https://doi.org/10.1016/j.ekir.2018.03.010
Travizano, M., Romano, S., & Kamienkowski, J. (2002). Determinación de la banda prohibida (band gap) en Si. Mathematica, 2. http://users.df.uba.ar/sgil/labo5_uba/inform/info/pautadas/band_gap_siI_2k2a.pdf
Vargas, F., Fuentes, A., Sequera, J., Méndez, H., Fraile, G., Velásquez, M., & Medina, R. (1998). In vitro approach to investigating the phototoxicity of the diuretic drug triamterene. Toxicology in Vitro, 12(6), 661–667. https://doi.org/10.1016/S0887-2333(98)00057-5
Vargas, F., Volkmar, I. M., Sequera, J., Mendez, H., Rojas, J., Fraile, G., Velasquez, M., & Medina, R. (1998). Photodegradation and phototoxicity studies of furosemide. Involvement of singlet oxygen in the photoinduced hemolysis and lipid peroxidation. Journal of Photochemistry and Photobiology B: Biology, 42(3), 219–225. https://doi.org/10.1016/S1011-1344(98)00074-8
Wiley, J. & S. (2021). Triamterene - Raman - Spectrum - SpectraBase. John Wiley & Sons, Inc. https://spectrabase.com/spectrum/682dsezWsXm
Wilkinson, F., Helman, W. P., & Ross, A. B. (1993). Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. Journal of Physical and Chemical Reference Data, 22(1), 113–262. https://doi.org/10.1063/1.555934
Yoshikawa, A., Matsunami, H., & Nanishi, Y. (2007). Development and applications of wide bandgap semiconductors. Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices, 1–24. https://doi.org/10.1007/978-3-540-47235-3_1
Zaheer, M. R., Gupta, A., Iqbal, J., Zia, Q., Ahmad, A., Roohi, Owais, M., Hashlamon, A., Mohd Setapar, S. H., Aliev, G., & Md Ashraf, G. (2016). Molecular mechanisms of drug photodegradation and photosensitization. Current Pharmaceutical Design, 22(7), 768–782. https://doi.org/10.2174/1381612822666151209151408
Zoltan, T., Vargas, F., & Izzo, C. (2007). UV-VIS Spectrophotometrical and Analytical Methodology for the Determination of Singlet Oxygen in New Antibacterials Drugs. Analytical Chemistry Insights, 2, 117739010700200020. https://doi.org/10.4137/117739010700200015
Acceptor_Unit_on_the_Optoelectronic_Parameters_of_PolyTriamterene-co-TerephthalateBetalain_Dye_Composite_System
Photobiology B: Biology, 204, 111787. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2020.111787
Arencibia Arrebola, D. F., Rosario Fernández, L. A., & Curveco Sánchez, D. L. (2003). Principales ensayos para determinar la citotoxicidad de una sustancia, algunas consideraciones y su utilidad. Revista de Toxicología En Línea, 40–52. http://www.sertox.com.ar/img/item_full/19003.pdf
Aşkin Çelik, T. (2018). Introductory Chapter: Cytotoxicity. In Cytotoxicity. https://doi.org/10.5772/intechopen.77244
Carmona-Martínez, V., Ruiz-Alcaraz, A. J., Vera, M., Guirado, A., Martínez-Esparza, M., & García-Peñarrubia, P. (2018). Therapeutic potential of pteridine derivatives: A comprehensive review. Medicinal Research Reviews, 1–56. https://doi.org/10.1002/med.21529
Costa, M., Santos, B., Jorge, J., Alves, R., Marques, I., Sarmento, A., & Goncalves, A. (2022). Zinc Prevents DNA Damage in Normal Cells but Shows Genotoxic and Cytotoxic Effects in Acute Myeloid Leukemia Cells. International Journal of Molecular Sciences, 23(2567), 11. https://doi.org/https://doi.org/ 10.3390/ijms23052567
Erkan, M., Aydin, Y., Orta Yilmaz, B., & Yildizbayrak, N. (2021). Chapter 42 - Protective effects of vitamin C against fluoride toxicity. In V. B. Patel & V. R. B. T.-T. Preedy (Eds.) (pp. 435–445). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-819092-0.00043-1
Feldman, B. F., & Sink, C. A. (2008). “Methods”, Practical Transfusion Medicine. https://www.ivis.org/library/practical-transfusion-medicine/methods
Freshney, R. I. (2005). Culture of animal cells: A manual of basic technique (5th ed.). WILEY. https://doi.org/10.1002/9780471747598
Gascón Jiménez, S. (2007). Mecanismos de regulación del receptor de glutamato tipo NMDA en excitotoxicidad e isquemia cerebral. http://hdl.handle.net/10486/2621
Guillotin, D., Austin, P., Begum, R., Freitas, M. O., Merve, A., Brend, T., Short, S., Marino, S., & Martin, S. A. (2017). Drug-repositioning screens identify triamterene as a selective drug for the treatment of DNA mismatch repair deficient cells. Clinical Cancer Research, 23(11), 2880–2890. https://doi.org/10.1158/1078-0432.CCR-16-1216
Horváthová, E., Slameňová, D., Hlinčíková, L., Mandal, T. K., Gábelová, A., & Collins, A. R. (1998). The nature and origin of DNA single-strand breaks determined with the comet assay. Mutation Research - DNA Repair, 409(3), 163–171. https://doi.org/10.1016/S0921-8777(98)00053-6
Hsiao, Y. L., Chang, P. C., Huang, H. J., Kuo, C. C., & Chen, C. Y. C. (2014). Treatment of Acute Lymphoblastic Leukemia From Traditional Chinese Medicine. Evidence-Based Complementary and Alternative Medicine, 2014, 1–21. https://doi.org/10.1155/2014/601064
IARC. (2016). Triamterene. In SOME DRUGS AND HERBAL PRODUCTS (Vol. 108, pp. 263–283). International Agency for Research on Cancer. World Health Organization. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Drugs-And-Herbal-Products-2015
João Romão, M., Knäblein, J., Huber, R., & Moura, J. J. G. (1997). Structure and function of molybdopterin containing enzymes. Progress in Biophysics and Molecular Biology, 68(2), 121–144. https://doi.org/https://doi.org/10.1016/S0079-6107(97)00022-9
Lima, P. D. L., Vasconcellos, M. C., Montenegro, R. C., Bahia, M. O., Costa, E. T., Antunes, L. M. G., & Burbano, R. R. (2011). Genotoxic effects of aluminum, iron and manganese in human cells and experimental systems: A review of the literature. Human and Experimental Toxicology, 30(10), 1435–1444. https://doi.org/10.1177/0960327110396531
Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2006). Lehninger PRINCIPIOS DE BIOQUÍMICA (Cuarta edi).
López Ortiz, J. B. (Universidad N. de C., & Márquez Fernández, M. E. (Universidad N. de C. (2002). Modelo experimental para el estudio cromosómico en células de mamíferos. Laboratorio de Genética, Universidad Nacional de Colombia.
López, S. L., Aiassa, D., Benítez Leite, S., Lajmanovich, R., Mañas, F., Poletta, G., Śnchez, N., Simoniello, M. F., & Carrasco, A. E. (2012). Pesticides used in South American GMO-based agriculture. A review of their effects on humans and animal models. In Advances in Molecular Toxicology (Vol. 6). https://doi.org/10.1016/B978-0-444-59389-4.00002-1
Lorente, C. (2003). Fotofísica y propiedades fotosensibilizadoras de pterinas en solución acuosa. http://sedici.unlp.edu.ar/handle/10915/2216
Martínez-Pardo, M. (2012). Deficiencias de tetrahidrobiopterina (BH4): diagnóstico y tratamiento. Acta Pediátrica de México, 33(6), 319–323. http://www.medigraphic.com/pdfs/actpedmex/apm-2012/apm126l.pdf
Moghadam, N. H., Salehzadeh, S., Tanzadehpanah, H., Saidijam, M., Karimi, J., & Khazalpour, S. (2018). In vitro cytotoxicity and DNA/HSA interaction study of triamterene using molecular modelling and multi-spectroscopic methods. Journal of Biomolecular Structure and Dynamics, 37(9), 2242–2253. https://doi.org/10.1080/07391102.2018.1489305
Mutschler, E., Gilfrich, H. J., Knauf, H., Mörke, W., & Völger, K. D. (1983). Pharmacokinetics of triamterene. Clinical and Experimental Hypertension, A5(2), 249–269. https://doi.org/10.3109/10641968309048825
Park, N. Y., Jo, D. S., Kim, Y. H., Bae, J.-E., Kim, J. B., Park, H. J., Choi, J. Y., Lee, H. J., Chang, J. H., Bunch, H., Jeon, H. B., Jung, Y.-K., & Cho, D.-H. (2021). Triamterene induces autophagic degradation of lysosome by exacerbating lysosomal integrity. Archives of Pharmacal Research, 44(6), 621–631. https://doi.org/10.1007/s12272-021-01335-5
Pérez-González, A., Gómez-Peralta, J. I., Garza-Ortiz, A., & Barba-Behrens, N. (2012). Importancia del molibdeno en los sistemas biológicos y su papel en enzimas mononucleares como parte del cofactor Moco. Educacion Quimica, 23(1), 23–32. https://doi.org/10.1016/s0187-893x(17)30094-0
Pfleiderer, W., Kappel, M., & Baur, R. (1984). Biochemical and Clinical Aspects of Pteridines. 369(2). https://doi.org/doi:10.1515/bchm3.1988.369.2.527
Schalhorn, A., Siegert, W., & Sauer, H. (1981). Antifolate Effect of Triamterene on Human Leucocytes and on a Human Lymphoma Cell Line. European Journal of Clinical Pharmacology, 20, 219–224.
Seukep, A. J., Noumedem, J. A. K., Djeussi, D. E., & Kuete, V. (2014). 9 - Genotoxicity and Teratogenicity of African Medicinal Plants. Toxicological Survey of African Medicinal Plants, 235–275. https://doi.org/https://doi.org/10.1016/B978-0-12-800018-2.00009-1
Stryer, L. (1995). Biochemistry (4th editio). W. H. Freeman and Company. Thomas, A. H. (2001). Fotoquímica de ácido fólico, 6-formilpterina y 6-carboxipterina en solución acuosa. http://sedici.unlp.edu.ar/handle/10915/2215
Turkez, H., Arslan, M. E., & Ozdemir, O. (2017). Genotoxicity testing: progress and prospects for the next decade. Expert Opinion on Drug Metabolism and Toxicology, 13(10), 1089–1098. https://doi.org/10.1080/17425255.2017.1375097
Ulukaya, E., Ozdikicioglu, F., Oral, A. Y., & Demirci, M. (2008). The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 22(1), 232–239. https://doi.org/10.1016/j.tiv.2007.08.006
Wu, Q., Liu, J., Xu, X., Huang, B., Zheng, D., & Li, J. (2021). Mechanism of megaloblastic anemia combined with hemolysis. Bioengineered, 12(1), 6703–6712. https://doi.org/10.1080/21655979.2021.1952366
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv viii, 113 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Escuela de química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81916/3/1085282761.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81916/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81916/5/1085282761.2022.pdf.jpg
bitstream.checksum.fl_str_mv b12444ab3e81cce8c2058767af897963
8153f7789df02f0a4c9e079953658ab2
7ca4b3e5e747a1690fb60ea4c952d51b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089177584631808
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Valencia Uribe, Gloria Cristina2b3f41a4e9f415ea8f35abd136606dcb600López Ortiz, Juan Bautista84a1edcef73863a1750a48b3e759313e600Coral Coral, Jhon Dariobbdab0212850adb4fe96b94a20eae619Grupo de Investigación en Biotecnología Animal (Giba)Aplicaciones en Fotoquímica - GIAFOT2022-08-16T16:44:22Z2022-08-16T16:44:22Z2022https://repositorio.unal.edu.co/handle/unal/81916Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl triamtereno, un compuesto diurético de primera línea en algunos países incluido dentro del grupo de los ahorradores de potasio presenta poca solubilidad en agua. Con el propósito de mejorar este parámetro, y en consecuencia su disposición en el organismo, se sintetizaron dos nuevos compuestos en los que se modificó la estructura del TAT con manganeso y zinc, usando sus respectivos cloruros. La síntesis se llevó a cabo en solución agua:metanol. Estos compuestos fueron caracterizados a través de microscopía electrónica de barrido SEM y difracción de Rayos X en polvo. Adicionalmente, se observaron los perfiles de disolución en el tiempo en medio acuoso, evidenciando que este parámetro mejoró en los nuevos compuestos sintetizados. La caracterización de los nuevos compuestos se realizó a través de técnicas espectroscópicas como absorción UV-VIS, infrarrojo y raman. Los resultados obtenidos se contrastaron con termogramas y perfil de dilución. Se determinó el carácter fotosensibilizador del TAT y de los nuevos compuestos con Zn y Mn en medios alcohólicos. Se realizaron medidas de actinometría en estado estacionario que permitieron establecer el rendimiento cuántico de oxígeno molecular singulete generado por los nuevos compuestos. Adicionalmente, se realizaron medidas de rendimiento cuántico de fluorescencia, para aportar a la caracterización de los materiales, con miras al estudio posterior de sus aplicaciones como marcadores fluorescentes. La caracterización se completó con ensayos citotóxicos, genotóxicos y con prueba de hemolisis; con lo que fue posible demostrar el potencial antineoplásico de los nuevos compuestos sintetizados sobre la línea celular tumoral MCF-7. (Texto tomado de la fuente)Triamterene, a first line diuretic compound in some countries included in the group of potassium sparing compounds, presents poor solubility in water. In order to improve this parameter, and consequently its disposition in the organism, two new compounds were synthesized in which the TAT structure was modified with manganese and zinc, using their respective chlorides. The synthesis was carried out in water:methanol solution. These compounds were characterized by SEM scanning electron microscopy and powder X-ray diffraction. Additionally, the dissolution profiles over time in aqueous medium were observed, evidencing that this parameter improved in the new synthesized compounds. The characterization of the new compounds was carried out through spectroscopic techniques such as UV-VIS absorption, infrared and Raman. The results obtained were contrasted with thermograms and dilution profile. The photosensitizing character of TAT and the new compounds with Zn and Mn in alcoholic media was determined. Steady state actinometry measurements were performed to establish the singlet molecular oxygen quantum yield generated by the new compounds. Additionally, fluorescence quantum yield measurements were performed to contribute to the characterization of the materials, with a view to the subsequent study of their applications as fluorescent markers. The characterization was completed with cytotoxic, genotoxic and hemolysis assays; thus, it was possible to demonstrate the antineoplastic potential of the new compounds synthesized on the MCF-7 tumor cell line.MaestríaMagíster en Ciencias - QuímicaÁrea Curricular en Ciencias Naturalesviii, 113 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - QuímicaEscuela de químicaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín540 - Química y ciencias afines::547 - Química orgánica570 - Biología::576 - Genética y evoluciónFisicoquímicaChemistry, physical and theoreticalTriamterenoPerfil de diluciónCaracterización espectroscópicaEstabilidad fotoquímicaEnsayos citotóxicos y genotóxicosHemólisisSíntesis de compuestosTriamtereneDilution profilespectroscopic characterizationPhotochemical stabilityCytotoxic and genotoxic assaysSynthesis of compoundsHemolysisSíntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.Synthesis and characterization of new triamterene compounds with ZnCl2 and/or MnCl2: Evaluation of photosensitizing character and cytotoxic and genotoxic effects.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAcuña Cueva, E. R., Faure, R., Illán Cabeza, N. A., Jiménez Pulido, S. B., Moreno Carretero, M. N., & Quirós Olozábal, M. (2003). Synthesis and characterization of several lumazine derivative complexes of Co(II), Ni(II), Cu(II), Cd(II), Pd(II) and Pt(II). X-ray structures of a mononuclear copper complex and a dinuclear cadmium complex. Inorganica Chimica Acta, 351(1), 356–362. https://doi.org/10.1016/S0020-1693(03)00172-5Amin, P. O., Muhammadsharif, F. F., Raza Saeed, S., Ketuly, K., & Sulaiman, K. (2021). The Effect of Donor- pi -Acceptor Unit on the Optoelectronic Parameters of Poly ( Triamterene-co-Terephthalate ): Betalain Dye Composite System. March. https://www.researchgate.net/publication/350342735_The_Effect_of_Donor-pi-Acceptor_Unit_on_the_Optoelectronic_Parameters_of_PolyTriamterene-co-TerephthalateBetalain_Dye_Composite_SystemBawa, Y. (2007). Solvent inclusion properties of Triamterene crystal forms and solubility differences between Roxithromycin polymorphic forms. In Thesis (Issue April). http://repository.nwu.ac.za/handle/10394/1469Castillo, J., Rozo, C., Bertel, L., Rindzevicius, T., Mendez, S., Martinez, F., & Boisen, A. (2016). Orientation of Pterin-6-Carboxylic Acid on Gold Capped Silicon Nanopillars Platforms: Surface Enhanced Raman Spectroscopy and Density Functional Theory Studies. J. Braz. Chem. Soc., 27(5), 971–977. https://doi.org/10.5935/0103-5053.20150352Dahl, O., Ziedrich, K. H., Marek, G. J., & Paradies, H. H. (1989). Physicochemical and structural studies of triamterene. Journal of Pharmaceutical Sciences, 78(7), 598–606. https://doi.org/10.1002/jps.2600780719Díaz, N. A., Ruiz, J. A. B., Reyes, E. F., Cejudo, A. G., Novo, J. J., Peinado, J. P., Meléndez-Valdés, F. T., & Fiñana, I. T. (2010). Espectrofometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas (pp. 1–8). https://www.uco.es/dptos/bioquimica-biol-mol/practicasgenerales.htmel Azzouzi, N., el Fadli, Z., & Metni, M. R. (2017). Synthesis and chemical characterization of some transition metal complexes with a 6-acetyl-1,3,7-trimetyllumazine ligand. Journal of Materials and Environmental Science, 8(12), 4323–4328. https://doi.org/10.26872/jmes.2017.8.12.455El-Tabl, H. M., El-Saied, F. A., & Ayad, M. I. (2002). Manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II), and uranyl(VI) complexes of n-(4-formylantipyrine)benzothiazol-2-ylacetohydrazide. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 32(7), 1245–1262. https://doi.org/10.1081/SIM-120014301Entradas, T., Waldron, S., & Volk, M. (2020). The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. Journal of Photochemistry and Photobiology B: Biology, 204, 111787. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2020.111787Fiori, J., Ballardini, R., Andrisano, V., & Cavrini, V. (2003). Photostability studies on the furosemide-triamterene drug association. Farmaco, 58(9), 867–873. https://doi.org/10.1016/S0014-827X(03)00098-3Grisales, D. (2020). Determinación del carácter fotosensibilizador del oxígeno molecular singulete en el desarrollo de fototoxicidad asociada al uso de Triamtereno y de su combinación con la Hidroclorotiazida.Jensen, A. W. (1999). Drugs: Photochemistry and Photostability Edited by A. Albini and E. Fasani (Dell’ Universita Di Pavia). Journal of the American Chemical Society, 121(37), 8678–8678. https://doi.org/10.1021/ja9857559Jiménez Pulido, S. B., Linares Ordóñez, F. M., Martínez Martos, J. M., Moreno Carretero, M. N., Quirós Olozábal, M., & Ramírez Expósito, M. J. (2008). Metal complexes with the ligand derived from 6-acetyl-1,3,7-trimethyllumazine and benzohydrazide. Molecular structures of two new Co(II) and Rh(III) complexes and analysis of in vitro antitumor activity. Journal of Inorganic Biochemistry, 102(8), 1677–1683. https://doi.org/10.1016/j.jinorgbio.2008.04.004Jiménez Pulido, S. B., Linares Ordóñez, F. M., & Moreno Carretero, M. N. (2009). Novel coordination behavior of a pteridine-benzoylhydrazone ligand (BZLMH): Theoretical calculations, XRD structures and luminescence studies. Polyhedron, 28(13), 2641–2648. https://doi.org/10.1016/j.poly.2009.05.061Kapoor, V. K. (1994). Triamterene. In H. G. B. T.-A. P. of D. S. and E. Brittain (Ed.), Analytical Profiles of Drug Substances and Excipients (Vol. 23, pp. 571–605). Academic Press. https://doi.org/https://doi.org/10.1016/S0099-5428(08)60613-9León, I. E., Cadavid-Vargas, J. F., di Virgilio, A. L., & Etcheverry, S. (2016). Vanadium, ruthenium and copper compounds: A new class of non-platinum Metallodrugs with anticancer activity. Current Medicinal Chemistry, 23(30). https://doi.org/10.2174/0929867323666160824162546Llopis, M. J., Alzuet, G., Martin, A., Borrás, J., García-Granda, S., & Díaz, R. (1993). Halocuprates(II) of triamterinium, a diprotonated pteridine derivative. Crystal structure of (triamterinium)CuCl4. Electronic and EPR characterization of (triamterinium)CuX4 (X = Cl, Br). Polyhedron, 12(20), 2499–2506. https://doi.org/10.1016/S0277-5387(00)83075-2Makuła, P., Pacia, M., & Macyk, W. (2018). How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-VIS Spectra. Journal of Physical Chemistry Letters, 9(23), 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892Mukne, A. P., & Nagarsenker, M. (2004). Triamterene-β-cyclodextrin systems: Preparation, characterization and in vivo evaluation. AAPS PharmSciTech, 5(1), 142–150. https://doi.org/10.1208/pt050119Netzer, T., Ullrich, F., Knauf, H., & Mutschler, E. (1995). Potassium-Retaining Diuretics: Triamterene. In R. F. Greger, H. Knauf, & E. Mutschler (Eds.), Handbook of Experimental Pharmacology (1st ed., pp. 396–421). Springer. https://doi.org/10.1007/978-3-642-79565-7Onoda, H., Inoue, Y., Ezawa, T., Murata, I., Chantadee, T., Limmatvapirat, S., Oguchi, T., & Kanamoto, I. (2020). Preparation and characterization of triamterene complex with ascorbic acid derivatives. Drug Development and Industrial Pharmacy, 46(12), 2032–2040. https://doi.org/10.1080/03639045.2020.1842439Parnis, J. M., & Oldham, K. B. (2013). Beyond the beer-lambert law: The dependence of absorbance on time in photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 267, 6–10. https://doi.org/10.1016/j.jphotochem.2013.06.006Payan, A. (2015). Síntesis y caracterización estructural de un compuesto de coordinación con el ligando 6-metoxiquinolina y evaluación del carácter fotosensibilizador de oxígeno molecular singulete.Peng, B., Wang, J.-R., & Mei, X. (2018). Triamterene–furosemide salt: structural aspects and physicochemical evaluation. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 74(6), 738–741. https://doi.org/10.1107/S2052520618013185Peng, B., Zhang, Z., Wang, J. R., Li, M., Zhang, Q., & Mei, X. (2019). Confocal Raman micro-spectral evidence and physicochemical evaluation of triamterene salts. Analyst, 144(2), 530–535. https://doi.org/10.1039/c8an01579aQuintero, B., & Miranda, M. A. (2000). Mechanisms of photosensitization induced by drugs: A general survey. Ars Pharmaceutica, 41(1), 27–46.Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric identification of organic compounds (Seventh ed). John Wiley & sons, INC.Sperati, C. J., Zhang, C., Delsante, M., Gupta, R., Bagnasco, S., & Barman, I. (2018). Raman Spectroscopy for the Diagnosis of Intratubular Triamterene Crystallization. Kidney International Reports, 3(4), 997–1003. https://doi.org/10.1016/j.ekir.2018.03.010Travizano, M., Romano, S., & Kamienkowski, J. (2002). Determinación de la banda prohibida (band gap) en Si. Mathematica, 2. http://users.df.uba.ar/sgil/labo5_uba/inform/info/pautadas/band_gap_siI_2k2a.pdfVargas, F., Fuentes, A., Sequera, J., Méndez, H., Fraile, G., Velásquez, M., & Medina, R. (1998). In vitro approach to investigating the phototoxicity of the diuretic drug triamterene. Toxicology in Vitro, 12(6), 661–667. https://doi.org/10.1016/S0887-2333(98)00057-5Vargas, F., Volkmar, I. M., Sequera, J., Mendez, H., Rojas, J., Fraile, G., Velasquez, M., & Medina, R. (1998). Photodegradation and phototoxicity studies of furosemide. Involvement of singlet oxygen in the photoinduced hemolysis and lipid peroxidation. Journal of Photochemistry and Photobiology B: Biology, 42(3), 219–225. https://doi.org/10.1016/S1011-1344(98)00074-8Wiley, J. & S. (2021). Triamterene - Raman - Spectrum - SpectraBase. John Wiley & Sons, Inc. https://spectrabase.com/spectrum/682dsezWsXmWilkinson, F., Helman, W. P., & Ross, A. B. (1993). Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. Journal of Physical and Chemical Reference Data, 22(1), 113–262. https://doi.org/10.1063/1.555934Yoshikawa, A., Matsunami, H., & Nanishi, Y. (2007). Development and applications of wide bandgap semiconductors. Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices, 1–24. https://doi.org/10.1007/978-3-540-47235-3_1Zaheer, M. R., Gupta, A., Iqbal, J., Zia, Q., Ahmad, A., Roohi, Owais, M., Hashlamon, A., Mohd Setapar, S. H., Aliev, G., & Md Ashraf, G. (2016). Molecular mechanisms of drug photodegradation and photosensitization. Current Pharmaceutical Design, 22(7), 768–782. https://doi.org/10.2174/1381612822666151209151408Zoltan, T., Vargas, F., & Izzo, C. (2007). UV-VIS Spectrophotometrical and Analytical Methodology for the Determination of Singlet Oxygen in New Antibacterials Drugs. Analytical Chemistry Insights, 2, 117739010700200020. https://doi.org/10.4137/117739010700200015Acceptor_Unit_on_the_Optoelectronic_Parameters_of_PolyTriamterene-co-TerephthalateBetalain_Dye_Composite_SystemPhotobiology B: Biology, 204, 111787. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2020.111787Arencibia Arrebola, D. F., Rosario Fernández, L. A., & Curveco Sánchez, D. L. (2003). Principales ensayos para determinar la citotoxicidad de una sustancia, algunas consideraciones y su utilidad. Revista de Toxicología En Línea, 40–52. http://www.sertox.com.ar/img/item_full/19003.pdfAşkin Çelik, T. (2018). Introductory Chapter: Cytotoxicity. In Cytotoxicity. https://doi.org/10.5772/intechopen.77244Carmona-Martínez, V., Ruiz-Alcaraz, A. J., Vera, M., Guirado, A., Martínez-Esparza, M., & García-Peñarrubia, P. (2018). Therapeutic potential of pteridine derivatives: A comprehensive review. Medicinal Research Reviews, 1–56. https://doi.org/10.1002/med.21529Costa, M., Santos, B., Jorge, J., Alves, R., Marques, I., Sarmento, A., & Goncalves, A. (2022). Zinc Prevents DNA Damage in Normal Cells but Shows Genotoxic and Cytotoxic Effects in Acute Myeloid Leukemia Cells. International Journal of Molecular Sciences, 23(2567), 11. https://doi.org/https://doi.org/ 10.3390/ijms23052567Erkan, M., Aydin, Y., Orta Yilmaz, B., & Yildizbayrak, N. (2021). Chapter 42 - Protective effects of vitamin C against fluoride toxicity. In V. B. Patel & V. R. B. T.-T. Preedy (Eds.) (pp. 435–445). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-819092-0.00043-1Feldman, B. F., & Sink, C. A. (2008). “Methods”, Practical Transfusion Medicine. https://www.ivis.org/library/practical-transfusion-medicine/methodsFreshney, R. I. (2005). Culture of animal cells: A manual of basic technique (5th ed.). WILEY. https://doi.org/10.1002/9780471747598Gascón Jiménez, S. (2007). Mecanismos de regulación del receptor de glutamato tipo NMDA en excitotoxicidad e isquemia cerebral. http://hdl.handle.net/10486/2621Guillotin, D., Austin, P., Begum, R., Freitas, M. O., Merve, A., Brend, T., Short, S., Marino, S., & Martin, S. A. (2017). Drug-repositioning screens identify triamterene as a selective drug for the treatment of DNA mismatch repair deficient cells. Clinical Cancer Research, 23(11), 2880–2890. https://doi.org/10.1158/1078-0432.CCR-16-1216Horváthová, E., Slameňová, D., Hlinčíková, L., Mandal, T. K., Gábelová, A., & Collins, A. R. (1998). The nature and origin of DNA single-strand breaks determined with the comet assay. Mutation Research - DNA Repair, 409(3), 163–171. https://doi.org/10.1016/S0921-8777(98)00053-6Hsiao, Y. L., Chang, P. C., Huang, H. J., Kuo, C. C., & Chen, C. Y. C. (2014). Treatment of Acute Lymphoblastic Leukemia From Traditional Chinese Medicine. Evidence-Based Complementary and Alternative Medicine, 2014, 1–21. https://doi.org/10.1155/2014/601064IARC. (2016). Triamterene. In SOME DRUGS AND HERBAL PRODUCTS (Vol. 108, pp. 263–283). International Agency for Research on Cancer. World Health Organization. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Drugs-And-Herbal-Products-2015João Romão, M., Knäblein, J., Huber, R., & Moura, J. J. G. (1997). Structure and function of molybdopterin containing enzymes. Progress in Biophysics and Molecular Biology, 68(2), 121–144. https://doi.org/https://doi.org/10.1016/S0079-6107(97)00022-9Lima, P. D. L., Vasconcellos, M. C., Montenegro, R. C., Bahia, M. O., Costa, E. T., Antunes, L. M. G., & Burbano, R. R. (2011). Genotoxic effects of aluminum, iron and manganese in human cells and experimental systems: A review of the literature. Human and Experimental Toxicology, 30(10), 1435–1444. https://doi.org/10.1177/0960327110396531Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2006). Lehninger PRINCIPIOS DE BIOQUÍMICA (Cuarta edi).López Ortiz, J. B. (Universidad N. de C., & Márquez Fernández, M. E. (Universidad N. de C. (2002). Modelo experimental para el estudio cromosómico en células de mamíferos. Laboratorio de Genética, Universidad Nacional de Colombia.López, S. L., Aiassa, D., Benítez Leite, S., Lajmanovich, R., Mañas, F., Poletta, G., Śnchez, N., Simoniello, M. F., & Carrasco, A. E. (2012). Pesticides used in South American GMO-based agriculture. A review of their effects on humans and animal models. In Advances in Molecular Toxicology (Vol. 6). https://doi.org/10.1016/B978-0-444-59389-4.00002-1Lorente, C. (2003). Fotofísica y propiedades fotosensibilizadoras de pterinas en solución acuosa. http://sedici.unlp.edu.ar/handle/10915/2216Martínez-Pardo, M. (2012). Deficiencias de tetrahidrobiopterina (BH4): diagnóstico y tratamiento. Acta Pediátrica de México, 33(6), 319–323. http://www.medigraphic.com/pdfs/actpedmex/apm-2012/apm126l.pdfMoghadam, N. H., Salehzadeh, S., Tanzadehpanah, H., Saidijam, M., Karimi, J., & Khazalpour, S. (2018). In vitro cytotoxicity and DNA/HSA interaction study of triamterene using molecular modelling and multi-spectroscopic methods. Journal of Biomolecular Structure and Dynamics, 37(9), 2242–2253. https://doi.org/10.1080/07391102.2018.1489305Mutschler, E., Gilfrich, H. J., Knauf, H., Mörke, W., & Völger, K. D. (1983). Pharmacokinetics of triamterene. Clinical and Experimental Hypertension, A5(2), 249–269. https://doi.org/10.3109/10641968309048825Park, N. Y., Jo, D. S., Kim, Y. H., Bae, J.-E., Kim, J. B., Park, H. J., Choi, J. Y., Lee, H. J., Chang, J. H., Bunch, H., Jeon, H. B., Jung, Y.-K., & Cho, D.-H. (2021). Triamterene induces autophagic degradation of lysosome by exacerbating lysosomal integrity. Archives of Pharmacal Research, 44(6), 621–631. https://doi.org/10.1007/s12272-021-01335-5Pérez-González, A., Gómez-Peralta, J. I., Garza-Ortiz, A., & Barba-Behrens, N. (2012). Importancia del molibdeno en los sistemas biológicos y su papel en enzimas mononucleares como parte del cofactor Moco. Educacion Quimica, 23(1), 23–32. https://doi.org/10.1016/s0187-893x(17)30094-0Pfleiderer, W., Kappel, M., & Baur, R. (1984). Biochemical and Clinical Aspects of Pteridines. 369(2). https://doi.org/doi:10.1515/bchm3.1988.369.2.527Schalhorn, A., Siegert, W., & Sauer, H. (1981). Antifolate Effect of Triamterene on Human Leucocytes and on a Human Lymphoma Cell Line. European Journal of Clinical Pharmacology, 20, 219–224.Seukep, A. J., Noumedem, J. A. K., Djeussi, D. E., & Kuete, V. (2014). 9 - Genotoxicity and Teratogenicity of African Medicinal Plants. Toxicological Survey of African Medicinal Plants, 235–275. https://doi.org/https://doi.org/10.1016/B978-0-12-800018-2.00009-1Stryer, L. (1995). Biochemistry (4th editio). W. H. Freeman and Company. Thomas, A. H. (2001). Fotoquímica de ácido fólico, 6-formilpterina y 6-carboxipterina en solución acuosa. http://sedici.unlp.edu.ar/handle/10915/2215Turkez, H., Arslan, M. E., & Ozdemir, O. (2017). Genotoxicity testing: progress and prospects for the next decade. Expert Opinion on Drug Metabolism and Toxicology, 13(10), 1089–1098. https://doi.org/10.1080/17425255.2017.1375097Ulukaya, E., Ozdikicioglu, F., Oral, A. Y., & Demirci, M. (2008). The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 22(1), 232–239. https://doi.org/10.1016/j.tiv.2007.08.006Wu, Q., Liu, J., Xu, X., Huang, B., Zheng, D., & Li, J. (2021). Mechanism of megaloblastic anemia combined with hemolysis. Bioengineered, 12(1), 6703–6712. https://doi.org/10.1080/21655979.2021.1952366EstudiantesInvestigadoresMaestrosORIGINAL1085282761.2022.pdf1085282761.2022.pdfTesis de Maestria en Ciencias-Químicaapplication/pdf2219580https://repositorio.unal.edu.co/bitstream/unal/81916/3/1085282761.2022.pdfb12444ab3e81cce8c2058767af897963MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81916/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1085282761.2022.pdf.jpg1085282761.2022.pdf.jpgGenerated Thumbnailimage/jpeg4458https://repositorio.unal.edu.co/bitstream/unal/81916/5/1085282761.2022.pdf.jpg7ca4b3e5e747a1690fb60ea4c952d51bMD55unal/81916oai:repositorio.unal.edu.co:unal/819162023-08-06 23:04:25.586Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK