Parámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustrato
ilustraciones, fotografías, diagramas
- Autores:
-
Ladino Fandiño, Wendy Andrea
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85365
- Palabra clave:
- 570 - Biología::571 - Fisiología y temas relacionados
630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)
Fisiología vegetal
Nutrición de las plantas
Cannabis sativa
plant physiology
plant nutrition
Cannabis sativa
Cannabinoides
Fisiología del cannabis
Rendimiento flor seca
Curva de extracción de nutrientes
Fibra de coco
Suelo
Escala fenológica
Soil
Coconut fiber
Cannabinoids
Phenological scale
Cannabis physiology
Dry flower yield
Nutrient extraction curve
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_bcebf644ddd273344c31d0606c21ecfe |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85365 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Parámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustrato |
dc.title.translated.eng.fl_str_mv |
Physiological parameters, nutrient extraction curve and yield of three varieties of cannabis sativa L. cultivated in soil and substrate |
title |
Parámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustrato |
spellingShingle |
Parámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustrato 570 - Biología::571 - Fisiología y temas relacionados 630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura) Fisiología vegetal Nutrición de las plantas Cannabis sativa plant physiology plant nutrition Cannabis sativa Cannabinoides Fisiología del cannabis Rendimiento flor seca Curva de extracción de nutrientes Fibra de coco Suelo Escala fenológica Soil Coconut fiber Cannabinoids Phenological scale Cannabis physiology Dry flower yield Nutrient extraction curve |
title_short |
Parámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustrato |
title_full |
Parámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustrato |
title_fullStr |
Parámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustrato |
title_full_unstemmed |
Parámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustrato |
title_sort |
Parámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustrato |
dc.creator.fl_str_mv |
Ladino Fandiño, Wendy Andrea |
dc.contributor.advisor.spa.fl_str_mv |
Moreno Fonseca, Liz Patricia |
dc.contributor.author.spa.fl_str_mv |
Ladino Fandiño, Wendy Andrea |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0001-7317-1052 |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Wendy-Ladino-2 |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::571 - Fisiología y temas relacionados 630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura) |
topic |
570 - Biología::571 - Fisiología y temas relacionados 630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura) Fisiología vegetal Nutrición de las plantas Cannabis sativa plant physiology plant nutrition Cannabis sativa Cannabinoides Fisiología del cannabis Rendimiento flor seca Curva de extracción de nutrientes Fibra de coco Suelo Escala fenológica Soil Coconut fiber Cannabinoids Phenological scale Cannabis physiology Dry flower yield Nutrient extraction curve |
dc.subject.agrovoc.spa.fl_str_mv |
Fisiología vegetal Nutrición de las plantas Cannabis sativa |
dc.subject.agrovoc.eng.fl_str_mv |
plant physiology plant nutrition Cannabis sativa |
dc.subject.proposal.spa.fl_str_mv |
Cannabinoides Fisiología del cannabis Rendimiento flor seca Curva de extracción de nutrientes Fibra de coco Suelo Escala fenológica |
dc.subject.proposal.eng.fl_str_mv |
Soil Coconut fiber Cannabinoids Phenological scale Cannabis physiology Dry flower yield Nutrient extraction curve |
description |
ilustraciones, fotografías, diagramas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-09-03 |
dc.date.accessioned.none.fl_str_mv |
2024-01-18T18:52:31Z |
dc.date.available.none.fl_str_mv |
2024-01-18T18:52:31Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85365 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85365 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
Agrosavia Agrovoc |
dc.relation.references.spa.fl_str_mv |
Abad, M., Fornes, F., Carrión, C., Noguera, V., Noguera, P., Maquieira, Á., y Puchades, R. (2005). Physical properties of various coconut coir dusts compared to peat. HortScienc. 40, 2138–2144. doi: 10.21273/HORTSCI.40.7.2138. Abad, M., Noguera, P., Puchades, R., Maquieira, A., y Noguera, V. (2002). Physicochemical and chemical properties of some coconut coir dust for use as a peat substitute for containerised ornamental plants. Bioresour. Technol. 82(3), 241-245. doi: 10.1016/s0960-8524(01)00189-4. Ač, A., Malenovský, Z., Olejníčková, J., Gallé, A., Rascher, U., y Mohammed, G. (2015). Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sensing of Environment, 168, 420–436. doi:10.1016/j.rse.2015.07.022. Ahmad, R., Tehsin, Z., Malik, S.T., Asad, S.A., Shahzad, M., Bilal, M., Shah, M.M., y Khan, S.A. (2016). Phytoremediation potential of hemp (Cannabis sativa L.): Identification and characterization of heavy metals responsive genes: Biotechnology. CLEAN Soil Air Water. 44, 195–201. doi: 10.1002/clen.201500117. Akram, N.A., Shafiq, F., Ashraf, M., Iqbal, M., y Ahmad, P. (2021). Advances in Salt Tolerance of Some Major Fiber Crops Through Classical and Advanced Biotechnological Tools: A Review. J. Plant Growth Regul. 40, 891–905. doi: 10.1007/s00344-020-10158-5 Amaducci, S., Colauzzi, M., Bellocchi, G., y Venturi, G. (2008). Modelling post-emergent hemp phenology (Cannabis sativa L.): Theory and evaluation. Europ. J. Agronomy. 28, 90–102. doi: 10.1016/j.eja.2007.05.006. Amaducci, S., Errani, M., y Venturi, G. (2002). Response of hemp to plant population and nitrogen fertilization. Ital. J. Agron. 6, 103–111. Andre, C.M., Hausman, J.F., y Guerriero, G. (2016). Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 7:19. doi: 10.3389/fpls.2016.00019. Angelova, V., Ivanova, R., Delibaltova, V., y Ivanov, K. (2004). Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind. Crops Prod. 19, 197–205. doi:10.1016/j.indcrop.2003.10.001. Arcila-Pulgarin, J., Buhr L., Bleiholder, H., Hack, H., Meier, U., y Wicke H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology. 141, 19-27. doi: 10.1111/j.1744-7348.2002.tb00191.x.ç Aubin, M., Seguin, P., Vanasse, A., Tremblay, G.F., Mustafa, A.F., y Charron, J. (2015). Industrial Hemp Response to Nitrogen, Phosphorus, and Potassium Fertilization. Crop. Forage Turfgrass Manag. 1, 1–10. doi: 10.2134/cftm2015.0159. Backer, R., Schwinghamer, T., Rosenbaum, P., McCarty, V., Eichhorn Bilodeau, S., Lyu, D., Ahmed, M.B., Robinson, G., Lefsrud, M., Wilkins, O., y Smith, D.L. (2019). Closing the yield gap for Cannabis: a meta-analysis of factors determining Cannabis yield. Front. Plant Sci. 10, 1-15. doi: 10.3389/fpls.2019.00495 Baker, D., Pryce, G., Giovannoni, G., y Thompson, A.J. (2003). The therapeutic potential of Cannabis. Lancet Neurol. 2(5), 291–298. doi: 10.1016/S1474-4422(03)00381-8. Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 59, 89-113. doi: 10.1146/annurev.arplant.59.032607.092759. Baron, E.P. (2018). Medicinal properties of cannabinoids, terpenes, and flavonoids in Cannabis, and benefits in migraine, headache, and pain: An update on current evidence and Cannabis science. Headache, 58(7), 1139–1186. doi: 10.1111/head.13345. Barrett, G.E., Alexander, P.D., Robinson, J.S., y Bragg, N.C. (2016). Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 212, 220–234. doi: 10.1016/j.scienta.2016.09.030. Bar-Tal, A. (1999). The significance of root size for plant nutrition in intensive horticulture. In Mineral Nutrition of Crops: Fundamental Mechanisms and Implications (Z. Rengel, ed.). New York: Haworth Press, Inc., pp. 115–139. Beerling, E.A.M., Blok, C., van der Maas, A.A., y van Os, E.A. (2014). Closing the water and nutrient cycles in soilless cultivation systems. Acta Hortic.1034, 49–55. doi: 10.17660/ActaHortic.2014.1034.4. Benlloch, R., Berbel, A., Serrano-Mislata, A., y Madueno, F. (2007). Floral initiation and inflorescence architecture: a comparative view. Ann. Bot. 100, 659–676. doi: 10.1093/aob/mcm146 Bernstein, N., Gorelick, J., Zerahia, R., y Koch, S. (2019). Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Front. Plant Sci. 10, 1–13. doi: 10.3389/fpls.2019.00736. Bertsch, F., Hernández, J.C., Arguedas, F. y Acosta, M. (2003). Curvas de absorción de nutrimentos en dos variedades, Bribri y Sacapobres, de frijol común de grano rojo. Agronomía Costarricense. 27(2), 75-81. Bertsch-Hernández, F. (2003). Absorción de nutrimentos por los cultivos. Asociación Costarricense de la Ciencia del Suelo. San José, Costa Rica. Blok, C., y Verhagen, J.B.G.M. (2009). Trends in rooting media in dutch horticulture during the period 2001–2005: The new growing media project. Acta Hortic. 819, 47–58. Bonini, S., Pemoli, M., Tambaro, S., Kumar, A., Maccarinelli, G., Memo, M., y Mastinu, A. (2018). Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. Journal of Ethnopharmacology. 227, 300-315. doi: 10.1016/j.jep.2018.09.004. Booth, J.K., y Bohlmann, J. (2019). Terpenes in Cannabis sativa – From plant genome to humans. Plant Science. 284, 67–72. doi: 10.1016/j.plantsci.2019.03.022. Bouchard, M. (2008). Towards a realistic method to estimate Cannabis production in industrialized countries. Contemporary Drug Problems. 35, 291-320. doi:10.1177/009145090803500206. Bridgeman, M.B., y Abazia, D.T. (2017). Medicinal Cannabis: history, pharmacology, and implications for the acute care setting. Pharm. Ther. 42(3), 180-188. Bryson, G.M., Mills, H.A., Sasseville, D.N., Jones, J.B., Jr., y Barker, A.V. (2014). Plant Analysis Handbook III: A Guide to Sampling, Preparation, Analysis and Interpretation for Agronomic and Horticultural Crops; Micro-Macro Publishing, Inc.: Athens, GA, USA. Bunt, A.C. (1988). Media and Mixes for Container-Growth Plants; Unwin Hyman: London, UK. Burgel, L., Hartung, J., Schibano, D., y Graeff-Hönninger, S. (2020). Impact of Different Phytohormones on Morphology, Yield and Cannabinoid Content of Cannabis sativa L. Plants. 9, 725. doi: 10.3390/plants9060725. Burgel, L., Hartung, J., y Graeff-Hönninger, S. (2020). Impact of Different Growing Substrates on Growth, Yield and Cannabinoid Content of Two Cannabis sativa L. Genotypes in a Pot Culture. Horticulturae. 6(4), 62. doi:10.3390/horticulturae6040062. Calvache, A. (2015). Curvas de absorción en plátano. En: Avellán, L., Calvache, M., y Cabeña, N. (ed.). Curvas de absorción de nutrientes por el cultivo de plátano barraganete (Musa paradisiaca L.). Tsafiqui. pp. 17-19. Campbell, B.J., Berrada, A.F., Hudalla, C., Amaducci, S., y McKay, J.K. (2019). Genotype x Environment Interactions of Industrial Hemp Cultivars Highlight Diverse Responses to Environmental Factors. Agrosyst. Geosci. Environ. 2, 1–11. doi: 10.2134/age2018.11.0057. Campbell, S.M., Anderson, S.L., Brym, Z.T., y Pearson, B.J. (2021). Evaluation of substrate composition and exogenous hormone application on vegetative propagule rooting success of essential oil hemp (Cannabis sativa L.). PLoS One.16(7):e0249160. doi: 10.1371/journal.pone.0249160. Candelario-Guerrero, D.A., Calabria-Parodi., L.E., Pardey-Rodríguez, C., y Vargas-Sánchez, J.J. (2023). Phenology of ten cultivars of Cannabis sativa L. under the environmental conditions of Palomino, La Guajira. Intropica, 18(1). doi: 10.21676/23897864.4672. Caplan, D., Dixon, M., and Zheng, Y. (2017). Optimal rate of organic fertilizer during the flowering stage for Cannabis grown in two coir-based substrates. HortScience 52, 1796-1803. doi: 10.21273/hortsci12401-17. Caplan, D., Dixon, M., y Zhenga, Y. 2019. Coir-based growing substrates for indoor Cannabis production. Acta Hortic. 1266, 55-62. doi: 10.17660/ActaHortic.2019.1266.9. Caplan, D., Dixon, y M., Zheng, Y. (2019). Increasing inflorescence dry weight and cannabinoid content in medical Cannabis using controlled drought stress. HortScience. 54, 964-969. doi: 10.21273/HORTSCI13510-18. Caplan, D.M. (2018). Propagation and Root Zone Management for Controlled Environment Cannabis Production. Ph.D. Thesis. Guelph, ON: University of Guelph. Caulkins, J.P., Coulson, C.C., Farber, C., y Vesely, J.V. (2012). Marijuana legalization: Certainty, impossibility, both, or neither? J. Drug Policy Anal. 5, 1–27. doi: 10.1515/1941-2851.1035. Cervantes, J. (2006). Marijuana horticulture: The Indoor/Outdoor Medical Grower's Bible. (Vancouver: Van Patten Publishing). Chadillon-Farinacci, V., Apparicioet, P., y Morselli, C. (2013). Géographie du Cannabis au Québec: Du producteur au consommateur. Revue canadienne de sciences regionals. Canadian Journal of Regional Science. 36, 13-22. Chadillon-Farinacci, V., Apparicioet, P., y Morselli, C. (2015). Cannabis cultivation in Quebec: Between space–time hotspots and coldspots. International Journal of Drug Policy. 26, 311-322. Chandra, S., Lata, H., Khan, I., y Elsohly, M. (2008). Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiology and molecular biology of plants. 14, 299-306. doi: 10.1007/s12298-008-0027-x. Chandra, S., Lata, H., Khan, I., y Elsohly, M. (2011). Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L. Physiology and molecular biology of plants. 17, 297-303. doi: 10.1007/s12298-011-0068-4. Chandrakant, M., y Upreti, K.K. (2019). Phenological growth stages in mangosteen (Garcinia mangostana L.) according to the extended BBCH scale. Annals Applied Biology. 176(1), 16–25. doi: 10.1111/aab.12552. Chen, X., Qi, Z., Gui, D., Gu, Z., Ma, L., Zeng, F., Li, L. (2019). Simulating impacts of climate change on cotton yield and water requirement using RZWQM2. Agric. Water Manag. 222, 231–241. doi:10.1016/j.agwat.2019.05.030. Chouvy, P. A. (2019). Cannabis cultivation in the world: heritages, trends and challenges. EchoGéo 48, 1–20. doi: 10.4000/echogeo.17591 Citterio, S., Santagostino, A., Fumagalli, P., Prato, N., Ranalli, P., Sgorbati, S. (2003). Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil. 256, 243–252. doi: 10.1023/A:1026113905129. Clark, M.J., y Zheng, Y. (2017). Effect of topdressed controlled-release fertilizer rates on nursery crop quality and growth and growing substrate nutrient status in the Niagara region, Ontario, Canada. HortScience. 52, 167-173. doi: 10.21273/HORTSCI11309-16. Cockson, P., Landis, H., Smith, T., Hicks, K., y Whipker, B.E. (2019). Characterization of Nutrient Disorders of Cannabis sativa. Appl. Sci. 9, 4432. doi: 10.3390/app9204432. Coffman, C.B., y Gentner, W.A. (1977). Responses of greenhouse-grown Cannabis sativa L. To nitrogen, phosphorus, and potassium. Agron. J. 69, 832–836. doi: 10. 2134/agronj1977.00021962006900050026x. Cooper, G. M., y Hausman, R. E. (2004). The cell: a molecular approach. Sunderland, MA: Sinauer Associates. Danziger, N., y Bernstein, N. (2021) Plant architecture manipulation increases cannabinoid standardization in ‘drug-type’ medical Cannabis. Industrial Crops & Products. 167, 113528. doi: 10.1016/j.indcrop.2021.113528. Davidenco, V., Vega, C., Viccardi, M., y Arguello, J. (2015). Development in Origanum sp.: A simple phenological scale to determine thermal time requirements to critical reproductive events. Scientia Horticulturae, 186. 70-76. doi: 10.1016/j.scienta.2015.02.012. Dayanandan, P., y Kaufman, P. B. (1976). Trichomes Of Cannabis Sativa L. (Cannabaceae). American Journal of Botany. 63(5), 578-591. ISSN/ISBN: 0002-9122. De Meijer, E. (2014). The chemical phenotypes (chemotypes) of Cannabis. In Handbook of Cannabis; Oxford University Press: Oxford, UK. pp. 89-110. De Prato, L., Ansari, O., Hardy, G.E., Howieson, J., O’Hara, G., y Ruthrof, K.X. (2022). The cannabinoid profile and growth of hemp (Cannabis sativa L.) is influenced by tropical daylengths and temperatures, genotype and nitrogen nutrition. Industrial Crops & Products. 178, 114605. doi: 10.1016/j.indcrop.2022.114605. Deng, G., Du, G., Yang, Y., Bao, Y., y Liu, F. (2019). Planting Density and Fertilization Evidently Influence the Fiber Yield of Hemp (Cannabis sativa L.). Agronomy. 9, 368. doi:10.3390/agronomy9070368. Ebersbach, P., Stehle, F., Kayser, O., y Freier, E. (2018). Chemical fingerprinting of single glandular trichomes of Cannabis sativa by coherent anti-stokes raman scattering (CARS) Microscopy. BMC Plant Biol. 18, 1-12. doi: 10.1186/s12870-018-1481-4. Endress, P.K. (2010). Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J. Syst. Evol. 48, 225–239. doi: 10.1111/j.1759-6831.2010.00087.x. Epstein, E., y Bloom, A.J. (2005). Mineral metabolism. In: Epstein, E., Bloom, A.J. (Eds.), Mineral Nutrition of Plants: Principles and Perspectives. Sinauer Associates, Inc., Sunderland, Massachusetts, pp. 201–207. Evans, M.R., y Gachukia, M. (2004). Fresh Parboiled Rice Hulls Serve as an Alternative to Perlite in Greenhouse Crop Substrates. HortScience. 39, 232–235. doi: 10.21273/HORTSCI.39.2.232. Farag, S., y Kayser, O. (2015). Cultivation and breeding of Cannabis sativa L. For preparation of standardized extracts for medicinal purposes. In: Mathe, A. (Ed.), Medicinal and Aromatic Plants of the World. Springer, Budapest, Hungary, pp. 165–186. doi: 10.1007/978-94-017-9810-5_9. Faux, A.M., Draye, X., Lambert, R., d'Andrimont, R., Raulier, P., y Bertin, P. (2013). The relationship of stem and seed yields to flowering phenology and sex expression in monoecious hemp (Cannabis sativa L.). European Journal of Agronomy. 47. 11–22. doi: 10.1016/j.eja.2013.01.006. Finnan, J., y Burke, B. (2013). Nitrogen fertilization to optimize the greenhouse gas balance of hemp crops grown for biomass. GCB Bioenergy. 5, 701–712. doi: 10.1111/gcbb.12045. Flores-Magdaleno, H., Flores-Gallardo, H., y Ojeda-Bustamante, W. (2014). Phenological prediction of potato crop by means of thermal time. Revista Fitotecnia Mexicana. 37(2), 149–157. ISSN 0187-7380. Fonteno, W.C. (1993). Problems & considerations in determining physical properties of horticultural substrates. In International Symposium on Horticultural Substrates Other than Soil In Situ; Acta Horticulturae: Leuven, Belgium. Volumen 342, 197–204. Pérez-Asseff, J. M., Peña E.J., y Torres, C. (2007) Efecto del nitrógeno y la irradianza en la eficiencia fotosintética del anamú Petiveria alliacea (Phytolaccaceae). Rev. Acad. Colomb. Cienc. 31(118), 49-55. ISSN 0370-3908. Fournier, G., Richez-Dumanois, C., Duvezin, J., Mathieu, J.-P., y Paris, M. (1987). Identification of a new chemotype in Cannabis sativa: Cannabigerol-Dominant plants, biogenetic and agronomic prospects. Planta Med. 53, 277-280. doi: 10.1055/s-2006-962705. Friedrich, S., y Pauly, M. (2018). MATS: Inference for potentially singular and heteroscedastic MANOVA. Journal of Multivariate Analysis, 165, 166-179. doi: 10.1016/j.jmva.2017.12.008. Gagne, S. J., Stout, J. M., Liu, E., Boubakir, Z., Clark, S. M., y Page, J. E. (2012). Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides, Proc. Natl. Acad. Sci. U. S. A. 109, 12811–12816. doi:10.1073/pnas.1200330109 Gallo-Molina, A., Castro-Vargas, H., Garzón-Méndez, W., Martínez, J., Rivera, Z., King, J., y Parada-Alfonso, F. (2019). Extraction, isolation and purification of tetrahydrocannabinol from the Cannabis sativa L. plant using supercritical fluid extraction and solid phase extraction. The Journal of Supercritical Fluids. 146, 208-216. doi: 10.1016/j.supflu.2019.01.020. García, A.D., y López, C. (2002). Temperatura base y tasa de extensión foliar del maíz. Revista Fitotecnia Mexicana. 25(4), 381-386. doi:10.35196/rfm.2002.4.281. Giraldo, C.J., Cano, M.A.O., y Ribas, R.F. (2010). Respuesta fotosintética de diferentes ecotipos de fríjol a la radiación y la salinidad. Ciencia y Tecnología Agropecuaria. 10(2), 129-140. doi: 10.21930/rcta.vol10_num2_art:135. Goh, C.H., Ko, S.M., Koh, S., Kim, Y.J., y Bae, H.J. (2012). Photosynthesis and environments: photoinhibition and repair mechanisms in plants. J. Plant Biol. 55(2), 93–101. doi: 10.1007/s12374-011-9195-2. González, F., Cabezas, M., Ramírez-Gómez, M., y Ramírez, J. (2018). Macronutrient absorption curves in three varieties of sugarcane (Saccharum officinarum L.) for panela in the hoya del río Suárez. Rev. U.D.C.A Act. & Div. Cient. 21(2), 395-404. doi: 10.31910/rudca.v21.n2.2018.995. Gorelick, J., y Bernstein, N. (2017). Chemical and Physical Elicitation for Enhanced Cannabinoid Production in Cannabis. En: S. Chandra et al. (eds.), Cannabis sativa L. - Botany and Biotechnology, pp. 439-456. doi: 10.1007/978-3-319-54564-6_21. Graber, A., Junge, R. (2009). Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246, 147–156. doi: 10.1016/j.desal.2008.03.048. Guo, F., Luo, H., Shi, Z., Wu, Y., y Liu, H. (2021). Substrate salinity: A critical factor regulating the performance of microbial fuel cells, a review. Science of the Total Environment. 763, 143021. doi: 10.1016/j.scitotenv.2020.143021. Hacke, A.C.M., Lima, D., de Costa, F., Deshmukh, K., Li, N., Chow, A.M., Marques, J.A.,Pereira, R.P., y Kerman, K. (2019). Probing the antioxidant activity of Δ 9-tetrahydrocannabinol and cannabidiol in Cannabis sativa extracts. Analyst. 144(16), 4952-4961. doi: 10.1039/c9an00890j. Hampson, A.J., Grimaldi, M., Axelrod, J., y Wink, D. (1998). Cannabidiol and (−) Δ9 tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. Unit. States Am. 95 (14), 8268-8273. doi: 10.1073/pnas.95.14.8268. Hanuš, L.O., Meyer, S.M., Muñoz, E., Taglialatela-Scafati, O., y Appendino, G. (2016) Phytocannabinoids: a unified critical inventory. Nat Prod Rep. 33(12), 1357-1392. doi: 10.1039/c6np00074f. Hartsel, J. A., Eades, J., Hickory, B., y Makriyannis, A. (2016). Cannabis sativa and Hemp. Nutraceuticals. 735–754. doi:10.1016/b978-0-12-802147-7.00053-x. Hauck, R.D., Goyal, S.S., y Huffaker, R.C. (1984). Nitrogen toxicity in plants. Nitrogen in Crop Production, pp. 97–118. doi: 10.2134/1990.nitrogenincropproduction.c6. Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Skrumsager Møller, I., et al. (2012). “Functions of macronutrients,” en Marschner”s Mineral Nutrition of Higher Plants, ed. H. Marschner (Cambridge, MA: Academic Press), 135–190. Hazekamp, A., Choi, Y, y Verpoorte, R. (2004). Quantitative Analysis of Cannabinoids from Cannabis sativa Using 1H-NMR. Chemical & pharmaceutical bulletin. 52, 718-21. doi: 10.1248/cpb.52.718. Hazekamp, A., Tejkalov´a, K., Papadimitriou, S. (2016). Cannabis: From Cultivar to Chemovar II - A Metabolomics Approach to Cannabis Classification. Cannabis Cannabinoid Res. 1(1), 202–215. doi: 10.1089/can.2016.0017. Heller, H., Bar-Tal, A., Assouline, S., Narkis, K., Suryano, S., de la Forge, A., Barak, M., Alon, H., Bruner, M., Cohen, S., y Tsohar, D. (2015). The effects of container geometry on water and heat regimes in soilless culture: lettuce as a sase study. Irrig. Sci. 33, 53-65. doi: 10.1007/s00271-014-0448-y. Hernández, M., Chailloux, M., Moreno, V., Igarza, A., y Ojeda, A. (2014). Nutrient levels of reference in the soil solution to the nutrition diagnostic in the tomato protected crop. IDESIA. 32(2), 79-88. doi: 10.4067/S0718-34292014000200011. Hoyos, D., Morales, J.G., Chavarría, H., Montoya, A.P., Correa, G., y Jaramillo, S. (2012). Acumulación de Grados-Día en un Cultivo de Pepino (Cucumis sativus L.) en un Modelo de Producción Aeropónico. Rev.Fac.Nal.Agr.Medellín. 65(1), 6389-6398. Hu, H., y Brown, P.H. (1994). Localization of boron in cell walls of squash and tobacco and its association with pectin (evidence for a structural role of boron in the cell wall). Plant Physiol. 105, 681–689. doi: 10.1104/pp.105.2.681. Huaran, H., Haoa, L., Guanghuia, D., Feib, Y., Ganga, D., Yanga, Y., y Feihu, L. (2019). Fiber and seed type of hemp (Cannabis sativa L.) responded differently to salt-alkali stress in seedling growth and physiological indices. Industrial Crops & Products. 129, 624–630. doi: 10.1016/j.indcrop.2018.12.028. Hussain T, Jeena G, Pitakbut T, Vasilev N, y Kayser O. (2021). Cannabis sativa research trends, challenges, and new-age perspectives. iScience. 24(12), 103391. doi: 10.1016/j.isci.2021.103391. Hussain, J., Rehman, N., Al-Harrasi, A., Ali, L., Latif, A., Albroumi, M.A. (2013). Essential oil composition and nutrient analysis of selected medicinal plants in Sultanate of Oman. Asian Pac J Trop Dis. 3(6), 421-428. doi: 10.1016/S2222-1808(13)60095-X. Igwe, A.N., Quasem, B., Liu, N., y Vannette, R.L. (2021) Plant phenology influences rhizosphere microbial community and is accelerated by serpentine microorganisms in Plantago erecta. FEMS Microbiol Ecol. 97,1–12. doi: 10.1093/femsec/fiab085. Jaramillo-Robledo, A. (2005). Clima andino y café en Colombia. Cenicafe. Ji, F.-S., Tang, L., Li, Y.-Y., Wang, W.-C., Yang, Z., Li, X.-G., et al. (2019). Differential proteomic analysis reveals the mechanism of musa paradisiaca responding to salt stress. Mol. Biol. Rep. 46, 1057–1068. doi: 10.1007/s11033-018-4564-2. Jiménez-Suancha, S.C., Álvarado S., O.H., y Balaguera-López, H.E. (2015). Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Revista Colombiana de Ciencias Hortícolas, 9(1), 149–160. doi: 10.17584/rcch.2015v9i1.3753. Jin, D., Jin, S., y Chen, J. (2019). Cannabis indoor growing conditions, management practices, and post-harvest treatment: a review. Am. J. Plant Sci. 10, 925–946. doi: 10.4236/ajps.2019.106067. Jin, Q., Wang, Y., Li, X., Wu, S., Wang, Y., Luo, J., Mattson, N., y Xu, Y. (2017). Interactions between ethylene, gibberellin and abscisic acid in regulating submergence induced petiole elongation in Nelumbo nucifera. Aquatic Botany, 137, 9–15. doi:10.1016/j.aquabot.2016.11.002. Joshi, S.C., y Palni, L.M.S. (2005). Greater sensitivity of Hordeum himalayens Schult. to increasing temperature causes reduction in its cultivated area. Current Science, 89(5), 879–882. https://www.jstor.org/stable/24111036. Khajuria, M., Prakash, V., y Vyasa, D. (2020). Photochemical efficiency is negatively correlated with the Δ9 - tetrahydrocannabinol content in Cannabis sativa L. Plant Physiology and Biochemistry. 151, 589-600. doi: 10.1016/j.plaphy.2020.04.003. Khan, M., Van-Eck, H.,y Striuk, P. (2013). Model-Based Evaluation of Maturity Type of Potato Using a Diverse Set of Standard Cultivars and a Segregating Diploid Population. Potato Research, 56(1), 127-146. doi: 10.1007/s11540-013-9235-z. Kishore, K. (2019). Phenological growth stages and heat unit requirement of Indian blackberry (Syzygium cumini L., Skeels). Scientia Horticulturae, 249, 455-460. doi: 10.1016/j.scienta.2019.02.032. Kocjan Ačko, D., Flajšman, M., Trdan, S. (2019). Apical bud removal increased seed yield in hemp (Cannabis sativa L.). Acta Agric. Scand. Sect. B Soil Plant Sci. 69, 317–323. doi: 10.1080/09064710.2019.1568540 Kudo, G., y Cooper, E.J. (2019). When spring ephemerals fail to meet pollinators: mechanism of phenological mismatch and its impact on plant reproduction. Proc Biol Sci, 286, 20190573. doi: 10.1098/rspb.2019.0573. Kutman, U.B., Yildiz, B., Cakmak, I. (2011). Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil. 342, 149–164. doi: 10.1007/s11104-010-0679-5. Laginha, A.M. (2018). High-Tech-Anbau von Cannabis. Dtsch. Apoth. Ztg. 158, 36-43. doi:10.13140/RG.2.1.1790.2486. Lamarck, J.-B. (1811). Encyclopédie méthodique, botanique: Suppl. 2: Panckoucke. Lancashire, P.D., Bleiholder, H., Langelüddecke, P., Stauss, R., Van Den Boom, T., Weber, E., y Witzenberger, A. (1991). An uniform decimal code for growth stages of crops and weeds. Ann. appl. Biol. 119, 561-601. doi: 10.1111/j.1744-7348.1991.tb04895.x. Landis, H., Hicks, K., Cockson, P., Henry, J.B., Smith, J.T., y Whipker, B.E. (2019). Expanding leaf tissue nutrient survey ranges for greenhouse cannabidiol-hemp. Crop Forage Turfgrass Manag. 5, 1–3. doi: 10.2134/cftm2018.09.0081. Lanyon, V.S., Turner, J.C., y Mahlberg, P.G. (1981). Quantitative Analysis of Cannabinoids in the Secretory Product from Capitate-Stalked Glands of Cannabis sativa L. (Cannabaceae). Botanical Gazette. 142(3), 316-319. ISSN : 0006-8071. Laverty, K.U., Stout, J.M., Sullivan, M.J., Shah, H., Gill, N., Holbrook, L., Deikus, G., Sebra, R., Hughes, T.R., Page, J.E., y van Bakel H. (2019). A Physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res. 29(1), 146-156. doi: 10.1101/gr.242594.118. Lea, P., y Morot-Gaudry, J.-F. (eds) (2001). Plant Nitrogen. Berlin: Springer-Verlag. Lefsrud, M., Bilodeau, S.E., Wu, B.-S., Rufyikiri, A.-S-, y MacPherson, S. (2019). An Update on Plant Photobiology and Implications for Cannabis Production. Frontiers in plant science. 10, 296. doi: 10.3389/fpls.2019.00296. Leith, H. (1974). Purposes of a phenology book. En: H. Leith (Ed.), Phenology and Seasonality Modeling, Springer-Verlag, pp. 3-19. doi: 10.1016/B978-044450891-1/50004-9. Liang, J., y He, J. (2018). Protective role of anthocyanins in plants under low nitrogen stress. Biochemical and Biophysical Research Communications. 498(4), 946–953. doi:10.1016/j.bbrc.2018.03.087. Linger, P., Müssig, J., Fischer, H., y Kobert, J. (2002). Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: Fibre quality and phytoremediation potential. Ind. Crop. Prod. 16, 33–42. doi: 10.1016/S0926-6690(02)00005-5. Linnaeus, C. (1800). Species Plantarum, vol. 4. Impensis GC Nauk. López, M.A., Chaves, B., Flórez, V.J., y Salazar M.R. (2010). Modelo de aparición de nudos en clavel (Dianthus caryophyllus L.) cv. Delphi cultivado en sustratos. Agron Colomb. 28(19), 47-54. ISSN 0120-9965. López-Astilleros, O., Vinay, J.C., Villegas-Aparicio, Y., López, I., y Lozano-Trejo, S. (2020). Dinámica de crecimiento y curvas de extracción de nutrientes de Pennisetum sp. (Maralfalfa). Rev Mex Cienc Pecu 2020. 11(1), 255-265. doi: 10.22319/rmcp.v11i1.4674. Luo, X., Reiter, M.A., d’Espaux, L., Wong, J., Denby, C., Lechner, A., Zhang, Y., Grzybowsky, A., Harth, S., Lin, W., Lee, H., Yu, C., Shin, J., Deng, K., Benites, V., Wang, G., Baidoo, E., Chen, Y., Dev, I., Petzold, C., y Keasling, J.D. (2019). Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126. doi: 10.1038/s41586-019-0978-9. Lyu, D., Backer, R., y Smith, D.L. (2022). Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Industrial Crops & Products. 178, 114583. doi: 10.1016/j.indcrop.2022.114583. Maathuis, F.J. (2009). Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258. doi: 10.1016/j.pbi.2009.04.003. Magagnini, G., Grassi, G., y Kotiranta, S. (2018). The effect of light spectrum on the morphology and cannabinoid content of Cannabis sativa L. Medical Cannabis and Cannabinoids. 1, 19–27. doi: 10.1159/000489030. Maher, M., Prasad, M., y Raviv, M. (2008). Organic soilless media components. In Soilless Culture; Elsevier: Amsterdam, The Netherlands, pp. 459–504. doi:10.1016/B978-044452975-6.50013-7. Mańkowski, J., Kołodziej, J., Pudełko, K., y Kozłowski, R. M. (2020). Bast fibres. Handbook of Natural Fibres, 393–417. doi:10.1016/b978-0-12-818782-1.00011-0. Marschner, H. (2012). Mineral Nutrition of Higher Plants, ed. H. Marschner (Cambridge, MA: Academic Press), pp. 166-455. McCauley, A., Jones, C., y Jacobsen, J. (2009). Plant nutrient functions and deficiency and toxicity symptoms. Nutr. Manage. Modul. 1–16. McMaster, G., y Wilhem, W. (1997). Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology, 87(4), 291-300. doi: 10.1016/S0168-1923(97)00027-0. Mediavilla, V., Jonquera, M., Schmid-Slembrouck, I., y Soldati, A. (1998). Decimal code for growth stages of hemp (Cannabis sativa L.). Journal of the international hemp association. 2(65), 68-74. Meier U. (ed.). 2001. Growth Stages of Mono- and Dicotyledonous Plants: BBCH-Monograph. 158 p. Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heb, M., Lancanshire, P., Schnock, U., Staub, R., Van der Boom, T., Weberand, E., y Zwerger, P. (2009). The BBCH system to coding the phenological growth stages of plants – history and publications. Journal für kulturpflanzen. 61(2), 41-52. ISSN 0027-7479. Mendoza M.R., Aguilar L.A., Castillo S.F. (2004). Guayaba (Psidium guajava L.) su cultivo en el oriente de Michoacan. Centro de Investigaciones del Pacífico Centro. Campo experimental Uruapan. Folleto técnico No. 4. Uruapan, Michoacan, p. 49. Menezes, I., Nascimento, P., Yamamoto, C., y Oliveira, A. (2022). Evaluation of trace elements in Cannabis products. Journal of Food Composition and Analysis. 113, 104721. doi: 10.1016/j.jfca.2022.104721. Mia, M., Shamsuddin, Z., Wahab, Z., y Marziah, M. (2010). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-culture Musa plantlets under nitrogen free hydroponics condition. Australian Journal of Crop Science. 4. Mishchenko, S., Mokher, S., Laiko, I., Burbulis, N., Kyrychenko, H., y Dudukova, S. (2017). Phenological growth stages of hemp (Cannabis sativa L.): codification and description according to the BBCH scale. Žemės ūkio mokslai. 24(2), 31-36. doi: 10.6001/zemesukiomokslai.v24i2.3496. Mishra, S. R. (2004). Photosynthesis in plants. New Delhi, India: Discovery Publishing House. Moher, M., Jones, M., y Zheng, Y. (2021). Photoperiodic Response of In Vitro Cannabis sativa Plants. Hortscience. 56(1),108-113. doi: 10.21273/HORTSCI15452-20. Moher, M., Llewellyn, D., Jones, M., y Zheng, Y. (2022). Light intensity can be used to modify the growth and morphological characteristics of Cannabis during the vegetative stage of indoor production. Industrial Crops & Products. 183, 114909. doi: 10.1016/j.indcrop.2022.114909. Monclus, R., Dreyer, E., Villar, M., Delmotte, F. M., Delay, D., Petit, J.-M., Barbaroux, C., Le Thiec, B., Bréchet, C., y Brignolas, F. (2006). Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra. New Phytologist, 169(4), 765–777. doi:10.1111/j.1469-8137.2005.01630.x. Monsees, H., Kloas, W., Wuertz, S. (2017). Decoupled systems on trial: eliminating bottlenecks to improve aquaponic processes. PLoS One 12, 1–18. doi: 10.1371/journal.pone.0183056. Morales, J., Gómez, M., Velázquez, C., y Ambriz, E. (2016). Variación de la distribución de carbono entre la raíz y la parte aérea en tres especies de pino. Revista mexicana de ciencias forestales, 7(38), 59-66. Mullard A. (2019). 2018 FDA drug approvals. Nat Rev Drug Discov. 18(2), 85-89. doi: 10.1038/d41573-019-00014-x. Murchie, E.K., y Ruban A.V. (2020). Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. The Plant Journal. 101, 885–896. doi: 10.1111/tpj.14601. Murray, J.D., Lea-Cox, J.D., y Ross, D. (2004). Time domain reflectometry accurately monitors and controls irrigation water applications in soilless substrates. Acta Hort. (ISHS), 633, 75–82. doi:10.17660/ActaHortic.2004.633.8. Muscolo, A., Marra, F., Canino, F., Maffia, A., Mallamaci, C., y Russo, Mt. (2022). Growth, nutritional quality and antioxidant capacity of lettuce grown on two different soils with sulphur-based fertilizer, organic and chemical fertilizers. Scientia Horticulturae. 305, 111421. doi: 10.1016/j.scienta.2022.111421. Nelson, P.V. (2003). Greenhouse Operation & Mangement; Prentice Hall: Upper Saddle River, NJ, USA. Nemati, R., Fortin, J.-P., Craig, J., y Donald, S. (2021). Growing Mediums for Medical Cannabis Production in North America. Agronomy.11, 1366. doi: 10.3390/agronomy11071366. Ohyama, T. (2010). Nitrogen as a major essential element of plants. In: Ohyama, T., Sueyoshi, K. (Eds.), Nitrogen Assimilation in Plants. Research Signpost, Kerala, pp. 1–17. Pacifico, D., Miselli, F., Carboni, A., Moschella, A., y Mandolino, G. (2008). Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica. 160, 231-240. doi: 10.1007/s10681-007-9543-y. Pacula, R.L., y Smart, R.J. (2017). Medical marijuana and marijuana legalization. Annu Rev Clin Psychol. 13, 397–419. doi: 10.1146/annurev-clinpsy-032816-045128. Papastylianou, P., Kakabouki, I., y Travlos, I. (2018). Effect of Nitrogen Fertilization on Growth and Yield of Industrial Hemp (Cannabis sativa L.). Not. Bot. Horti Agrobot. Cluj-Napoca. 46, 197–201. doi: /10.15835/nbha46110862. Park S. J., Eshed Y., y Lippman Z.B. (2014). Meristem maturation and inflorescence architecture–lessons from the Solanaceae. Curr. Opin. Plant Biol. 17, 70–77. doi: 10.1016/j.pbi.2013.11.006. Park, Y., y Runkle, E. S. (2018). Far-red radiation and photosynthetic photon flux density independently regulate seedling growth but interactively regulate flowering. Environ. Exp. Bot. 155, 206–216. doi: 10.1016/j.envexpbot.2018.06.033 Parra-Coronado, A., Fischer, G., y Chaves-Cordoba, B. (2014). Thermal time for reproductive phenological stages of pineapple guava (Acca sellowiana (O. Berg) Burret). Acta Biologica Colombiana. 20(1), 163-173. doi: 10.15446/abc.v20n1.43390. Pérez-Asseff, J. M., Peña E.J., y Torres, C. (2007) Efecto del nitrógeno y la irradianza en la eficiencia fotosintética del anamú Petiveria alliacea (Phytolaccaceae). Rev. Acad. Colomb. Cienc. 31(118), 49-55. ISSN 0370-3908. Pettigrew, W.T. (2008). Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133, 670–681. doi: 10.1111/j.1399-3054.2008.01073.x. Phadnawis, N.B. y Saini, A.D. (1992). Yield models in wheat based on sowing time and phenological development. Annals of Plant Physiology. 6, 52-59. Pinnola A, y Bassi R. (2018). Molecular mechanisms involved in plant photoprotection. Biochem Soc Trans. 46(2), 467-482. doi: 10.1042/BST20170307. Pino, E., Montalván, I., Vera, A., y Ramos, L. (2019). La conductancia estomática y su relación con la temperatura foliar y humedad del suelo en el cultivo del olivo (Olea europaea L.), en periodo de maduración de frutos, en zonas áridas. La Yarada, Tacna, Perú. Idesia (Arica). 37(4), 55-64. doi: 10.4067/S0718-34292019000400055. Placido, D.F., y Lee, C.C. (2022). Potential of Industrial Hemp for Phytoremediation of Heavy Metals. Plants. 11, 595. doi: 10.3390/plants11050595 Plecas, D., y Diplock, J. (2007). Marihuana growing operations in Alberta 1997–2003. Centre for Criminal Justice Research (University College of the Fraser Valley). Potter, D.J. (2014). A review of the cultivation and processing of Cannabis (Cannabis sativa L.) for production of prescription medicines in the UK. Drug Test. Anal. 6(1-2), 31–38 doi: 10.1002/dta.1531. Poulter, R. (2014). Quantifying differences between treated and untreated coir substrate. Acta Hortic. 1018, 557-564. doi: 10.17660/ActaHortic.2014.1018.61. Prenner, G., Vergara-Silva, F., y Rudall, P. J. (2009). The key role of morphology in modelling inflorescence architecture. Trends Plant Sci. 14, 302–309. doi: 10.1016/j.tplants.2009.03.004. Qadir, G., Ahmad, S., Hassan, F., y Cheema, M.A. (2006). Oil and fatty acid accumulation in sunflower as influenced by temperature variation. Pakistan Journal of Botany. 38(4), 1137-1147. Quesada-Roldán, G., y Bertsch-Hernández, F. (2013). Obtaining of theAbsorption Curve for the FB-17Tomato Hybrid. Terra Latinoamericana. 31(1), 1-7. ISSN 2395-8030. Raviv, M., Lieth, J.H., y Bar-Tal, A. (2019). Growing plants in soilless culture: operational conclusions. In: Raviv, M., Lieth, J.H., Bar-Tal, A. (Eds.), Soilless Culture. Elsevier B.V., pp. 637-669. doi: 10.1016/B978-044452975-6.50015-0. Raviv, M., Wallach, R., Silber, A., y Bar-Tal, A. (2002). Substrates and their Analysis. En Hydroponic Prod. Veg. Ornam. Sawas, D., Passam, H., Eds.; Embryo Publications: Atenas, Grecia, pp. 25-105. Raviv, M., y Blom, T.J. (2001). The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Sci. Hortic. (Amsterdam), 88, 257–276. doi: 10.1016/S0304-4238(00)00239-9. Reed, J. (1914). Morphology of Cannabis sativa L. Tesis de maestría. (Iowa: State University of Iowa). Ren, G., Zhang, X., Li, Y., Ridout, K., Serrano-Serrano, M.L., Yang, Y., Liu, A., Ravikanth, G., Nawaz, M.A., y Mumtaz, A.S. (2021). Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci. Adv. 7, eabg2286. doi: 10.1126/sciadv.abg2286. Rimon, V., Lata, H., Chandra, S., Khan, I. A., y ElSohly, M. A. (2017). Chapter 5: Morpho-anatomy of marijuana (Cannabis sativa L.) en Cannabis sativa L. – Botany and biotechnology. ed. S. Chandra (New York, NY: Springer), 123-136. doi: 10.1007/978-3-319-54564-6_5. Rioba, N. B., Itulya, F. M., Saidi, M., Dudai, N., y Bernstein, N. (2015). Effects of nitrogen, phosphorus and irrigation frequency on essential oil content and composition of sage (Salvia officinalis L.). J. Appl. Res. Med. Aromat. Plants 2, 21–29. doi: 10.1016/j.jarmap.2015.01.003. Rodríguez-Yzquierdo, G., Patiño, M., y Betancourt, M. (2021). Physiological characterization in medicinal Cannabis plants during different phenological stages under biotic stress. Agron. Mesoam. 32(3), 823-840. doi:10.15517/am.v32i3.44443. Ruiz-Corral, J., Flores-López, H., Ramírez-Díaz. J., González- Equiarte, D. (2002) Temperaturas cardinales y duración del ciclo de madurez del híbrido de maíz H-311 en condiciones de temporal. Agrociencia. 36, 569-577. ISSN: 1405-3195. Sakaguchi, S, Horie, K, Ishikawa, N. Nishio, S., Woth, J.R.P., Fukushima, K., Yamasaki, M., y Ito, M. (2019). Maintenance of soil ecotypes of Solidago virgaurea in close parapatry via divergent flowering time and selection against immigrants. J Ecol, 107, 418–35. doi: 10.1111/1365-2745.13034. Salas, R.E., y Vega, E.V. (2012). Curvas de absorción de nutrientes bajo dos métodos de fertilización en sandia, en Guanacaste, Costa Rica. InterSedes: Revista de las Sedes Regionales. XIII(26),19-44. ISSN: 2215-2458. Salazar-Gutierrez, M.R., Johnson, J., Chaves-Cordoba, B., y Hoogenboom, G. (2013) Relationship of base temperature to development of winter wheat. Int J Plant Prod. 7(4), 741-762. doi: 10.22069/IJPP.2013.1267. Saloner, A., Sacks, M.M., y Bernstein, N. (2019). Response of medical Cannabis (Cannabis sativa L.) genotypes to K supply under long photoperiod. Front. Plant Sci. 10, 1–16. doi: 10.3389/fpls.2019.01369 Saloner, A., y Bernstein, N. (2021). Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Industrial Crops & Products. 167, 113516. doi: 10.1016/j.indcrop.2021.113516. Saloner, A., y N. Bernstein. (2020) Response of Medical Cannabis (Cannabis sativa L.) to Nitrogen Supply Under Long Photoperiod. Front. Plant Sci. 11:572293. doi: 10.3389/fpls.2020.572293. Sánchez-de-Miguel, P., Junquera, P., Jimenez, L., y Lissarrague, J.R. (2009). Efectos de la temperatura foliar y de la humedad relativa en la respuesta fotosintética a la luz de las hojas de vid de los cvs. Cabernet Sauvignon y Tempranillo, en el período de maduración. Revista Enología. 6. 1-8. Sander, M., Fogliatto, R., Scorsatto, R., Tiecher, T., y Anastácio de Oliveira, F. (2021). The use of vegetal tissue multi-element content as an indicator of soil or substrate type employed to cultivate Cannabis sativa L. (marijuana). Forensic Chemistry, 23, 100319. doi:10.1016/j.forc.2021.100319. Sandoval, M., Sánchez, P., y Alcántar, G. (2007). Principios de la hidroponía y del fertirriego. pp. 373-438. In: G. Alcántar y Trejo, L. (eds.). Nutrición de cultivos. Mundi Prensa y Colegio de Postgraduados. México, D. F. Sawler, J., Stout, J.M., Gardner, K.M., Hudson, D., Vidmar, J., Butler, L., Page, J.E. (2015). The Genetic Structure of Marijuana and Hemp. PLoS ONE. 10(8), e0133292. doi: 10.1371/journal.pone.0133292. Schachtman, D.P., Reid, R.J., y Ayling, S.M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116, 447–453. doi: 10.1104/pp.116.2.447. Sharma, A., Deepa, R., Sankar, S., Pryor, M., Stewart, B., Johnson, E., y Anandhi, A. (2021). Use of growing degree indicator for developing adaptive responses: A case study of cotton in Florida. Ecological Indicators. 124, 107383. doi:10.1016/j.ecolind.2021.107383. Shi, G., Liu, C., Cui, M., Ma, Y.,y Cai, Q. (2012). Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl. Biochem. Biotechnol. 168, 163–173. doi: 10.1007/s12010-011-9382-0. Shi, J., Wang, Y., Li, Z., Huang, X., Shen, T., y Zou, T. (2021). Simultaneous and nondestructive diagnostics of nitrogen/magnesium/potassium-deficient cucumber leaf based on chlorophyll density distribution features. Byosistems engineering. 212, 458-467. doi: 10.1016/j.biosystemseng.2021.11.001 Shiponi, S., y Bernstein, N. (2021). The Highs and Lows of P Supply in Medical Cannabis: Effects on Cannabinoids, the Ionome, and Morpho-Physiology. Front. Plant Sci. 12, 657323. doi: 10.3389/fpls.2021.657323. Sirikantaramas, S., Morimoto, S., Shoyama, Y., Ishikawa, Y., Wada, Y., Shoyama, Y., y Taura, F. (2004). The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of delta1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J. Biol. Chem. 279, 39767–39774. doi: 10.1074/jbc.M403693200. Slafer, G.A., y Savin R. (1991) Developmental base temperature in different phonological phases of wheat (Triticum aestivum). J Exp Bot. 42,1077-1082. doi: 10.1093/jxb/42.8.1077. Small, E. (1975). American law and the species problem in Cannabis: science and semantics. Bull. Narcot. 27 (3), 1–20. doi: 10.3109/15563657508988067. Small, E., y Marcus, D. (2003). Tetrahydrocannabinol levels in hemp (Cannabis sativa) germplasm resources. Econ. Bot. 57(4), 545–558. https://www.jstor.org/stable/4256739. Spitzer-Rimon, B., Duchin, S., Bernstein, N., y Kamenetsky, R. (2019). Architecture and Florogenesis in Female Cannabis sativa Plants. Front. Plant Sci. 10:350. doi: 10.3389/fpls.2019.00350. Stirbet, A., Lázar, D., Kromdijk, J., y Govindjee (2018). Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica. 56(1), 86-104. doi: 10.1007/s11099-018-0770-3 Takahashi, S., y Badger, M. R. (2011). Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci. 16, 53–60. doi: 10.1016/j.tplants.2010.10.001. Tambussi, E.A. (2011). Fotosíntesis, fotoprotección, productividad y estreses abióticos: casos de estudio (Tesis Doctoral, Universidad de Barcelona). Depósito Digital de la Universidad de Barcelona. http://diposit.ub.edu/dspace/handle/2445/36093. Tang, K., Struik, P.C., Amaducci, S., Stomph, T.-J., y Yin, X. (2017). Hemp (Cannabis sativa L.) leaf photosynthesis in relation to nitrogen content and temperature: implications for hemp as a bioeconomically sustainable crop. GCB Bioenergy. 9, 1573–1587. doi: 10.1111/gcbb.12451. Tang, K., Struik, P.C., Yin, X., Thouminot, C., Bjelková, M., Stramkale, V., y Amaducci, S. (2016). Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Industrial Crops and Products, 87, 33–44. doi: 10.1016/j.indcrop.2016.04.026. Tang, Y., Bao, Q., Tian, G., Fu, K., y Cheng, H. (2015). Heavy metal cadmium tolerance on the growth characteristics of industrial hemp (Cannabis sativa L.) in China. In S. Chen, & S. Zhou (Eds.), Proceedings of the International Conference on Advances in Energy, Environment and Chemical Engineering (pp. 289–295). Atlantis Press. doi: 10.2991/aeece-15.2015.58. Tarqui-Delgado, M., Mena-Herrera, F.C., Quino-Luna, J.J., Gutiérrez-Villalobos, S., y Coela-Poma, R.R. (2017). Leaflet temperature of lettuce (Lactuca sativa) and air influenced by the vapor pressure deficit. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 4(1), 60–66. Taura, F., Morimoto, S., y Shoyama, Y. (1996). Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.: biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J. Biol. Chem. 271, 17411–17416. doi: 10.1074/jbc.271.29.17411. Tedesco, D., de Oliveira, M. F., dos Santos, A. F., Costa Silva, E. H., de Souza Rolim, G., y da Silva, R. P. (2021). Use of remote sensing to characterize the phenological development and to predict sweet potato yield in two growing seasons. European Journal of Agronomy, 129, 126337. doi:10.1016/j.eja.2021.126337. Teichmann, T., y Muhr, M. (2015). Shaping plant architecture. Front. Plant Sci. 6:233. doi: 10.3389/fpls.2015.00233. Trancoso, I., de Souza, G.A.R., dos Santos, P.R., dos Santos, K.D., de Miranda, R.M.d.S.N., da Silva, A.L.P.M., Santos, D.Z., García-Tejero, I.F., y Campostrini, E. (2022). Cannabis sativa L.: Crop Management and Abiotic Factors That Affect Phytocannabinoid Production. Agronomy. 12, 1492. doi: 10.3390/agronomy12071492. Uchida, R., 2000. Essential nutrients for plant growth: nutrient functions and deficiency symptoms. Plant Nutr. Manage. Hawaii’s soils. 31–55. United Nations (2006). Bulletin on Narcotics - Review of the World Cannabis Situation. United Nations Off. Drugs Crime LVIII, pp. 1–113. United Nations Office on Drugs and Crime (2013). Recommended methods for the identification and analysis of Cannabis and Cannabis products, Recommended Methods for the Identification and Analysis of Cannabis and Cannabis Products. Vienna, Austria. 50 pp. doi: 10.18356/1e8e4f16-en. Upton, R., Craker, L., ElSohly, M., Romm, A., Russo, E., Sexton, M., Marcu, J., y Swisher, D. (2014). Cannabis Inflorescence: Standards of Identity, Analysis, and Quality Control. En: American Herbal Pharmacopoeia and therapeutic compendium Scott’s Valley, CA. Van Os, E., Gieling, T.H., y Lieth, J.H. (2019). Technical equipment in soilless production systems. In: Raviv, M., Lieth, J.H., Bar-Tal, A. (Eds.), Soilless Culture: Theory and Practice. Elsevier B.V., pp. 587–635. doi: 10.1016/B978-044452975-6. Vyrovets V. H., Kyrychenko H. I., Laiko I. M., Myhal M. D., Shcherban I. I., Bohuslavskyi R. L. (2012). Classification of Signs in Hemp Plants – Cannabis sativa L. Sumy. 27 p. (in Ukrainian). Walker, D. I., Olesen, B., y Phillips, R.C. (2001). Reproduction and phenology in seagrasses. Global Seagrass Research Methods, 59–78. doi:10.1016/b978-044450891-1/50004-9. Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., y Zemla, J. (2017). R package “corrplot”: Visualization of a Correlation Matrix. 56, 316-324. Welling, M.T., Liu, L., Shapter, T., Raymond, C., y King G.J. (2016). Characterisation of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica. 208, 463–475. doi: 10.1007/s10681-015-1585-y. Wogiatzi, E, Gougoulias, N., Giannoulis, K., y Kamvoukou, C.-A. 2019. Effect of irrigation and fertilization levels on mineral composition of Cannabis sativa L. leaves. Not Bor Hortu Agrobo. 47(4), 1073-1080. doi: 10.15835/nbha47411527. Wungrampha, S., Joshi, R., Singla-Pareek, S.L., y Pareek, A. (2018). Photosynthesis and salinity: Are these mutually exclusive? Photosynthetica. 56, 366–381. doi: 10.1007/s11099-017-0763-7. Yep, B., Gale, N.V., y Zheng Y. (2020). Comparing hydroponic and aquaponic rootzones on the growth of two drugtype Cannabis sativa L. cultivars during the flowering stage. Industrial Crops & Products. 157, 112881. doi: 10.1016/j.indcrop.2020.112881. Zheng, Y. (2016). Root zone environment management in container crop production. Proc. for the Veg., potato, greenhouse, small fruit & Gen. session, Mid-Atlantic Fruit & Veg. Convention, Hershey, PA. Zheng, Y. (2018). Current nutrient management practices and technologies used in North American greenhouse and nursery industries. Acta Hortic. 1227, 435–442. doi: 10.17660/ActaHortic.2018.1227.54. Zheng, Y. (2019). Developments in growing substrates for soilless cultivation. En: Marcelis, L., Heuvelink, E. (Eds.), Achieving Sustainable Greenhouse Cultivation. Burleigh Dodds Science Publishing, Cambridge, UK, pp. 1–16. doi: 10.19103/AS.2019.0052.11. Zheng, Y. (2020). Integrated root-zone management for successful soilless culture. Acta Hortic. 1273, 1–8. doi: 10.17660/ActaHortic.2020.1273.1. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 148 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85365/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85365/2/1024544174.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85365/3/1024544174.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 432e8581936a60217503c197286b02b2 bfeee10c503e29727d1e4ac5efb56359 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089914550059008 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Fonseca, Liz Patricia07ee1081b544cf793515ad81a24c6bbaLadino Fandiño, Wendy Andrea5800878998b94fbd183dd51c2b9601de600https://orcid.org/0000-0001-7317-1052https://www.researchgate.net/profile/Wendy-Ladino-22024-01-18T18:52:31Z2024-01-18T18:52:31Z2023-09-03https://repositorio.unal.edu.co/handle/unal/85365Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, diagramasannabis sativa L. es en la actualidad, de las tres especies de Cannabis, la que ha despertado mayor interés por parte de investigadores y productores debido a sus múltiples usos, destacando entre todos el medicinal. En el año 2016, Colombia se convirtió en el cuarto país de América Latina en legalizar el Cannabis con fines medicinales y científicos, lo que ha promovido la constitución de nuevas empresas con el fin de obtener productos aprovechables de esta planta. Sin embargo, dado el historial ilegal de la especie, hay muy poca información con relación a su manejo agronómico bajo las condiciones de Colombia. Así entonces uno de los principales factores a determinar es el medio de establecimiento óptimo del cultivo. Por lo tanto, el objetivo de la investigación fue determinar los parámetros fisiológicos, la curva de extracción de nutrientes y el rendimiento de tres variedades de Cannabis sativa L. cultivadas en suelo y sustrato. Para dar cumplimiento al objetivo, la experimentación se llevó a cabo en la finca El Candil, lote Guacachica, la Conejera, Bogotá, Colombia (4°47'02,6" N, 74°06'10,9" O). Se estableció un experimento con un diseño en bloques en parcelas divididas. Se sembraron tres variedades de Cannabis medicinal no psicoactivo (Souce Cauca, Higthcol y Calotoweed), las cuales cuentan con registro ICA y fueron proporcionadas por la compañía Medcolcanna, en condiciones de suelo (propio del invernadero, textura francoarcillosa) y sustrato (Sustracoco Germiplus®), para un total de seis tratamientos que correspondieron a la interacción entre las variedades y el medio de producción. Antes de la siembra se realizó un análisis de los parámetros fisicoquímicos del suelo y del sustrato. Se evaluaron la fenología y grados día para etapas fenológicas principales, parámetros relacionados con el rendimiento fotosintético de la planta, contenido nutricional completo en etapas clave, curvas de extracción de nutrientes foliar, componentes de rendimiento y rendimiento en términos de flor seca y potencia de dos cannabinoides principales. Como resultado se realizó un ajuste a la escala fenológica reportada para cáñamo, con el fin de obtener los estadios fenológicos principales y secundarios para Cannabis medicinal dioico femenino. Se obtuvieron en total cinco estadios fenológicos principales y basados en la codificación BBCH, nueve códigos individuales los cuales se adaptan perfectamente a las condiciones de suelo y sustrato. Con esta información se pudo determinar que las plantas de sustrato presentaron un ciclo significativamente más corto en días comparado con las plantas de suelo (p<0,01), lo que en consecuencia generó que en términos de grados día el resultado fuera similar. Así entonces, las plantas de sustrato acumularon menor cantidad de grados día (entre 1367 a 1487 aprox.) comparado con las de suelo (entre 1487 a 1641 aprox.). Se pudo determinar que el sustrato retiene mayor cantidad de iones nutricionales a lo largo del ciclo del cultivo comparado con el suelo. Respecto al contenido de macro y micronutrientes, fue posible establecer que el nitrógeno (N), en sustrato, redujo su contenido foliar hasta niveles inferiores al mínimo reportado (<3,20%). El potasio (K) también disminuyó hasta niveles cercanos al 2% y el fósforo (P) aumentó a niveles cercanos al 0,85%, generando una relación N:P y K:P más baja. El magnesio (Mg) estuvo por encima de los niveles máximos reportados (>0,61%) y el azufre (S) no presentó variaciones significativas en el tiempo, sin embargo, estuvo por debajo del límite mínimo reportado (<0,16%). En suelo el contenido de N, K y calcio (Ca) disminuyó a través del tiempo, pero nunca estuvo en condiciones deficitarias. Tanto en suelo como en sustrato el contenido de hierro (Fe), cobre (Cu), manganeso (Mn) y zinc (Zn) estuvo por encima de los máximos niveles reportados, pero con diferencias entre suelo y sustrato (p<0,05). Con las curvas de extracción foliar fue posible determinar que el orden de extracción de los macronutrientes en suelo y sustrato fue N>Ca>K>Mg>P>S. Para los micronutrientes la extracción foliar en suelo en el orden de extracción fue Fe>Na>Zn>B>Mn>Cu. Sin embargo, en sustrato no fue clara una tendencia del comportamiento de los micronutrientes, pues fue variable entre variedades. En las variables fisiológicas se encontró que, en sustrato, después de iniciada la etapa de floración hubo una reducción en la eficiencia cuántica potencial del PSII (0,6), la tasa de transporte de electrones (0,32) y el rendimiento cuántico fotoquímico (18). En suelo los valores para estas variables se mantuvieron cerca al óptimo reportado para Cannabis. En sustrato fue más baja la conductancia estomática (<500 mmol H2O m-2s) y más alta la temperatura foliar (28°C) respecto a lo obtenido en suelo. Para el contenido relativo de clorofilas, luego de los 50 días después del trasplante, en sustrato los valores fueron menores a 40 SPAD y en suelo por encima de 50 SPAD. El área foliar y la distribución de materia seca en los órganos de la parte aérea fue más baja en sustrato que en suelo con diferencias significativas entre ellos (p<0,001). Finalmente, respecto al rendimiento fue posible establecer que los componentes de rendimiento permiten predecir los resultados de rendimiento final. En general, estos componentes fueron significativamente más bajos en las plantas de sustrato que en las de suelo. El rendimiento en flor seca fue mucho más alto en las variedades Souce Cauca (247,83 g/planta) y Higthcol (173,65 g/planta) en suelo, pero presentaron menor porcentaje de cannabidiol (11,11% y 10,76%, respectivamente). En sustrato, tuvieron menor rendimiento de flor seca (122,30 g/planta para Souce Cauca y 114,44 g/planta para Higthcol) pero mayor contenido de cannabidiol (11,52% para Souce Cauca y 12,61% para Higthcol). Calotoweed en sustrato presentó el mayor rendimiento de flor seca (168,69 g/planta) y la mayor potencia o contenido de cannabidiol (10,08% de CBD). En términos de gramos de cannabidiol por planta las que obtuvieron el mayor rendimiento de flor seca, fueron las que presentaron el mayor rendimiento final de cannabinoides. El rendimiento en términos de producción de CBD anual fue más alto en Souce Cauca y Higthcol en suelo (86,71 y 61,46 g/planta/año, respectivamente), y Calotoweed en sustrato (55,93 g/planta al año). En este trabajo es posible mostrar el impacto del medio de cultivo en Cannabis sativa L. sobre las variables fisiológicas y nutricionales directamente implicadas en el rendimiento de las plantas y genera bases para la toma de decisiones sobre las condiciones de establecimiento de este cultivo bajo invernadero con propósitos investigativos o productivos. (Texto tomado de la fuente).Cannabis sativa L. is currently, of the three Cannabis species, the one that has aroused the greatest interest on the part of researchers and producers due to its multiple uses, highlighting among all the medicinal ones. In 2016, Colombia became the fourth country in Latin America to legalize Cannabis for medicinal and scientific purposes, which has promoted the establishment of new companies to obtain usable products from this plant. However, given the illegal history of the species, there is very little information regarding its agronomic management under Colombian conditions. Thus, one of the main factors to be determined is the optimum establishment medium for the crop. Therefore, the objective of the research was to determine the physiological parameters, the nutrient extraction curve and the yield of three varieties of Cannabis sativa L. grown in soil and substrate. The experimentation was carried out at El Candil farm, Guacachica lot, La Conejera, Bogotá, Colombia (4°47'02.6" N, 74°06'10.9" W). An experiment with a split-plot block design was established. Three varieties of non-psychoactive medicinal Cannabis (Souce Cauca, Highcol and Calotoweed) were planted, which have ICA registration and were provided by the Medcolcanna company, under soil conditions (typical of the greenhouse, clay loam texture) and substrate (Sustracoco Germiplus®), for a total of six treatments that corresponded to the interaction between the varieties and the production medium. Before sowing, an analysis of the physicochemical parameters of the soil and the substrate was carried out. The phenology and degree days for main phenological stages, parameters related to the photosynthetic performance of the plant, complete nutritional content in key stages, foliar nutrient extraction curves, yield and yield components in terms of dry flower and power of two major cannabinoids were evaluated. As a result, an adjustment was made to the phenological scale reported for hemp, in order to obtain the main and secondary phenological stages for female dioecious medicinal Cannabis. A total of five main phenological stages were obtained and based on the BBCH coding, nine individual codes which perfectly adapt to the soil and substrate conditions. With this information it was possible to determine that the substrate plants presented a significantly shorter cycle in days compared to the soil plants (p<0.01), which consequently generated that in terms of degree days the result was similar. Thus, the substrate plants accumulated fewer degree days (between 1367 and 1487 approx.) compared to the soil plants (between 1487 and 1641 approx.). It was possible to determine that the substrate retains a greater amount of nutritional ions throughout the crop cycle compared to the soil. Regarding the macro and micronutrient content, it was possible to establish that nitrogen (N) in the substrate reduced its foliar content to levels below the minimum reported (<3.20%). Potassium (K) also decreased to levels close to 2% and phosphorus (P) increased to levels close to 0.85%, generating a lower N:P and K:P ratio. Magnesium (Mg) was above the maximum reported levels (>0.61%) and sulfur (S) did not present significant variations over time, however, it was below the minimum reported limit (<0.16%). In soil, the content of N, K and calcium (Ca) decreased over time, but it was never in deficient conditions. Both in the soil and in the substrate, the content of iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn) was above the maximum levels reported, but with differences between soil and substrate (p<0.05). With the foliar extraction curves it was possible to determine that the order of extraction of macronutrients in soil and substrate was N>Ca>K>Mg>P>S. For micronutrients, foliar extraction in the soil in the order of extraction was Fe>Na>Zn>B>Mn>Cu. However, in the substrate, a trend in the behavior of micronutrients was not clear, since it was variable between varieties. The physiological variables, it was found that, in the substrate, after the flowering stage began, there was a reduction in the potential quantum efficiency of PSII (0.6), the electron transport rate (0.32) and the photochemical quantum yield. (18). In soil, the values for these variables remained close to the optimum reported for Cannabis. In substrate, stomatal conductance was lower (<500 mmol H2O m-2s) and leaf temperature was higher (28°C) compared to obtained in soil. For the relative content of chlorophylls, after 50 days after the transplant, in the substrate the values were less than 40 SPAD and in soil above 50 SPAD. The leaf area and the distribution of dry matter in the organs of the aerial part were lower in substrate than in soil, with significant differences between them (p<0.001). Finally, regarding performance, it was possible to establish that the performance components allow predicting the final performance results. In general, these components were significantly lower in substrate plants than in soil plants. The dry flower yield was much higher in Souce Cauca (247.83 g/plant) and Highcol (173.65 g/plant) varieties in soil, but they presented a lower percentage of cannabidiol (11.11% and 10.76 %, respectively). In substrate, it had a lower dry flower yield (122.30 g/plant for Souce Cauca and 114.44 g/plant for Highcol) but higher cannabidiol content (11.52% for Souce Cauca and 12.61% for Highcol). Calotoweed in substrate presented the highest dry flower yield (168.69 g/plant) and the highest potency or cannabidiol content (10.08% CBD). In terms of grams of cannabidiol per plant, those that obtained the highest dry flower yield were the ones that presented the highest final yield of cannabinoids. The yield in terms of annual CBD production was higher in Souce Cauca and Highcol in soil (86.71 and 61.46 g/plant/year, respectively), and Calotoweed in substrate (55.93 g/plant per year). In this work it is possible to show the impact of the culture medium in Cannabis sativa L. on the physiological and nutritional variables directly involved in the performance of the plants and generates bases for decision making on the conditions of establishment of this crop under greenhouse with research or production purposes.Medcolcanna (MCCN) is a Canadian vertically integrated cannabis company with fully licensed operations based in Colombia, approximately 30 minutes from the capital Bogotá. As an organization, they believe in the healing power of cannabis and are driven to connect people with accessible products that evolved from traditional preparations into scientifically studied formulas to impart consistency of delivery and effect to consumers. The firm provides an outstanding opportunity of return on investment. The global outlook of the experienced management team and board of directors means that the company is leveraging the low cost structure available in Colombia and developing its footprint in high value markets. MCCN has moved quicker than any of its competitors in its short history to become a global leader in innovative cannabis product exports to the world.MaestríaMagíster en Ciencias AgrariasLa experimentación se llevó a cabo en la finca El Candil, lote Guacachica, la Conejera, Bogotá, Colombia (4°47'02,6" N, 74°06'10,9" O). Se estableció un experimento con un diseño en bloques en parcelas divididas. Se sembraron tres variedades de Cannabis medicinal no psicoactivo (Souce Cauca, Higthcol y Calotoweed), las cuales cuentan con registro ICA y fueron proporcionadas por la compañía Medcolcanna, en condiciones de suelo (propio del invernadero, textura francoarcillosa) y sustrato (Sustracoco Germiplus®), para un total de seis tratamientos que correspondieron a la interacción entre las variedades y el medio de producción. Antes de la siembra se realizó un análisis de los parámetros fisicoquímicos del suelo y del sustrato. Se evaluaron la fenología y grados día para etapas fenológicas principales, parámetros relacionados con el rendimiento fotosintético de la planta, contenido nutricional completo en etapas clave, curvas de extracción de nutrientes foliar, componentes de rendimiento y rendimiento en términos de flor seca y potencia de dos cannabinoides principales.Fisiología de cultivosxix, 148 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::571 - Fisiología y temas relacionados630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)Fisiología vegetalNutrición de las plantasCannabis sativaplant physiologyplant nutritionCannabis sativaCannabinoidesFisiología del cannabisRendimiento flor secaCurva de extracción de nutrientesFibra de cocoSueloEscala fenológicaSoilCoconut fiberCannabinoidsPhenological scaleCannabis physiologyDry flower yieldNutrient extraction curveParámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustratoPhysiological parameters, nutrient extraction curve and yield of three varieties of cannabis sativa L. cultivated in soil and substrateTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgrosaviaAgrovocAbad, M., Fornes, F., Carrión, C., Noguera, V., Noguera, P., Maquieira, Á., y Puchades, R. (2005). Physical properties of various coconut coir dusts compared to peat. HortScienc. 40, 2138–2144. doi: 10.21273/HORTSCI.40.7.2138.Abad, M., Noguera, P., Puchades, R., Maquieira, A., y Noguera, V. (2002). Physicochemical and chemical properties of some coconut coir dust for use as a peat substitute for containerised ornamental plants. Bioresour. Technol. 82(3), 241-245. doi: 10.1016/s0960-8524(01)00189-4.Ač, A., Malenovský, Z., Olejníčková, J., Gallé, A., Rascher, U., y Mohammed, G. (2015). Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sensing of Environment, 168, 420–436. doi:10.1016/j.rse.2015.07.022.Ahmad, R., Tehsin, Z., Malik, S.T., Asad, S.A., Shahzad, M., Bilal, M., Shah, M.M., y Khan, S.A. (2016). Phytoremediation potential of hemp (Cannabis sativa L.): Identification and characterization of heavy metals responsive genes: Biotechnology. CLEAN Soil Air Water. 44, 195–201. doi: 10.1002/clen.201500117.Akram, N.A., Shafiq, F., Ashraf, M., Iqbal, M., y Ahmad, P. (2021). Advances in Salt Tolerance of Some Major Fiber Crops Through Classical and Advanced Biotechnological Tools: A Review. J. Plant Growth Regul. 40, 891–905. doi: 10.1007/s00344-020-10158-5Amaducci, S., Colauzzi, M., Bellocchi, G., y Venturi, G. (2008). Modelling post-emergent hemp phenology (Cannabis sativa L.): Theory and evaluation. Europ. J. Agronomy. 28, 90–102. doi: 10.1016/j.eja.2007.05.006.Amaducci, S., Errani, M., y Venturi, G. (2002). Response of hemp to plant population and nitrogen fertilization. Ital. J. Agron. 6, 103–111.Andre, C.M., Hausman, J.F., y Guerriero, G. (2016). Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 7:19. doi: 10.3389/fpls.2016.00019.Angelova, V., Ivanova, R., Delibaltova, V., y Ivanov, K. (2004). Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind. Crops Prod. 19, 197–205. doi:10.1016/j.indcrop.2003.10.001.Arcila-Pulgarin, J., Buhr L., Bleiholder, H., Hack, H., Meier, U., y Wicke H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology. 141, 19-27. doi: 10.1111/j.1744-7348.2002.tb00191.x.çAubin, M., Seguin, P., Vanasse, A., Tremblay, G.F., Mustafa, A.F., y Charron, J. (2015). Industrial Hemp Response to Nitrogen, Phosphorus, and Potassium Fertilization. Crop. Forage Turfgrass Manag. 1, 1–10. doi: 10.2134/cftm2015.0159.Backer, R., Schwinghamer, T., Rosenbaum, P., McCarty, V., Eichhorn Bilodeau, S., Lyu, D., Ahmed, M.B., Robinson, G., Lefsrud, M., Wilkins, O., y Smith, D.L. (2019). Closing the yield gap for Cannabis: a meta-analysis of factors determining Cannabis yield. Front. Plant Sci. 10, 1-15. doi: 10.3389/fpls.2019.00495Baker, D., Pryce, G., Giovannoni, G., y Thompson, A.J. (2003). The therapeutic potential of Cannabis. Lancet Neurol. 2(5), 291–298. doi: 10.1016/S1474-4422(03)00381-8.Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 59, 89-113. doi: 10.1146/annurev.arplant.59.032607.092759.Baron, E.P. (2018). Medicinal properties of cannabinoids, terpenes, and flavonoids in Cannabis, and benefits in migraine, headache, and pain: An update on current evidence and Cannabis science. Headache, 58(7), 1139–1186. doi: 10.1111/head.13345.Barrett, G.E., Alexander, P.D., Robinson, J.S., y Bragg, N.C. (2016). Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 212, 220–234. doi: 10.1016/j.scienta.2016.09.030.Bar-Tal, A. (1999). The significance of root size for plant nutrition in intensive horticulture. In Mineral Nutrition of Crops: Fundamental Mechanisms and Implications (Z. Rengel, ed.). New York: Haworth Press, Inc., pp. 115–139.Beerling, E.A.M., Blok, C., van der Maas, A.A., y van Os, E.A. (2014). Closing the water and nutrient cycles in soilless cultivation systems. Acta Hortic.1034, 49–55. doi: 10.17660/ActaHortic.2014.1034.4.Benlloch, R., Berbel, A., Serrano-Mislata, A., y Madueno, F. (2007). Floral initiation and inflorescence architecture: a comparative view. Ann. Bot. 100, 659–676. doi: 10.1093/aob/mcm146Bernstein, N., Gorelick, J., Zerahia, R., y Koch, S. (2019). Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Front. Plant Sci. 10, 1–13. doi: 10.3389/fpls.2019.00736.Bertsch, F., Hernández, J.C., Arguedas, F. y Acosta, M. (2003). Curvas de absorción de nutrimentos en dos variedades, Bribri y Sacapobres, de frijol común de grano rojo. Agronomía Costarricense. 27(2), 75-81.Bertsch-Hernández, F. (2003). Absorción de nutrimentos por los cultivos. Asociación Costarricense de la Ciencia del Suelo. San José, Costa Rica.Blok, C., y Verhagen, J.B.G.M. (2009). Trends in rooting media in dutch horticulture during the period 2001–2005: The new growing media project. Acta Hortic. 819, 47–58.Bonini, S., Pemoli, M., Tambaro, S., Kumar, A., Maccarinelli, G., Memo, M., y Mastinu, A. (2018). Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. Journal of Ethnopharmacology. 227, 300-315. doi: 10.1016/j.jep.2018.09.004.Booth, J.K., y Bohlmann, J. (2019). Terpenes in Cannabis sativa – From plant genome to humans. Plant Science. 284, 67–72. doi: 10.1016/j.plantsci.2019.03.022.Bouchard, M. (2008). Towards a realistic method to estimate Cannabis production in industrialized countries. Contemporary Drug Problems. 35, 291-320. doi:10.1177/009145090803500206.Bridgeman, M.B., y Abazia, D.T. (2017). Medicinal Cannabis: history, pharmacology, and implications for the acute care setting. Pharm. Ther. 42(3), 180-188.Bryson, G.M., Mills, H.A., Sasseville, D.N., Jones, J.B., Jr., y Barker, A.V. (2014). Plant Analysis Handbook III: A Guide to Sampling, Preparation, Analysis and Interpretation for Agronomic and Horticultural Crops; Micro-Macro Publishing, Inc.: Athens, GA, USA.Bunt, A.C. (1988). Media and Mixes for Container-Growth Plants; Unwin Hyman: London, UK.Burgel, L., Hartung, J., Schibano, D., y Graeff-Hönninger, S. (2020). Impact of Different Phytohormones on Morphology, Yield and Cannabinoid Content of Cannabis sativa L. Plants. 9, 725. doi: 10.3390/plants9060725.Burgel, L., Hartung, J., y Graeff-Hönninger, S. (2020). Impact of Different Growing Substrates on Growth, Yield and Cannabinoid Content of Two Cannabis sativa L. Genotypes in a Pot Culture. Horticulturae. 6(4), 62. doi:10.3390/horticulturae6040062.Calvache, A. (2015). Curvas de absorción en plátano. En: Avellán, L., Calvache, M., y Cabeña, N. (ed.). Curvas de absorción de nutrientes por el cultivo de plátano barraganete (Musa paradisiaca L.). Tsafiqui. pp. 17-19.Campbell, B.J., Berrada, A.F., Hudalla, C., Amaducci, S., y McKay, J.K. (2019). Genotype x Environment Interactions of Industrial Hemp Cultivars Highlight Diverse Responses to Environmental Factors. Agrosyst. Geosci. Environ. 2, 1–11. doi: 10.2134/age2018.11.0057.Campbell, S.M., Anderson, S.L., Brym, Z.T., y Pearson, B.J. (2021). Evaluation of substrate composition and exogenous hormone application on vegetative propagule rooting success of essential oil hemp (Cannabis sativa L.). PLoS One.16(7):e0249160. doi: 10.1371/journal.pone.0249160.Candelario-Guerrero, D.A., Calabria-Parodi., L.E., Pardey-Rodríguez, C., y Vargas-Sánchez, J.J. (2023). Phenology of ten cultivars of Cannabis sativa L. under the environmental conditions of Palomino, La Guajira. Intropica, 18(1). doi: 10.21676/23897864.4672.Caplan, D., Dixon, M., and Zheng, Y. (2017). Optimal rate of organic fertilizer during the flowering stage for Cannabis grown in two coir-based substrates. HortScience 52, 1796-1803. doi: 10.21273/hortsci12401-17.Caplan, D., Dixon, M., y Zhenga, Y. 2019. Coir-based growing substrates for indoor Cannabis production. Acta Hortic. 1266, 55-62. doi: 10.17660/ActaHortic.2019.1266.9.Caplan, D., Dixon, y M., Zheng, Y. (2019). Increasing inflorescence dry weight and cannabinoid content in medical Cannabis using controlled drought stress. HortScience. 54, 964-969. doi: 10.21273/HORTSCI13510-18.Caplan, D.M. (2018). Propagation and Root Zone Management for Controlled Environment Cannabis Production. Ph.D. Thesis. Guelph, ON: University of Guelph.Caulkins, J.P., Coulson, C.C., Farber, C., y Vesely, J.V. (2012). Marijuana legalization: Certainty, impossibility, both, or neither? J. Drug Policy Anal. 5, 1–27. doi: 10.1515/1941-2851.1035.Cervantes, J. (2006). Marijuana horticulture: The Indoor/Outdoor Medical Grower's Bible. (Vancouver: Van Patten Publishing).Chadillon-Farinacci, V., Apparicioet, P., y Morselli, C. (2013). Géographie du Cannabis au Québec: Du producteur au consommateur. Revue canadienne de sciences regionals. Canadian Journal of Regional Science. 36, 13-22.Chadillon-Farinacci, V., Apparicioet, P., y Morselli, C. (2015). Cannabis cultivation in Quebec: Between space–time hotspots and coldspots. International Journal of Drug Policy. 26, 311-322.Chandra, S., Lata, H., Khan, I., y Elsohly, M. (2008). Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiology and molecular biology of plants. 14, 299-306. doi: 10.1007/s12298-008-0027-x.Chandra, S., Lata, H., Khan, I., y Elsohly, M. (2011). Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L. Physiology and molecular biology of plants. 17, 297-303. doi: 10.1007/s12298-011-0068-4.Chandrakant, M., y Upreti, K.K. (2019). Phenological growth stages in mangosteen (Garcinia mangostana L.) according to the extended BBCH scale. Annals Applied Biology. 176(1), 16–25. doi: 10.1111/aab.12552.Chen, X., Qi, Z., Gui, D., Gu, Z., Ma, L., Zeng, F., Li, L. (2019). Simulating impacts of climate change on cotton yield and water requirement using RZWQM2. Agric. Water Manag. 222, 231–241. doi:10.1016/j.agwat.2019.05.030.Chouvy, P. A. (2019). Cannabis cultivation in the world: heritages, trends and challenges. EchoGéo 48, 1–20. doi: 10.4000/echogeo.17591Citterio, S., Santagostino, A., Fumagalli, P., Prato, N., Ranalli, P., Sgorbati, S. (2003). Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil. 256, 243–252. doi: 10.1023/A:1026113905129.Clark, M.J., y Zheng, Y. (2017). Effect of topdressed controlled-release fertilizer rates on nursery crop quality and growth and growing substrate nutrient status in the Niagara region, Ontario, Canada. HortScience. 52, 167-173. doi: 10.21273/HORTSCI11309-16.Cockson, P., Landis, H., Smith, T., Hicks, K., y Whipker, B.E. (2019). Characterization of Nutrient Disorders of Cannabis sativa. Appl. Sci. 9, 4432. doi: 10.3390/app9204432.Coffman, C.B., y Gentner, W.A. (1977). Responses of greenhouse-grown Cannabis sativa L. To nitrogen, phosphorus, and potassium. Agron. J. 69, 832–836. doi: 10. 2134/agronj1977.00021962006900050026x.Cooper, G. M., y Hausman, R. E. (2004). The cell: a molecular approach. Sunderland, MA: Sinauer Associates.Danziger, N., y Bernstein, N. (2021) Plant architecture manipulation increases cannabinoid standardization in ‘drug-type’ medical Cannabis. Industrial Crops & Products. 167, 113528. doi: 10.1016/j.indcrop.2021.113528.Davidenco, V., Vega, C., Viccardi, M., y Arguello, J. (2015). Development in Origanum sp.: A simple phenological scale to determine thermal time requirements to critical reproductive events. Scientia Horticulturae, 186. 70-76. doi: 10.1016/j.scienta.2015.02.012.Dayanandan, P., y Kaufman, P. B. (1976). Trichomes Of Cannabis Sativa L. (Cannabaceae). American Journal of Botany. 63(5), 578-591. ISSN/ISBN: 0002-9122.De Meijer, E. (2014). The chemical phenotypes (chemotypes) of Cannabis. In Handbook of Cannabis; Oxford University Press: Oxford, UK. pp. 89-110.De Prato, L., Ansari, O., Hardy, G.E., Howieson, J., O’Hara, G., y Ruthrof, K.X. (2022). The cannabinoid profile and growth of hemp (Cannabis sativa L.) is influenced by tropical daylengths and temperatures, genotype and nitrogen nutrition. Industrial Crops & Products. 178, 114605. doi: 10.1016/j.indcrop.2022.114605.Deng, G., Du, G., Yang, Y., Bao, Y., y Liu, F. (2019). Planting Density and Fertilization Evidently Influence the Fiber Yield of Hemp (Cannabis sativa L.). Agronomy. 9, 368. doi:10.3390/agronomy9070368.Ebersbach, P., Stehle, F., Kayser, O., y Freier, E. (2018). Chemical fingerprinting of single glandular trichomes of Cannabis sativa by coherent anti-stokes raman scattering (CARS) Microscopy. BMC Plant Biol. 18, 1-12. doi: 10.1186/s12870-018-1481-4.Endress, P.K. (2010). Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J. Syst. Evol. 48, 225–239. doi: 10.1111/j.1759-6831.2010.00087.x.Epstein, E., y Bloom, A.J. (2005). Mineral metabolism. In: Epstein, E., Bloom, A.J. (Eds.), Mineral Nutrition of Plants: Principles and Perspectives. Sinauer Associates, Inc., Sunderland, Massachusetts, pp. 201–207.Evans, M.R., y Gachukia, M. (2004). Fresh Parboiled Rice Hulls Serve as an Alternative to Perlite in Greenhouse Crop Substrates. HortScience. 39, 232–235. doi: 10.21273/HORTSCI.39.2.232.Farag, S., y Kayser, O. (2015). Cultivation and breeding of Cannabis sativa L. For preparation of standardized extracts for medicinal purposes. In: Mathe, A. (Ed.), Medicinal and Aromatic Plants of the World. Springer, Budapest, Hungary, pp. 165–186. doi: 10.1007/978-94-017-9810-5_9.Faux, A.M., Draye, X., Lambert, R., d'Andrimont, R., Raulier, P., y Bertin, P. (2013). The relationship of stem and seed yields to flowering phenology and sex expression in monoecious hemp (Cannabis sativa L.). European Journal of Agronomy. 47. 11–22. doi: 10.1016/j.eja.2013.01.006.Finnan, J., y Burke, B. (2013). Nitrogen fertilization to optimize the greenhouse gas balance of hemp crops grown for biomass. GCB Bioenergy. 5, 701–712. doi: 10.1111/gcbb.12045.Flores-Magdaleno, H., Flores-Gallardo, H., y Ojeda-Bustamante, W. (2014). Phenological prediction of potato crop by means of thermal time. Revista Fitotecnia Mexicana. 37(2), 149–157. ISSN 0187-7380.Fonteno, W.C. (1993). Problems & considerations in determining physical properties of horticultural substrates. In International Symposium on Horticultural Substrates Other than Soil In Situ; Acta Horticulturae: Leuven, Belgium. Volumen 342, 197–204.Pérez-Asseff, J. M., Peña E.J., y Torres, C. (2007) Efecto del nitrógeno y la irradianza en la eficiencia fotosintética del anamú Petiveria alliacea (Phytolaccaceae). Rev. Acad. Colomb. Cienc. 31(118), 49-55. ISSN 0370-3908.Fournier, G., Richez-Dumanois, C., Duvezin, J., Mathieu, J.-P., y Paris, M. (1987). Identification of a new chemotype in Cannabis sativa: Cannabigerol-Dominant plants, biogenetic and agronomic prospects. Planta Med. 53, 277-280. doi: 10.1055/s-2006-962705.Friedrich, S., y Pauly, M. (2018). MATS: Inference for potentially singular and heteroscedastic MANOVA. Journal of Multivariate Analysis, 165, 166-179. doi: 10.1016/j.jmva.2017.12.008.Gagne, S. J., Stout, J. M., Liu, E., Boubakir, Z., Clark, S. M., y Page, J. E. (2012). Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides, Proc. Natl. Acad. Sci. U. S. A. 109, 12811–12816. doi:10.1073/pnas.1200330109Gallo-Molina, A., Castro-Vargas, H., Garzón-Méndez, W., Martínez, J., Rivera, Z., King, J., y Parada-Alfonso, F. (2019). Extraction, isolation and purification of tetrahydrocannabinol from the Cannabis sativa L. plant using supercritical fluid extraction and solid phase extraction. The Journal of Supercritical Fluids. 146, 208-216. doi: 10.1016/j.supflu.2019.01.020.García, A.D., y López, C. (2002). Temperatura base y tasa de extensión foliar del maíz. Revista Fitotecnia Mexicana. 25(4), 381-386. doi:10.35196/rfm.2002.4.281.Giraldo, C.J., Cano, M.A.O., y Ribas, R.F. (2010). Respuesta fotosintética de diferentes ecotipos de fríjol a la radiación y la salinidad. Ciencia y Tecnología Agropecuaria. 10(2), 129-140. doi: 10.21930/rcta.vol10_num2_art:135.Goh, C.H., Ko, S.M., Koh, S., Kim, Y.J., y Bae, H.J. (2012). Photosynthesis and environments: photoinhibition and repair mechanisms in plants. J. Plant Biol. 55(2), 93–101. doi: 10.1007/s12374-011-9195-2.González, F., Cabezas, M., Ramírez-Gómez, M., y Ramírez, J. (2018). Macronutrient absorption curves in three varieties of sugarcane (Saccharum officinarum L.) for panela in the hoya del río Suárez. Rev. U.D.C.A Act. & Div. Cient. 21(2), 395-404. doi: 10.31910/rudca.v21.n2.2018.995.Gorelick, J., y Bernstein, N. (2017). Chemical and Physical Elicitation for Enhanced Cannabinoid Production in Cannabis. En: S. Chandra et al. (eds.), Cannabis sativa L. - Botany and Biotechnology, pp. 439-456. doi: 10.1007/978-3-319-54564-6_21.Graber, A., Junge, R. (2009). Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246, 147–156. doi: 10.1016/j.desal.2008.03.048.Guo, F., Luo, H., Shi, Z., Wu, Y., y Liu, H. (2021). Substrate salinity: A critical factor regulating the performance of microbial fuel cells, a review. Science of the Total Environment. 763, 143021. doi: 10.1016/j.scitotenv.2020.143021.Hacke, A.C.M., Lima, D., de Costa, F., Deshmukh, K., Li, N., Chow, A.M., Marques, J.A.,Pereira, R.P., y Kerman, K. (2019). Probing the antioxidant activity of Δ 9-tetrahydrocannabinol and cannabidiol in Cannabis sativa extracts. Analyst. 144(16), 4952-4961. doi: 10.1039/c9an00890j.Hampson, A.J., Grimaldi, M., Axelrod, J., y Wink, D. (1998). Cannabidiol and (−) Δ9 tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. Unit. States Am. 95 (14), 8268-8273. doi: 10.1073/pnas.95.14.8268.Hanuš, L.O., Meyer, S.M., Muñoz, E., Taglialatela-Scafati, O., y Appendino, G. (2016) Phytocannabinoids: a unified critical inventory. Nat Prod Rep. 33(12), 1357-1392. doi: 10.1039/c6np00074f.Hartsel, J. A., Eades, J., Hickory, B., y Makriyannis, A. (2016). Cannabis sativa and Hemp. Nutraceuticals. 735–754. doi:10.1016/b978-0-12-802147-7.00053-x.Hauck, R.D., Goyal, S.S., y Huffaker, R.C. (1984). Nitrogen toxicity in plants. Nitrogen in Crop Production, pp. 97–118. doi: 10.2134/1990.nitrogenincropproduction.c6.Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Skrumsager Møller, I., et al. (2012). “Functions of macronutrients,” en Marschner”s Mineral Nutrition of Higher Plants, ed. H. Marschner (Cambridge, MA: Academic Press), 135–190.Hazekamp, A., Choi, Y, y Verpoorte, R. (2004). Quantitative Analysis of Cannabinoids from Cannabis sativa Using 1H-NMR. Chemical & pharmaceutical bulletin. 52, 718-21. doi: 10.1248/cpb.52.718.Hazekamp, A., Tejkalov´a, K., Papadimitriou, S. (2016). Cannabis: From Cultivar to Chemovar II - A Metabolomics Approach to Cannabis Classification. Cannabis Cannabinoid Res. 1(1), 202–215. doi: 10.1089/can.2016.0017.Heller, H., Bar-Tal, A., Assouline, S., Narkis, K., Suryano, S., de la Forge, A., Barak, M., Alon, H., Bruner, M., Cohen, S., y Tsohar, D. (2015). The effects of container geometry on water and heat regimes in soilless culture: lettuce as a sase study. Irrig. Sci. 33, 53-65. doi: 10.1007/s00271-014-0448-y.Hernández, M., Chailloux, M., Moreno, V., Igarza, A., y Ojeda, A. (2014). Nutrient levels of reference in the soil solution to the nutrition diagnostic in the tomato protected crop. IDESIA. 32(2), 79-88. doi: 10.4067/S0718-34292014000200011.Hoyos, D., Morales, J.G., Chavarría, H., Montoya, A.P., Correa, G., y Jaramillo, S. (2012). Acumulación de Grados-Día en un Cultivo de Pepino (Cucumis sativus L.) en un Modelo de Producción Aeropónico. Rev.Fac.Nal.Agr.Medellín. 65(1), 6389-6398.Hu, H., y Brown, P.H. (1994). Localization of boron in cell walls of squash and tobacco and its association with pectin (evidence for a structural role of boron in the cell wall). Plant Physiol. 105, 681–689. doi: 10.1104/pp.105.2.681.Huaran, H., Haoa, L., Guanghuia, D., Feib, Y., Ganga, D., Yanga, Y., y Feihu, L. (2019). Fiber and seed type of hemp (Cannabis sativa L.) responded differently to salt-alkali stress in seedling growth and physiological indices. Industrial Crops & Products. 129, 624–630. doi: 10.1016/j.indcrop.2018.12.028.Hussain T, Jeena G, Pitakbut T, Vasilev N, y Kayser O. (2021). Cannabis sativa research trends, challenges, and new-age perspectives. iScience. 24(12), 103391. doi: 10.1016/j.isci.2021.103391.Hussain, J., Rehman, N., Al-Harrasi, A., Ali, L., Latif, A., Albroumi, M.A. (2013). Essential oil composition and nutrient analysis of selected medicinal plants in Sultanate of Oman. Asian Pac J Trop Dis. 3(6), 421-428. doi: 10.1016/S2222-1808(13)60095-X.Igwe, A.N., Quasem, B., Liu, N., y Vannette, R.L. (2021) Plant phenology influences rhizosphere microbial community and is accelerated by serpentine microorganisms in Plantago erecta. FEMS Microbiol Ecol. 97,1–12. doi: 10.1093/femsec/fiab085.Jaramillo-Robledo, A. (2005). Clima andino y café en Colombia. Cenicafe.Ji, F.-S., Tang, L., Li, Y.-Y., Wang, W.-C., Yang, Z., Li, X.-G., et al. (2019). Differential proteomic analysis reveals the mechanism of musa paradisiaca responding to salt stress. Mol. Biol. Rep. 46, 1057–1068. doi: 10.1007/s11033-018-4564-2.Jiménez-Suancha, S.C., Álvarado S., O.H., y Balaguera-López, H.E. (2015). Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Revista Colombiana de Ciencias Hortícolas, 9(1), 149–160. doi: 10.17584/rcch.2015v9i1.3753.Jin, D., Jin, S., y Chen, J. (2019). Cannabis indoor growing conditions, management practices, and post-harvest treatment: a review. Am. J. Plant Sci. 10, 925–946. doi: 10.4236/ajps.2019.106067.Jin, Q., Wang, Y., Li, X., Wu, S., Wang, Y., Luo, J., Mattson, N., y Xu, Y. (2017). Interactions between ethylene, gibberellin and abscisic acid in regulating submergence induced petiole elongation in Nelumbo nucifera. Aquatic Botany, 137, 9–15. doi:10.1016/j.aquabot.2016.11.002.Joshi, S.C., y Palni, L.M.S. (2005). Greater sensitivity of Hordeum himalayens Schult. to increasing temperature causes reduction in its cultivated area. Current Science, 89(5), 879–882. https://www.jstor.org/stable/24111036.Khajuria, M., Prakash, V., y Vyasa, D. (2020). Photochemical efficiency is negatively correlated with the Δ9 - tetrahydrocannabinol content in Cannabis sativa L. Plant Physiology and Biochemistry. 151, 589-600. doi: 10.1016/j.plaphy.2020.04.003.Khan, M., Van-Eck, H.,y Striuk, P. (2013). Model-Based Evaluation of Maturity Type of Potato Using a Diverse Set of Standard Cultivars and a Segregating Diploid Population. Potato Research, 56(1), 127-146. doi: 10.1007/s11540-013-9235-z.Kishore, K. (2019). Phenological growth stages and heat unit requirement of Indian blackberry (Syzygium cumini L., Skeels). Scientia Horticulturae, 249, 455-460. doi: 10.1016/j.scienta.2019.02.032.Kocjan Ačko, D., Flajšman, M., Trdan, S. (2019). Apical bud removal increased seed yield in hemp (Cannabis sativa L.). Acta Agric. Scand. Sect. B Soil Plant Sci. 69, 317–323. doi: 10.1080/09064710.2019.1568540Kudo, G., y Cooper, E.J. (2019). When spring ephemerals fail to meet pollinators: mechanism of phenological mismatch and its impact on plant reproduction. Proc Biol Sci, 286, 20190573. doi: 10.1098/rspb.2019.0573.Kutman, U.B., Yildiz, B., Cakmak, I. (2011). Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil. 342, 149–164. doi: 10.1007/s11104-010-0679-5.Laginha, A.M. (2018). High-Tech-Anbau von Cannabis. Dtsch. Apoth. Ztg. 158, 36-43. doi:10.13140/RG.2.1.1790.2486.Lamarck, J.-B. (1811). Encyclopédie méthodique, botanique: Suppl. 2: Panckoucke.Lancashire, P.D., Bleiholder, H., Langelüddecke, P., Stauss, R., Van Den Boom, T., Weber, E., y Witzenberger, A. (1991). An uniform decimal code for growth stages of crops and weeds. Ann. appl. Biol. 119, 561-601. doi: 10.1111/j.1744-7348.1991.tb04895.x.Landis, H., Hicks, K., Cockson, P., Henry, J.B., Smith, J.T., y Whipker, B.E. (2019). Expanding leaf tissue nutrient survey ranges for greenhouse cannabidiol-hemp. Crop Forage Turfgrass Manag. 5, 1–3. doi: 10.2134/cftm2018.09.0081.Lanyon, V.S., Turner, J.C., y Mahlberg, P.G. (1981). Quantitative Analysis of Cannabinoids in the Secretory Product from Capitate-Stalked Glands of Cannabis sativa L. (Cannabaceae). Botanical Gazette. 142(3), 316-319. ISSN : 0006-8071.Laverty, K.U., Stout, J.M., Sullivan, M.J., Shah, H., Gill, N., Holbrook, L., Deikus, G., Sebra, R., Hughes, T.R., Page, J.E., y van Bakel H. (2019). A Physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res. 29(1), 146-156. doi: 10.1101/gr.242594.118.Lea, P., y Morot-Gaudry, J.-F. (eds) (2001). Plant Nitrogen. Berlin: Springer-Verlag.Lefsrud, M., Bilodeau, S.E., Wu, B.-S., Rufyikiri, A.-S-, y MacPherson, S. (2019). An Update on Plant Photobiology and Implications for Cannabis Production. Frontiers in plant science. 10, 296. doi: 10.3389/fpls.2019.00296.Leith, H. (1974). Purposes of a phenology book. En: H. Leith (Ed.), Phenology and Seasonality Modeling, Springer-Verlag, pp. 3-19. doi: 10.1016/B978-044450891-1/50004-9.Liang, J., y He, J. (2018). Protective role of anthocyanins in plants under low nitrogen stress. Biochemical and Biophysical Research Communications. 498(4), 946–953. doi:10.1016/j.bbrc.2018.03.087.Linger, P., Müssig, J., Fischer, H., y Kobert, J. (2002). Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: Fibre quality and phytoremediation potential. Ind. Crop. Prod. 16, 33–42. doi: 10.1016/S0926-6690(02)00005-5.Linnaeus, C. (1800). Species Plantarum, vol. 4. Impensis GC Nauk.López, M.A., Chaves, B., Flórez, V.J., y Salazar M.R. (2010). Modelo de aparición de nudos en clavel (Dianthus caryophyllus L.) cv. Delphi cultivado en sustratos. Agron Colomb. 28(19), 47-54. ISSN 0120-9965.López-Astilleros, O., Vinay, J.C., Villegas-Aparicio, Y., López, I., y Lozano-Trejo, S. (2020). Dinámica de crecimiento y curvas de extracción de nutrientes de Pennisetum sp. (Maralfalfa). Rev Mex Cienc Pecu 2020. 11(1), 255-265. doi: 10.22319/rmcp.v11i1.4674.Luo, X., Reiter, M.A., d’Espaux, L., Wong, J., Denby, C., Lechner, A., Zhang, Y., Grzybowsky, A., Harth, S., Lin, W., Lee, H., Yu, C., Shin, J., Deng, K., Benites, V., Wang, G., Baidoo, E., Chen, Y., Dev, I., Petzold, C., y Keasling, J.D. (2019). Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126. doi: 10.1038/s41586-019-0978-9.Lyu, D., Backer, R., y Smith, D.L. (2022). Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Industrial Crops & Products. 178, 114583. doi: 10.1016/j.indcrop.2022.114583.Maathuis, F.J. (2009). Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258. doi: 10.1016/j.pbi.2009.04.003.Magagnini, G., Grassi, G., y Kotiranta, S. (2018). The effect of light spectrum on the morphology and cannabinoid content of Cannabis sativa L. Medical Cannabis and Cannabinoids. 1, 19–27. doi: 10.1159/000489030.Maher, M., Prasad, M., y Raviv, M. (2008). Organic soilless media components. In Soilless Culture; Elsevier: Amsterdam, The Netherlands, pp. 459–504. doi:10.1016/B978-044452975-6.50013-7.Mańkowski, J., Kołodziej, J., Pudełko, K., y Kozłowski, R. M. (2020). Bast fibres. Handbook of Natural Fibres, 393–417. doi:10.1016/b978-0-12-818782-1.00011-0.Marschner, H. (2012). Mineral Nutrition of Higher Plants, ed. H. Marschner (Cambridge, MA: Academic Press), pp. 166-455.McCauley, A., Jones, C., y Jacobsen, J. (2009). Plant nutrient functions and deficiency and toxicity symptoms. Nutr. Manage. Modul. 1–16.McMaster, G., y Wilhem, W. (1997). Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology, 87(4), 291-300. doi: 10.1016/S0168-1923(97)00027-0.Mediavilla, V., Jonquera, M., Schmid-Slembrouck, I., y Soldati, A. (1998). Decimal code for growth stages of hemp (Cannabis sativa L.). Journal of the international hemp association. 2(65), 68-74.Meier U. (ed.). 2001. Growth Stages of Mono- and Dicotyledonous Plants: BBCH-Monograph. 158 p.Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heb, M., Lancanshire, P., Schnock, U., Staub, R., Van der Boom, T., Weberand, E., y Zwerger, P. (2009). The BBCH system to coding the phenological growth stages of plants – history and publications. Journal für kulturpflanzen. 61(2), 41-52. ISSN 0027-7479.Mendoza M.R., Aguilar L.A., Castillo S.F. (2004). Guayaba (Psidium guajava L.) su cultivo en el oriente de Michoacan. Centro de Investigaciones del Pacífico Centro. Campo experimental Uruapan. Folleto técnico No. 4. Uruapan, Michoacan, p. 49.Menezes, I., Nascimento, P., Yamamoto, C., y Oliveira, A. (2022). Evaluation of trace elements in Cannabis products. Journal of Food Composition and Analysis. 113, 104721. doi: 10.1016/j.jfca.2022.104721.Mia, M., Shamsuddin, Z., Wahab, Z., y Marziah, M. (2010). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-culture Musa plantlets under nitrogen free hydroponics condition. Australian Journal of Crop Science. 4.Mishchenko, S., Mokher, S., Laiko, I., Burbulis, N., Kyrychenko, H., y Dudukova, S. (2017). Phenological growth stages of hemp (Cannabis sativa L.): codification and description according to the BBCH scale. Žemės ūkio mokslai. 24(2), 31-36. doi: 10.6001/zemesukiomokslai.v24i2.3496.Mishra, S. R. (2004). Photosynthesis in plants. New Delhi, India: Discovery Publishing House.Moher, M., Jones, M., y Zheng, Y. (2021). Photoperiodic Response of In Vitro Cannabis sativa Plants. Hortscience. 56(1),108-113. doi: 10.21273/HORTSCI15452-20.Moher, M., Llewellyn, D., Jones, M., y Zheng, Y. (2022). Light intensity can be used to modify the growth and morphological characteristics of Cannabis during the vegetative stage of indoor production. Industrial Crops & Products. 183, 114909. doi: 10.1016/j.indcrop.2022.114909.Monclus, R., Dreyer, E., Villar, M., Delmotte, F. M., Delay, D., Petit, J.-M., Barbaroux, C., Le Thiec, B., Bréchet, C., y Brignolas, F. (2006). Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra. New Phytologist, 169(4), 765–777. doi:10.1111/j.1469-8137.2005.01630.x.Monsees, H., Kloas, W., Wuertz, S. (2017). Decoupled systems on trial: eliminating bottlenecks to improve aquaponic processes. PLoS One 12, 1–18. doi: 10.1371/journal.pone.0183056.Morales, J., Gómez, M., Velázquez, C., y Ambriz, E. (2016). Variación de la distribución de carbono entre la raíz y la parte aérea en tres especies de pino. Revista mexicana de ciencias forestales, 7(38), 59-66.Mullard A. (2019). 2018 FDA drug approvals. Nat Rev Drug Discov. 18(2), 85-89. doi: 10.1038/d41573-019-00014-x.Murchie, E.K., y Ruban A.V. (2020). Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. The Plant Journal. 101, 885–896. doi: 10.1111/tpj.14601.Murray, J.D., Lea-Cox, J.D., y Ross, D. (2004). Time domain reflectometry accurately monitors and controls irrigation water applications in soilless substrates. Acta Hort. (ISHS), 633, 75–82. doi:10.17660/ActaHortic.2004.633.8.Muscolo, A., Marra, F., Canino, F., Maffia, A., Mallamaci, C., y Russo, Mt. (2022). Growth, nutritional quality and antioxidant capacity of lettuce grown on two different soils with sulphur-based fertilizer, organic and chemical fertilizers. Scientia Horticulturae. 305, 111421. doi: 10.1016/j.scienta.2022.111421.Nelson, P.V. (2003). Greenhouse Operation & Mangement; Prentice Hall: Upper Saddle River, NJ, USA.Nemati, R., Fortin, J.-P., Craig, J., y Donald, S. (2021). Growing Mediums for Medical Cannabis Production in North America. Agronomy.11, 1366. doi: 10.3390/agronomy11071366.Ohyama, T. (2010). Nitrogen as a major essential element of plants. In: Ohyama, T., Sueyoshi, K. (Eds.), Nitrogen Assimilation in Plants. Research Signpost, Kerala, pp. 1–17.Pacifico, D., Miselli, F., Carboni, A., Moschella, A., y Mandolino, G. (2008). Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica. 160, 231-240. doi: 10.1007/s10681-007-9543-y.Pacula, R.L., y Smart, R.J. (2017). Medical marijuana and marijuana legalization. Annu Rev Clin Psychol. 13, 397–419. doi: 10.1146/annurev-clinpsy-032816-045128.Papastylianou, P., Kakabouki, I., y Travlos, I. (2018). Effect of Nitrogen Fertilization on Growth and Yield of Industrial Hemp (Cannabis sativa L.). Not. Bot. Horti Agrobot. Cluj-Napoca. 46, 197–201. doi: /10.15835/nbha46110862.Park S. J., Eshed Y., y Lippman Z.B. (2014). Meristem maturation and inflorescence architecture–lessons from the Solanaceae. Curr. Opin. Plant Biol. 17, 70–77. doi: 10.1016/j.pbi.2013.11.006.Park, Y., y Runkle, E. S. (2018). Far-red radiation and photosynthetic photon flux density independently regulate seedling growth but interactively regulate flowering. Environ. Exp. Bot. 155, 206–216. doi: 10.1016/j.envexpbot.2018.06.033Parra-Coronado, A., Fischer, G., y Chaves-Cordoba, B. (2014). Thermal time for reproductive phenological stages of pineapple guava (Acca sellowiana (O. Berg) Burret). Acta Biologica Colombiana. 20(1), 163-173. doi: 10.15446/abc.v20n1.43390.Pérez-Asseff, J. M., Peña E.J., y Torres, C. (2007) Efecto del nitrógeno y la irradianza en la eficiencia fotosintética del anamú Petiveria alliacea (Phytolaccaceae). Rev. Acad. Colomb. Cienc. 31(118), 49-55. ISSN 0370-3908.Pettigrew, W.T. (2008). Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133, 670–681. doi: 10.1111/j.1399-3054.2008.01073.x.Phadnawis, N.B. y Saini, A.D. (1992). Yield models in wheat based on sowing time and phenological development. Annals of Plant Physiology. 6, 52-59.Pinnola A, y Bassi R. (2018). Molecular mechanisms involved in plant photoprotection. Biochem Soc Trans. 46(2), 467-482. doi: 10.1042/BST20170307.Pino, E., Montalván, I., Vera, A., y Ramos, L. (2019). La conductancia estomática y su relación con la temperatura foliar y humedad del suelo en el cultivo del olivo (Olea europaea L.), en periodo de maduración de frutos, en zonas áridas. La Yarada, Tacna, Perú. Idesia (Arica). 37(4), 55-64. doi: 10.4067/S0718-34292019000400055.Placido, D.F., y Lee, C.C. (2022). Potential of Industrial Hemp for Phytoremediation of Heavy Metals. Plants. 11, 595. doi: 10.3390/plants11050595Plecas, D., y Diplock, J. (2007). Marihuana growing operations in Alberta 1997–2003. Centre for Criminal Justice Research (University College of the Fraser Valley).Potter, D.J. (2014). A review of the cultivation and processing of Cannabis (Cannabis sativa L.) for production of prescription medicines in the UK. Drug Test. Anal. 6(1-2), 31–38 doi: 10.1002/dta.1531.Poulter, R. (2014). Quantifying differences between treated and untreated coir substrate. Acta Hortic. 1018, 557-564. doi: 10.17660/ActaHortic.2014.1018.61.Prenner, G., Vergara-Silva, F., y Rudall, P. J. (2009). The key role of morphology in modelling inflorescence architecture. Trends Plant Sci. 14, 302–309. doi: 10.1016/j.tplants.2009.03.004.Qadir, G., Ahmad, S., Hassan, F., y Cheema, M.A. (2006). Oil and fatty acid accumulation in sunflower as influenced by temperature variation. Pakistan Journal of Botany. 38(4), 1137-1147.Quesada-Roldán, G., y Bertsch-Hernández, F. (2013). Obtaining of theAbsorption Curve for the FB-17Tomato Hybrid. Terra Latinoamericana. 31(1), 1-7. ISSN 2395-8030.Raviv, M., Lieth, J.H., y Bar-Tal, A. (2019). Growing plants in soilless culture: operational conclusions. In: Raviv, M., Lieth, J.H., Bar-Tal, A. (Eds.), Soilless Culture. Elsevier B.V., pp. 637-669. doi: 10.1016/B978-044452975-6.50015-0.Raviv, M., Wallach, R., Silber, A., y Bar-Tal, A. (2002). Substrates and their Analysis. En Hydroponic Prod. Veg. Ornam. Sawas, D., Passam, H., Eds.; Embryo Publications: Atenas, Grecia, pp. 25-105.Raviv, M., y Blom, T.J. (2001). The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Sci. Hortic. (Amsterdam), 88, 257–276. doi: 10.1016/S0304-4238(00)00239-9.Reed, J. (1914). Morphology of Cannabis sativa L. Tesis de maestría. (Iowa: State University of Iowa).Ren, G., Zhang, X., Li, Y., Ridout, K., Serrano-Serrano, M.L., Yang, Y., Liu, A., Ravikanth, G., Nawaz, M.A., y Mumtaz, A.S. (2021). Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci. Adv. 7, eabg2286. doi: 10.1126/sciadv.abg2286.Rimon, V., Lata, H., Chandra, S., Khan, I. A., y ElSohly, M. A. (2017). Chapter 5: Morpho-anatomy of marijuana (Cannabis sativa L.) en Cannabis sativa L. – Botany and biotechnology. ed. S. Chandra (New York, NY: Springer), 123-136. doi: 10.1007/978-3-319-54564-6_5.Rioba, N. B., Itulya, F. M., Saidi, M., Dudai, N., y Bernstein, N. (2015). Effects of nitrogen, phosphorus and irrigation frequency on essential oil content and composition of sage (Salvia officinalis L.). J. Appl. Res. Med. Aromat. Plants 2, 21–29. doi: 10.1016/j.jarmap.2015.01.003.Rodríguez-Yzquierdo, G., Patiño, M., y Betancourt, M. (2021). Physiological characterization in medicinal Cannabis plants during different phenological stages under biotic stress. Agron. Mesoam. 32(3), 823-840. doi:10.15517/am.v32i3.44443.Ruiz-Corral, J., Flores-López, H., Ramírez-Díaz. J., González- Equiarte, D. (2002) Temperaturas cardinales y duración del ciclo de madurez del híbrido de maíz H-311 en condiciones de temporal. Agrociencia. 36, 569-577. ISSN: 1405-3195.Sakaguchi, S, Horie, K, Ishikawa, N. Nishio, S., Woth, J.R.P., Fukushima, K., Yamasaki, M., y Ito, M. (2019). Maintenance of soil ecotypes of Solidago virgaurea in close parapatry via divergent flowering time and selection against immigrants. J Ecol, 107, 418–35. doi: 10.1111/1365-2745.13034.Salas, R.E., y Vega, E.V. (2012). Curvas de absorción de nutrientes bajo dos métodos de fertilización en sandia, en Guanacaste, Costa Rica. InterSedes: Revista de las Sedes Regionales. XIII(26),19-44. ISSN: 2215-2458.Salazar-Gutierrez, M.R., Johnson, J., Chaves-Cordoba, B., y Hoogenboom, G. (2013) Relationship of base temperature to development of winter wheat. Int J Plant Prod. 7(4), 741-762. doi: 10.22069/IJPP.2013.1267.Saloner, A., Sacks, M.M., y Bernstein, N. (2019). Response of medical Cannabis (Cannabis sativa L.) genotypes to K supply under long photoperiod. Front. Plant Sci. 10, 1–16. doi: 10.3389/fpls.2019.01369Saloner, A., y Bernstein, N. (2021). Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Industrial Crops & Products. 167, 113516. doi: 10.1016/j.indcrop.2021.113516.Saloner, A., y N. Bernstein. (2020) Response of Medical Cannabis (Cannabis sativa L.) to Nitrogen Supply Under Long Photoperiod. Front. Plant Sci. 11:572293. doi: 10.3389/fpls.2020.572293.Sánchez-de-Miguel, P., Junquera, P., Jimenez, L., y Lissarrague, J.R. (2009). Efectos de la temperatura foliar y de la humedad relativa en la respuesta fotosintética a la luz de las hojas de vid de los cvs. Cabernet Sauvignon y Tempranillo, en el período de maduración. Revista Enología. 6. 1-8.Sander, M., Fogliatto, R., Scorsatto, R., Tiecher, T., y Anastácio de Oliveira, F. (2021). The use of vegetal tissue multi-element content as an indicator of soil or substrate type employed to cultivate Cannabis sativa L. (marijuana). Forensic Chemistry, 23, 100319. doi:10.1016/j.forc.2021.100319.Sandoval, M., Sánchez, P., y Alcántar, G. (2007). Principios de la hidroponía y del fertirriego. pp. 373-438. In: G. Alcántar y Trejo, L. (eds.). Nutrición de cultivos. Mundi Prensa y Colegio de Postgraduados. México, D. F.Sawler, J., Stout, J.M., Gardner, K.M., Hudson, D., Vidmar, J., Butler, L., Page, J.E. (2015). The Genetic Structure of Marijuana and Hemp. PLoS ONE. 10(8), e0133292. doi: 10.1371/journal.pone.0133292.Schachtman, D.P., Reid, R.J., y Ayling, S.M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116, 447–453. doi: 10.1104/pp.116.2.447.Sharma, A., Deepa, R., Sankar, S., Pryor, M., Stewart, B., Johnson, E., y Anandhi, A. (2021). Use of growing degree indicator for developing adaptive responses: A case study of cotton in Florida. Ecological Indicators. 124, 107383. doi:10.1016/j.ecolind.2021.107383.Shi, G., Liu, C., Cui, M., Ma, Y.,y Cai, Q. (2012). Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl. Biochem. Biotechnol. 168, 163–173. doi: 10.1007/s12010-011-9382-0.Shi, J., Wang, Y., Li, Z., Huang, X., Shen, T., y Zou, T. (2021). Simultaneous and nondestructive diagnostics of nitrogen/magnesium/potassium-deficient cucumber leaf based on chlorophyll density distribution features. Byosistems engineering. 212, 458-467. doi: 10.1016/j.biosystemseng.2021.11.001Shiponi, S., y Bernstein, N. (2021). The Highs and Lows of P Supply in Medical Cannabis: Effects on Cannabinoids, the Ionome, and Morpho-Physiology. Front. Plant Sci. 12, 657323. doi: 10.3389/fpls.2021.657323.Sirikantaramas, S., Morimoto, S., Shoyama, Y., Ishikawa, Y., Wada, Y., Shoyama, Y., y Taura, F. (2004). The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of delta1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J. Biol. Chem. 279, 39767–39774. doi: 10.1074/jbc.M403693200.Slafer, G.A., y Savin R. (1991) Developmental base temperature in different phonological phases of wheat (Triticum aestivum). J Exp Bot. 42,1077-1082. doi: 10.1093/jxb/42.8.1077.Small, E. (1975). American law and the species problem in Cannabis: science and semantics. Bull. Narcot. 27 (3), 1–20. doi: 10.3109/15563657508988067.Small, E., y Marcus, D. (2003). Tetrahydrocannabinol levels in hemp (Cannabis sativa) germplasm resources. Econ. Bot. 57(4), 545–558. https://www.jstor.org/stable/4256739.Spitzer-Rimon, B., Duchin, S., Bernstein, N., y Kamenetsky, R. (2019). Architecture and Florogenesis in Female Cannabis sativa Plants. Front. Plant Sci. 10:350. doi: 10.3389/fpls.2019.00350.Stirbet, A., Lázar, D., Kromdijk, J., y Govindjee (2018). Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica. 56(1), 86-104. doi: 10.1007/s11099-018-0770-3Takahashi, S., y Badger, M. R. (2011). Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci. 16, 53–60. doi: 10.1016/j.tplants.2010.10.001.Tambussi, E.A. (2011). Fotosíntesis, fotoprotección, productividad y estreses abióticos: casos de estudio (Tesis Doctoral, Universidad de Barcelona). Depósito Digital de la Universidad de Barcelona. http://diposit.ub.edu/dspace/handle/2445/36093.Tang, K., Struik, P.C., Amaducci, S., Stomph, T.-J., y Yin, X. (2017). Hemp (Cannabis sativa L.) leaf photosynthesis in relation to nitrogen content and temperature: implications for hemp as a bioeconomically sustainable crop. GCB Bioenergy. 9, 1573–1587. doi: 10.1111/gcbb.12451.Tang, K., Struik, P.C., Yin, X., Thouminot, C., Bjelková, M., Stramkale, V., y Amaducci, S. (2016). Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Industrial Crops and Products, 87, 33–44. doi: 10.1016/j.indcrop.2016.04.026.Tang, Y., Bao, Q., Tian, G., Fu, K., y Cheng, H. (2015). Heavy metal cadmium tolerance on the growth characteristics of industrial hemp (Cannabis sativa L.) in China. In S. Chen, & S. Zhou (Eds.), Proceedings of the International Conference on Advances in Energy, Environment and Chemical Engineering (pp. 289–295). Atlantis Press. doi: 10.2991/aeece-15.2015.58.Tarqui-Delgado, M., Mena-Herrera, F.C., Quino-Luna, J.J., Gutiérrez-Villalobos, S., y Coela-Poma, R.R. (2017). Leaflet temperature of lettuce (Lactuca sativa) and air influenced by the vapor pressure deficit. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 4(1), 60–66.Taura, F., Morimoto, S., y Shoyama, Y. (1996). Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.: biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J. Biol. Chem. 271, 17411–17416. doi: 10.1074/jbc.271.29.17411.Tedesco, D., de Oliveira, M. F., dos Santos, A. F., Costa Silva, E. H., de Souza Rolim, G., y da Silva, R. P. (2021). Use of remote sensing to characterize the phenological development and to predict sweet potato yield in two growing seasons. European Journal of Agronomy, 129, 126337. doi:10.1016/j.eja.2021.126337.Teichmann, T., y Muhr, M. (2015). Shaping plant architecture. Front. Plant Sci. 6:233. doi: 10.3389/fpls.2015.00233.Trancoso, I., de Souza, G.A.R., dos Santos, P.R., dos Santos, K.D., de Miranda, R.M.d.S.N., da Silva, A.L.P.M., Santos, D.Z., García-Tejero, I.F., y Campostrini, E. (2022). Cannabis sativa L.: Crop Management and Abiotic Factors That Affect Phytocannabinoid Production. Agronomy. 12, 1492. doi: 10.3390/agronomy12071492.Uchida, R., 2000. Essential nutrients for plant growth: nutrient functions and deficiency symptoms. Plant Nutr. Manage. Hawaii’s soils. 31–55.United Nations (2006). Bulletin on Narcotics - Review of the World Cannabis Situation. United Nations Off. Drugs Crime LVIII, pp. 1–113.United Nations Office on Drugs and Crime (2013). Recommended methods for the identification and analysis of Cannabis and Cannabis products, Recommended Methods for the Identification and Analysis of Cannabis and Cannabis Products. Vienna, Austria. 50 pp. doi: 10.18356/1e8e4f16-en.Upton, R., Craker, L., ElSohly, M., Romm, A., Russo, E., Sexton, M., Marcu, J., y Swisher, D. (2014). Cannabis Inflorescence: Standards of Identity, Analysis, and Quality Control. En: American Herbal Pharmacopoeia and therapeutic compendium Scott’s Valley, CA.Van Os, E., Gieling, T.H., y Lieth, J.H. (2019). Technical equipment in soilless production systems. In: Raviv, M., Lieth, J.H., Bar-Tal, A. (Eds.), Soilless Culture: Theory and Practice. Elsevier B.V., pp. 587–635. doi: 10.1016/B978-044452975-6.Vyrovets V. H., Kyrychenko H. I., Laiko I. M., Myhal M. D., Shcherban I. I., Bohuslavskyi R. L. (2012). Classification of Signs in Hemp Plants – Cannabis sativa L. Sumy. 27 p. (in Ukrainian).Walker, D. I., Olesen, B., y Phillips, R.C. (2001). Reproduction and phenology in seagrasses. Global Seagrass Research Methods, 59–78. doi:10.1016/b978-044450891-1/50004-9.Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., y Zemla, J. (2017). R package “corrplot”: Visualization of a Correlation Matrix. 56, 316-324.Welling, M.T., Liu, L., Shapter, T., Raymond, C., y King G.J. (2016). Characterisation of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica. 208, 463–475. doi: 10.1007/s10681-015-1585-y.Wogiatzi, E, Gougoulias, N., Giannoulis, K., y Kamvoukou, C.-A. 2019. Effect of irrigation and fertilization levels on mineral composition of Cannabis sativa L. leaves. Not Bor Hortu Agrobo. 47(4), 1073-1080. doi: 10.15835/nbha47411527.Wungrampha, S., Joshi, R., Singla-Pareek, S.L., y Pareek, A. (2018). Photosynthesis and salinity: Are these mutually exclusive? Photosynthetica. 56, 366–381. doi: 10.1007/s11099-017-0763-7.Yep, B., Gale, N.V., y Zheng Y. (2020). Comparing hydroponic and aquaponic rootzones on the growth of two drugtype Cannabis sativa L. cultivars during the flowering stage. Industrial Crops & Products. 157, 112881. doi: 10.1016/j.indcrop.2020.112881.Zheng, Y. (2016). Root zone environment management in container crop production. Proc. for the Veg., potato, greenhouse, small fruit & Gen. session, Mid-Atlantic Fruit & Veg. Convention, Hershey, PA.Zheng, Y. (2018). Current nutrient management practices and technologies used in North American greenhouse and nursery industries. Acta Hortic. 1227, 435–442. doi: 10.17660/ActaHortic.2018.1227.54.Zheng, Y. (2019). Developments in growing substrates for soilless cultivation. En: Marcelis, L., Heuvelink, E. (Eds.), Achieving Sustainable Greenhouse Cultivation. Burleigh Dodds Science Publishing, Cambridge, UK, pp. 1–16. doi: 10.19103/AS.2019.0052.11.Zheng, Y. (2020). Integrated root-zone management for successful soilless culture. Acta Hortic. 1273, 1–8. doi: 10.17660/ActaHortic.2020.1273.1.Medcolcanna S.A.S.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85365/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1024544174.2023.pdf1024544174.2023.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf4185963https://repositorio.unal.edu.co/bitstream/unal/85365/2/1024544174.2023.pdf432e8581936a60217503c197286b02b2MD52THUMBNAIL1024544174.2023.pdf.jpg1024544174.2023.pdf.jpgGenerated Thumbnailimage/jpeg6516https://repositorio.unal.edu.co/bitstream/unal/85365/3/1024544174.2023.pdf.jpgbfeee10c503e29727d1e4ac5efb56359MD53unal/85365oai:repositorio.unal.edu.co:unal/853652024-01-19 10:09:01.51Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |