Medición de perfiles verticales de material particulado en la Sabana de Bogotá

ilustraciones, fotografías, graficas, mapas

Autores:
Jaimes Gonzalez, Daniel Alejandro
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82110
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82110
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra
CALIDAD DEL AIRE
CONTAMINACION DEL AIRE-CONTROL INDUSTRIAL
CONTROL DE CALIDAD DEL AIRE
Air quality
Air quality management
Sensores de bajo costo
Perfiles verticales
PM2.5
Drone
Low cost sensors
Vertical Profiles
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_b69316a33c04573df80aed0fb6763a0a
oai_identifier_str oai:repositorio.unal.edu.co:unal/82110
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Medición de perfiles verticales de material particulado en la Sabana de Bogotá
dc.title.translated.eng.fl_str_mv Measurement of vertical profiles of particulate matter in the Bogotá Savanna
title Medición de perfiles verticales de material particulado en la Sabana de Bogotá
spellingShingle Medición de perfiles verticales de material particulado en la Sabana de Bogotá
550 - Ciencias de la tierra
CALIDAD DEL AIRE
CONTAMINACION DEL AIRE-CONTROL INDUSTRIAL
CONTROL DE CALIDAD DEL AIRE
Air quality
Air quality management
Sensores de bajo costo
Perfiles verticales
PM2.5
Drone
Low cost sensors
Vertical Profiles
title_short Medición de perfiles verticales de material particulado en la Sabana de Bogotá
title_full Medición de perfiles verticales de material particulado en la Sabana de Bogotá
title_fullStr Medición de perfiles verticales de material particulado en la Sabana de Bogotá
title_full_unstemmed Medición de perfiles verticales de material particulado en la Sabana de Bogotá
title_sort Medición de perfiles verticales de material particulado en la Sabana de Bogotá
dc.creator.fl_str_mv Jaimes Gonzalez, Daniel Alejandro
dc.contributor.advisor.none.fl_str_mv Rojas Roa, Néstor Yezid
dc.contributor.author.none.fl_str_mv Jaimes Gonzalez, Daniel Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Calidad del Aire
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra
topic 550 - Ciencias de la tierra
CALIDAD DEL AIRE
CONTAMINACION DEL AIRE-CONTROL INDUSTRIAL
CONTROL DE CALIDAD DEL AIRE
Air quality
Air quality management
Sensores de bajo costo
Perfiles verticales
PM2.5
Drone
Low cost sensors
Vertical Profiles
dc.subject.lemb.spa.fl_str_mv CALIDAD DEL AIRE
CONTAMINACION DEL AIRE-CONTROL INDUSTRIAL
CONTROL DE CALIDAD DEL AIRE
dc.subject.lemb.enge.fl_str_mv Air quality
dc.subject.lemb.eng.fl_str_mv Air quality management
dc.subject.proposal.spa.fl_str_mv Sensores de bajo costo
Perfiles verticales
dc.subject.proposal.none.fl_str_mv PM2.5
dc.subject.proposal.eng.fl_str_mv Drone
Low cost sensors
Vertical Profiles
description ilustraciones, fotografías, graficas, mapas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-25T19:00:30Z
dc.date.available.none.fl_str_mv 2022-08-25T19:00:30Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82110
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82110
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Organizacion Mundial de la Salud, “Actualización mundial 2005,” 2005. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.pdf%0Ajsessionid=970454FA25DFB60943EBC3409FF7E87B?sequence=1.
J. Schwartz, D. W. Dockery, and L. M. Neas, “Is Daily Mortality Associated Specifically with Fine Particles?,” J. Air Waste Manage. Assoc., vol. 46, no. 10, pp. 927–939, 1996, doi: 10.1080/10473289.1996.10467528.
World Health Organization, “Ambient air pollution attributable deaths,” 2016. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/ambient-air-pollution-attributable-deaths
INS, “INS: 17,549 muertes en Colombia están asociadas a mala calidad del agua, del aire y a la exposición a combustibles pesados,” pp. 1–3, 2019.
C. A. Pope III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, and G. D. Thurston, “Lung Cancer, Cadiopulmonary Mortality and Long-term Exposure to Fine Particulate Air Pollution,” J. Am. Med. Assoc., vol. 287, no. 9, pp. 1132–1141, 2002
B. Mundial, “Environmental Health Costs in Colombia: Changes from 2002 to 2010.” Washington DC, 2012, Accessed: Aug. 25, 2021. [Online]. Available: www.worldbank.org
J. O. Pinto et al., “The status and future of small uncrewed aircraft systems (UAS) in operational meteorology,” Bull. Am. Meteorol. Soc., vol. 102, no. 11, pp. E2121–E2136, Nov. 2021, doi: 10.1175/BAMS-D-20-0138.1
World Meteorological Organization, “Statement of guidance for high-resolution numerical weather prediction (NWP).” WMO, p. 10, 2018
A. L. Houston, L. M. PytlikZillig, and J. C. Walther, “National weather service data needs for short-term forecasts and the role of unmanned aircraft in filling the gap: Results from a nationwide survey,” Bull. Am. Meteorol. Soc., vol. 102, no. 11, pp. E2106–E2120, Nov. 2021, doi: 10.1175/BAMS-D-20-0183.1
University of Wyoming, “University of Wyoming - Radiosonde Data,” 2022. http://weather.uwyo.edu/cgi-bin/sounding?region=samer&TYPE=TEXT%3ALIST&YEAR=2021&MONTH=08&FROM=1212&TO=1012&STNM=80222
Instituto de Hidrología Meteorología y Estudios Ambientales, “RADIOSONDEOS COLOMBIA - IDEAM,” 2022. http://www.meteoaeronautica.gov.co/radiosondeos-colombia
S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, “Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review,” Drones, vol. 6, no. 6, p. 147, Jun. 2022, doi: 10.3390/drones6060147
T. Watai, T. Machida, N. Ishizaki, and G. Inoue, “A lightweight observation system for atmospheric carbon dioxide concentration using a small unmanned aerial vehicle,” J. Atmos. Ocean. Technol., vol. 23, no. 5, pp. 700–710, 2006, doi: 10.1175/JTECH1866.1
V. Lambey and A. D. Prasad, “A Review on Air Quality Measurement Using an Unmanned Aerial Vehicle,” Water, Air, and Soil Pollution, vol. 232, no. 3. 2021, doi: 10.1007/s11270-020-04973-5
R. Cichowicz and M. Dobrzański, “Spatial analysis (Measurements at heights of 10 m and 20 m above ground level) of the concentrations of particulate matter (PM10, PM2.5, and PM1.0) and gaseous pollutants (H2s) on the university campus: A case study,” Atmosphere (Basel)., vol. 12, no. 1, p. 62, Jan. 2021, doi: 10.3390/atmos12010062
L. Jin et al., “Unmanned aerial vehicle observations of the vertical distribution of particulate matter in the surface layer of the Taklimakan Desert in China,” Atmosphere (Basel)., vol. 11, no. 9, p. 980, Sep. 2020, doi: 10.3390/atmos11090980
T. Wang et al., “Unmanned aerial vehicle-borne sensor system for atmosphere-particulate-matter measurements: Design and experiments,” Sensors (Switzerland), vol. 20, no. 1, 2020, doi: 10.3390/s20010057
C. Liu et al., “Vertical distribution of PM2.5 and interactions with the atmospheric boundary layer during the development stage of a heavy haze pollution event,” Sci. Total Environ., vol. 704, 2020, doi: 10.1016/j.scitotenv.2019.135329.
G. Rohi, O. Ejofodomi, and G. Ofualagba, “Autonomous monitoring, analysis, and countering of air pollution using environmental drones,” Heliyon, vol. 6, no. 1, Jan. 2020, doi: 10.1016/j.heliyon.2020.e03252
B. Li et al., “Use of Multi-Rotor Unmanned Aerial Vehicles for Fine-Grained Roadside Air Pollution Monitoring,” Transp. Res. Rec., vol. 2673, no. 7, pp. 169–180, 2019, doi: 10.1177/0361198119847991
Q. Gu and C. Jia, “A Consumer UAV-based Air Quality Monitoring System for Smart Cities,” Mar. 2019, doi: 10.1109/ICCE.2019.8662050
D. Wang, Z. Wang, Z. R. Peng, and D. Wang, “Using unmanned aerial vehicle to investigate the vertical distribution of fine particulate matter,” Int. J. Environ. Sci. Technol., vol. 17, no. 1, pp. 219–230, Jan. 2020, doi: 10.1007/s13762-019-02449-6
Y. Zhu et al., “Measurements of atmospheric aerosol vertical distribution above North China Plain using hexacopter,” Sci. Total Environ., vol. 665, pp. 1095–1102, 2019, doi: 10.1016/j.scitotenv.2019.02.100
G. P. Mayuga, C. Favila, C. Oppus, E. Macatulad, and L. H. Lim, “Airborne Particulate Matter Monitoring Using UAVs for Smart Cities and Urban Areas,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2018-Octob, no. October, pp. 1398–1402, 2019, doi: 10.1109/TENCON.2018.8650293
L. Y. Chen, H. S. Huang, C. J. Wu, Y. T. Tsai, and Y. S. Chang, “A LoRa-Based Air Quality Monitor on Unmanned Aerial Vehicle for Smart City,” Nov. 2018, doi: 10.1109/ICSSE.2018.8519967.
X. B. Li, D. S. Wang, Q. C. Lu, Z. R. Peng, and Z. Y. Wang, “Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements,” Atmos. Environ., vol. 173, pp. 62–71, 2018, doi: 10.1016/j.atmosenv.2017.11.009
J. B. Babaan, J. P. Ballori, A. M. Tamondong, R. V. Ramos, and P. M. Ostrea, “Estimation of PM 2.5 vertical distribution using customized UAV and mobile sensors in Brgy. UP Campus, Diliman, Quezon City,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Oct. 2018, vol. 42, no. 4/W9, pp. 89–103, doi: 10.5194/isprs-archives-XLII-4-W9-89-2018.
S. M. Krishna, M. Gangadhar, and C. V. K. Rao, “Ambient air quality monitoring PM2.5 with quadcopter in rajam town of srikakulam district of andhra pradesh,” Int. J. Mech. Eng. Technol., vol. 9, no. 4, pp. 780–785, 2018, Accessed: May 30, 2021
T. F. Villa, E. R. Jayaratne, L. F. Gonzalez, and L. Morawska, “Determination of the vertical profile of particle number concentration adjacent to a motorway using an unmanned aerial vehicle,” Environ. Pollut., vol. 230, pp. 134–142, 2017, doi: 10.1016/j.envpol.2017.06.033
S. Qiu, B. Chen, R. Wang, Z. Zhu, Y. Wang, and X. Qiu, “Estimating contaminant source in chemical industry park using UAV-based monitoring platform, artificial neural network and atmospheric dispersion simulation,” RSC Adv., vol. 7, no. 63, pp. 39726–39738, Aug. 2017, doi: 10.1039/c7ra05637k.
M. Alvarado, F. Gonzalez, P. Erskine, D. Cliff, and D. Heuff, “A methodology to monitor airborne PM10 dust particles using a small unmanned aerial vehicle,” Sensors (Switzerland), vol. 17, no. 2, p. 343, Feb. 2017, doi: 10.3390/s17020343
J. Aurell, W. Mitchell, V. Chirayath, J. Jonsson, D. Tabor, and B. Gullett, “Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle,” Atmos. Environ., vol. 166, pp. 433–440, 2017, doi: 10.1016/j.atmosenv.2017.07.046
K. Weber, G. Heweling, C. Fischer, and M. Lange, “The use of an octocopter UAV for the determination of air pollutants--a case study of the traffic induced pollution plume around a river bridge in Duesseldorf, Germany,” Int. J. Environ. Sci., vol. 2, pp. 63–68, 2017
Y. Yang, Z. Zheng, K. Bian, L. Song, and Z. Han, “Real-Time Profiling of Fine-Grained Air Quality Index Distribution Using UAV Sensing,” IEEE Internet Things J., vol. 5, no. 1, pp. 186–198, Feb. 2018, doi: 10.1109/JIOT.2017.2777820
J. M. Brady, M. D. Stokes, J. Bonnardel, and T. H. Bertram, “Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements,” Environ. Sci. Technol., vol. 50, no. 3, pp. 1376–1383, Feb. 2016, doi: 10.1021/acs.est.5b05320
M. Alvarado, F. Gonzalez, A. Fletcher, and A. Doshi, “Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites,” Sensors (Switzerland), vol. 15, no. 8, pp. 19667–19687, 2015, doi: 10.3390/s150819667
B. Altstädter et al., “ALADINA - An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmos. Meas. Tech., vol. 8, no. 4, pp. 1627–1639, Apr. 2015, doi: 10.5194/amt-8-1627-2015
W. A. Harrison, D. J. Lary, B. J. Nathan, and A. G. Moore, “Using remote control aerial vehicles to study variability of airborne particulates,” Air, Soil Water Res., vol. 8, no. 8, pp. 43–51, Aug. 2015, doi: 10.4137/ASWR.S30774
C. C. Peng and C. Y. Hsu, “Integration of an unmanned vehicle and its application to real-time gas detection and monitoring,” in 2015 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-TW 2015, Aug. 2015, pp. 320–321, doi: 10.1109/ICCE-TW.2015.7216921.
P. Haas, C. Balistreri, P. Pontelandolfo, and G. Triscone, “Development of an unmanned aerial vehicle UAV for air quality measurements in urban areas,” Am. Inst. Aeronaut. Astronaut., no. June, pp. 1–9, 2014, doi: https://doi.org/10.2514/6.2014-2272
T. S. Bates et al., “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech., vol. 6, no. 8, pp. 2115–2120, 2013, doi: 10.5194/amt-6-2115-2013
T. F. Villa, F. Salimi, K. Morton, L. Morawska, and F. Gonzalez, “Development and validation of a UAV based system for air pollution measurements,” Sensors (Switzerland), vol. 16, no. 12, p. 2202, Dec. 2016, doi: 10.3390/s16122202
L. Barbieri et al., “Intercomparison of small unmanned aircraft system (sUAS) measurements for atmospheric science during the LAPSE-RATE campaign,” Sensors (Switzerland), vol. 19, no. 9, p. 2179, May 2019, doi: 10.3390/s19092179
B. R. Greene, A. R. Segales, T. M. Bell, E. A. Pillar-Little, and P. B. Chilson, “Environmental and sensor integration influences on temperature measurements by rotary-wing unmanned aircraft systems,” Sensors (Switzerland), vol. 19, no. 6, p. 1470, Mar. 2019, doi: 10.3390/s19061470
A. L. Houston and J. M. Keeler, “The impact of sensor response and airspeed on the representation of the convective boundary layer and airmass boundaries by small unmanned aircraft systems,” J. Atmos. Ocean. Technol., vol. 35, no. 8, pp. 1687–1699, Aug. 2018, doi: 10.1175/JTECH-D-18-0019.1
DNP, “Calidad del Aire. Una prioridad de Politica Publica en Colombia,” in Calidad del aire una prioridad de politica publica en Colombia, 2018, p. 69, [Online]. Available: https://www.dnp.gov.co/Portals/0/archivos/documentos/Subdireccion/Conpes/3582.pdf.
Secretaria Distrital de Ambiente, “INFORME MENSUAL DE LA RED DE MONITOREO DE CALIDAD DEL AIRE DE BOGOTÁ-RMCAB ENERO 2022,” 2022
Corporación Autónoma Regional de Cundinamarca, “BOLETÍN MENSUAL DE CALIDAD DEL AIRE CAR,” Bogotá, 2022. Accessed: Jul. 10, 2022
R. Duvall et al., Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Sites, Non-Regulatory Supplemental and Informational Monitoring Applications. EPA, 2021
R. Williams et al., “Peer Review and Supporting Literature Review of Air Sensor Technology Performance Targets,” no. September, p. 33, 2018, [Online]. Available: https://www.epa.gov/sites/production/files/2018-10/documents/peer_review_and_supporting_literature_review_of_air_sensor_technology_performance_targets.pdf
Corporación Autónoma Regional de Cundinamarca, “Histórico de series hidrometeorológicas | CAR,” 2018
DJI, “Matrice 600 Pro - User Manual,” 2022.
Matrice 600 Pro, “Matrice 600 Pro - Product Information - DJI,” 2021. https://www.dji.com/matrice600/info#downloads
W. S. Cleveland, E. Grosse, and W. M. Shyu, “Local Regression Models,” in Statistical Models in S, 1st Editio., T. J. H. John M. Chambers, Ed. New York: Routledge, 1992
“Numerical Differentiation Introduction in R.” https://rstudio-pubs-static.s3.amazonaws.com/295650_406b32cdd2d34ca3a150bbe95010d665.html
US EPA, “List of designated reference and equivalent methods. United State Environmental Protection Agency, available at: http://www.epa.gov/ttn/amtic/files/ambient/criteria/reference-equivalent-methods-list.pdf,” 2014
L. Wang, M. Xu, Q. Hou, Z. Wang, Y. Lan, and S. Wang, “Numerical verification on influence of multi-feature parameters to the downwash airflow field and operation effect of a six-rotor agricultural UAV in flight,” Comput. Electron. Agric., vol. 190, p. 106425, Nov. 2021, doi: 10.1016/j.compag.2021.106425
Q. Guo et al., “CFD simulation and experimental verification of the spatial and temporal distributions of the downwash airflow of a quad-rotor agricultural UAV in hover,” Comput. Electron. Agric., vol. 172, May 2020, doi: 10.1016/j.compag.2020.105343
P. P. Neumann and M. Bartholmai, “Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit,” Sensors Actuators, A Phys., vol. 235, pp. 300–310, Nov. 2015, doi: 10.1016/j.sna.2015.09.036
L. N. C. Sikkel, G. C. H. E. De Croon, C. De Wagter, and Q. P. Chu, “A novel online model-based wind estimation approach for quadrotor micro air vehicles using low cost MEMS IMUs,” in IEEE International Conference on Intelligent Robots and Systems, Nov. 2016, vol. 2016-Novem, pp. 2141–2146, doi: 10.1109/IROS.2016.7759336
Y. Qu, Z. Xing, Y. Zhang, and Z. Yu, “Real-time wind vector estimation for a micro UAV,” in 2017 International Conference on Unmanned Aircraft Systems, ICUAS 2017, Jul. 2017, pp. 1716–1721, doi: 10.1109/ICUAS.2017.7991356
M. Simma, H. Mjøen, and T. Boström, “Measuring wind speed using the internal stabilization system of a quadrotor drone,” Drones, vol. 4, no. 2. Multidisciplinary Digital Publishing Institute, pp. 1–10, Jun. 16, 2020, doi: 10.3390/drones4020023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 94 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Química y Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82110/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82110/2/1030598762.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82110/3/1030598762.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
1d60cace542500d61595a618297b111c
21b2b416a7e4bfbf1aa1e25ce19afbd3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089631061245952
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rojas Roa, Néstor Yezidc2f49720722eb02ba712745809147c3eJaimes Gonzalez, Daniel Alejandro2558ea8cbe1248614977a9b7e0022db1Calidad del Aire2022-08-25T19:00:30Z2022-08-25T19:00:30Z2022https://repositorio.unal.edu.co/handle/unal/82110Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficas, mapasLa calidad del aire es una de las mayores preocupaciones para la ciudadanía. En los últimos años se han emitido estados de prevención por la mala calidad del aire en la ciudad de Bogotá y los alrededores. Un componente clave en la declaración de alertas ha sido el pronóstico de la calidad del aire con modelos de transporte químico de la atmósfera. Este tipo de herramientas se alimenta de datos satelitales y de superficie para su ajuste y verificación. Sin embargo, para el caso de material particulado, solo existen mediciones a nivel del suelo o mediciones remotas. Contar con herramientas para la medición de material particulado en la vertical puede fortalecer el desempeño de estos modelos. En este trabajo, se evalúa el uso de sensores de bajo costo y su uso en equipos drone para la medición de material particulado a diferentes alturas, en los primeros 500 metros de la atmósfera. Esto permite la obtención de perfiles de concentración, los cuales muestran que la atmósfera presenta al menos dos capas bien diferenciadas desde la madrugada, antes de alcanzar una concentración uniforme por mezclado vertical. (Texto tomado de la fuente)Air quality is a major concern for citizens. In the last few years, air pollution alerts have been declared in the city of Bogota and its surrounding areas. These alerts have been known in advance of their occurrence thanks to the city's air quality forecasting and modeling tools. This type of tool relies on satellite and surface data for adjustment and verification. However, for particulate matter, only ground level or remote measurements are available. Having tools for measuring particulate matter vertically can strengthen the performance of these models. In this work, we evaluate the use of low-cost sensors and their use in drone equipment for the measurement of particulate matter at different altitudes, in the first 500 meters of the atmosphere. This allows obtaining concentration profiles, which show that the atmosphere presents at least two well differentiated layers from early morning, before reaching a uniform concentration by vertical mixing.MaestríaMagíster en Ingeniería - Ingeniería AmbientalPara evaluar los sensores a usar, se usará la metodología recomendada por la EPA. La cual tiene como objeto comparar el rendimiento de los sensores de calidad del aire para aplicaciones que no requieren comprar con la normatividad. Como lo puede ser caracterizaciones o análisis de tendencias. Para ello la EPA recomienda dos procedimientos, uno que consiste en instalar los sensores en un ambiente donde se conoce completamente las condiciones, como la temperatura y la humedad el aire. La segunda metodología consiste en la comparación con monitoreos de referencia o FRM/FEM, los cuales cumplen estándares de la EPA para la emisión de información ambiental que puede ser usada para tomar decisiones de carácter legal. Esto implica el uso de estándares trazables, mantenimientos preventivos, verificaciones y demás herramientas de control establecidas por el fabricante. Es esta segunda metodología la usada para determinar la aptitud de los sensores de calidad del aire.Contaminación del aire por material particulado: caracterizaciónxx, 94 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería AmbientalDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierraCALIDAD DEL AIRECONTAMINACION DEL AIRE-CONTROL INDUSTRIALCONTROL DE CALIDAD DEL AIREAir qualityAir quality managementSensores de bajo costoPerfiles verticalesPM2.5DroneLow cost sensorsVertical ProfilesMedición de perfiles verticales de material particulado en la Sabana de BogotáMeasurement of vertical profiles of particulate matter in the Bogotá SavannaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaOrganizacion Mundial de la Salud, “Actualización mundial 2005,” 2005. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.pdf%0Ajsessionid=970454FA25DFB60943EBC3409FF7E87B?sequence=1.J. Schwartz, D. W. Dockery, and L. M. Neas, “Is Daily Mortality Associated Specifically with Fine Particles?,” J. Air Waste Manage. Assoc., vol. 46, no. 10, pp. 927–939, 1996, doi: 10.1080/10473289.1996.10467528.World Health Organization, “Ambient air pollution attributable deaths,” 2016. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/ambient-air-pollution-attributable-deathsINS, “INS: 17,549 muertes en Colombia están asociadas a mala calidad del agua, del aire y a la exposición a combustibles pesados,” pp. 1–3, 2019.C. A. Pope III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, and G. D. Thurston, “Lung Cancer, Cadiopulmonary Mortality and Long-term Exposure to Fine Particulate Air Pollution,” J. Am. Med. Assoc., vol. 287, no. 9, pp. 1132–1141, 2002B. Mundial, “Environmental Health Costs in Colombia: Changes from 2002 to 2010.” Washington DC, 2012, Accessed: Aug. 25, 2021. [Online]. Available: www.worldbank.orgJ. O. Pinto et al., “The status and future of small uncrewed aircraft systems (UAS) in operational meteorology,” Bull. Am. Meteorol. Soc., vol. 102, no. 11, pp. E2121–E2136, Nov. 2021, doi: 10.1175/BAMS-D-20-0138.1World Meteorological Organization, “Statement of guidance for high-resolution numerical weather prediction (NWP).” WMO, p. 10, 2018A. L. Houston, L. M. PytlikZillig, and J. C. Walther, “National weather service data needs for short-term forecasts and the role of unmanned aircraft in filling the gap: Results from a nationwide survey,” Bull. Am. Meteorol. Soc., vol. 102, no. 11, pp. E2106–E2120, Nov. 2021, doi: 10.1175/BAMS-D-20-0183.1University of Wyoming, “University of Wyoming - Radiosonde Data,” 2022. http://weather.uwyo.edu/cgi-bin/sounding?region=samer&TYPE=TEXT%3ALIST&YEAR=2021&MONTH=08&FROM=1212&TO=1012&STNM=80222Instituto de Hidrología Meteorología y Estudios Ambientales, “RADIOSONDEOS COLOMBIA - IDEAM,” 2022. http://www.meteoaeronautica.gov.co/radiosondeos-colombiaS. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, “Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review,” Drones, vol. 6, no. 6, p. 147, Jun. 2022, doi: 10.3390/drones6060147T. Watai, T. Machida, N. Ishizaki, and G. Inoue, “A lightweight observation system for atmospheric carbon dioxide concentration using a small unmanned aerial vehicle,” J. Atmos. Ocean. Technol., vol. 23, no. 5, pp. 700–710, 2006, doi: 10.1175/JTECH1866.1V. Lambey and A. D. Prasad, “A Review on Air Quality Measurement Using an Unmanned Aerial Vehicle,” Water, Air, and Soil Pollution, vol. 232, no. 3. 2021, doi: 10.1007/s11270-020-04973-5R. Cichowicz and M. Dobrzański, “Spatial analysis (Measurements at heights of 10 m and 20 m above ground level) of the concentrations of particulate matter (PM10, PM2.5, and PM1.0) and gaseous pollutants (H2s) on the university campus: A case study,” Atmosphere (Basel)., vol. 12, no. 1, p. 62, Jan. 2021, doi: 10.3390/atmos12010062L. Jin et al., “Unmanned aerial vehicle observations of the vertical distribution of particulate matter in the surface layer of the Taklimakan Desert in China,” Atmosphere (Basel)., vol. 11, no. 9, p. 980, Sep. 2020, doi: 10.3390/atmos11090980T. Wang et al., “Unmanned aerial vehicle-borne sensor system for atmosphere-particulate-matter measurements: Design and experiments,” Sensors (Switzerland), vol. 20, no. 1, 2020, doi: 10.3390/s20010057C. Liu et al., “Vertical distribution of PM2.5 and interactions with the atmospheric boundary layer during the development stage of a heavy haze pollution event,” Sci. Total Environ., vol. 704, 2020, doi: 10.1016/j.scitotenv.2019.135329.G. Rohi, O. Ejofodomi, and G. Ofualagba, “Autonomous monitoring, analysis, and countering of air pollution using environmental drones,” Heliyon, vol. 6, no. 1, Jan. 2020, doi: 10.1016/j.heliyon.2020.e03252B. Li et al., “Use of Multi-Rotor Unmanned Aerial Vehicles for Fine-Grained Roadside Air Pollution Monitoring,” Transp. Res. Rec., vol. 2673, no. 7, pp. 169–180, 2019, doi: 10.1177/0361198119847991Q. Gu and C. Jia, “A Consumer UAV-based Air Quality Monitoring System for Smart Cities,” Mar. 2019, doi: 10.1109/ICCE.2019.8662050D. Wang, Z. Wang, Z. R. Peng, and D. Wang, “Using unmanned aerial vehicle to investigate the vertical distribution of fine particulate matter,” Int. J. Environ. Sci. Technol., vol. 17, no. 1, pp. 219–230, Jan. 2020, doi: 10.1007/s13762-019-02449-6Y. Zhu et al., “Measurements of atmospheric aerosol vertical distribution above North China Plain using hexacopter,” Sci. Total Environ., vol. 665, pp. 1095–1102, 2019, doi: 10.1016/j.scitotenv.2019.02.100G. P. Mayuga, C. Favila, C. Oppus, E. Macatulad, and L. H. Lim, “Airborne Particulate Matter Monitoring Using UAVs for Smart Cities and Urban Areas,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2018-Octob, no. October, pp. 1398–1402, 2019, doi: 10.1109/TENCON.2018.8650293L. Y. Chen, H. S. Huang, C. J. Wu, Y. T. Tsai, and Y. S. Chang, “A LoRa-Based Air Quality Monitor on Unmanned Aerial Vehicle for Smart City,” Nov. 2018, doi: 10.1109/ICSSE.2018.8519967.X. B. Li, D. S. Wang, Q. C. Lu, Z. R. Peng, and Z. Y. Wang, “Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements,” Atmos. Environ., vol. 173, pp. 62–71, 2018, doi: 10.1016/j.atmosenv.2017.11.009J. B. Babaan, J. P. Ballori, A. M. Tamondong, R. V. Ramos, and P. M. Ostrea, “Estimation of PM 2.5 vertical distribution using customized UAV and mobile sensors in Brgy. UP Campus, Diliman, Quezon City,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Oct. 2018, vol. 42, no. 4/W9, pp. 89–103, doi: 10.5194/isprs-archives-XLII-4-W9-89-2018.S. M. Krishna, M. Gangadhar, and C. V. K. Rao, “Ambient air quality monitoring PM2.5 with quadcopter in rajam town of srikakulam district of andhra pradesh,” Int. J. Mech. Eng. Technol., vol. 9, no. 4, pp. 780–785, 2018, Accessed: May 30, 2021T. F. Villa, E. R. Jayaratne, L. F. Gonzalez, and L. Morawska, “Determination of the vertical profile of particle number concentration adjacent to a motorway using an unmanned aerial vehicle,” Environ. Pollut., vol. 230, pp. 134–142, 2017, doi: 10.1016/j.envpol.2017.06.033S. Qiu, B. Chen, R. Wang, Z. Zhu, Y. Wang, and X. Qiu, “Estimating contaminant source in chemical industry park using UAV-based monitoring platform, artificial neural network and atmospheric dispersion simulation,” RSC Adv., vol. 7, no. 63, pp. 39726–39738, Aug. 2017, doi: 10.1039/c7ra05637k.M. Alvarado, F. Gonzalez, P. Erskine, D. Cliff, and D. Heuff, “A methodology to monitor airborne PM10 dust particles using a small unmanned aerial vehicle,” Sensors (Switzerland), vol. 17, no. 2, p. 343, Feb. 2017, doi: 10.3390/s17020343J. Aurell, W. Mitchell, V. Chirayath, J. Jonsson, D. Tabor, and B. Gullett, “Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle,” Atmos. Environ., vol. 166, pp. 433–440, 2017, doi: 10.1016/j.atmosenv.2017.07.046K. Weber, G. Heweling, C. Fischer, and M. Lange, “The use of an octocopter UAV for the determination of air pollutants--a case study of the traffic induced pollution plume around a river bridge in Duesseldorf, Germany,” Int. J. Environ. Sci., vol. 2, pp. 63–68, 2017Y. Yang, Z. Zheng, K. Bian, L. Song, and Z. Han, “Real-Time Profiling of Fine-Grained Air Quality Index Distribution Using UAV Sensing,” IEEE Internet Things J., vol. 5, no. 1, pp. 186–198, Feb. 2018, doi: 10.1109/JIOT.2017.2777820J. M. Brady, M. D. Stokes, J. Bonnardel, and T. H. Bertram, “Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements,” Environ. Sci. Technol., vol. 50, no. 3, pp. 1376–1383, Feb. 2016, doi: 10.1021/acs.est.5b05320M. Alvarado, F. Gonzalez, A. Fletcher, and A. Doshi, “Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites,” Sensors (Switzerland), vol. 15, no. 8, pp. 19667–19687, 2015, doi: 10.3390/s150819667B. Altstädter et al., “ALADINA - An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer,” Atmos. Meas. Tech., vol. 8, no. 4, pp. 1627–1639, Apr. 2015, doi: 10.5194/amt-8-1627-2015W. A. Harrison, D. J. Lary, B. J. Nathan, and A. G. Moore, “Using remote control aerial vehicles to study variability of airborne particulates,” Air, Soil Water Res., vol. 8, no. 8, pp. 43–51, Aug. 2015, doi: 10.4137/ASWR.S30774C. C. Peng and C. Y. Hsu, “Integration of an unmanned vehicle and its application to real-time gas detection and monitoring,” in 2015 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-TW 2015, Aug. 2015, pp. 320–321, doi: 10.1109/ICCE-TW.2015.7216921.P. Haas, C. Balistreri, P. Pontelandolfo, and G. Triscone, “Development of an unmanned aerial vehicle UAV for air quality measurements in urban areas,” Am. Inst. Aeronaut. Astronaut., no. June, pp. 1–9, 2014, doi: https://doi.org/10.2514/6.2014-2272T. S. Bates et al., “Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS),” Atmos. Meas. Tech., vol. 6, no. 8, pp. 2115–2120, 2013, doi: 10.5194/amt-6-2115-2013T. F. Villa, F. Salimi, K. Morton, L. Morawska, and F. Gonzalez, “Development and validation of a UAV based system for air pollution measurements,” Sensors (Switzerland), vol. 16, no. 12, p. 2202, Dec. 2016, doi: 10.3390/s16122202L. Barbieri et al., “Intercomparison of small unmanned aircraft system (sUAS) measurements for atmospheric science during the LAPSE-RATE campaign,” Sensors (Switzerland), vol. 19, no. 9, p. 2179, May 2019, doi: 10.3390/s19092179B. R. Greene, A. R. Segales, T. M. Bell, E. A. Pillar-Little, and P. B. Chilson, “Environmental and sensor integration influences on temperature measurements by rotary-wing unmanned aircraft systems,” Sensors (Switzerland), vol. 19, no. 6, p. 1470, Mar. 2019, doi: 10.3390/s19061470A. L. Houston and J. M. Keeler, “The impact of sensor response and airspeed on the representation of the convective boundary layer and airmass boundaries by small unmanned aircraft systems,” J. Atmos. Ocean. Technol., vol. 35, no. 8, pp. 1687–1699, Aug. 2018, doi: 10.1175/JTECH-D-18-0019.1DNP, “Calidad del Aire. Una prioridad de Politica Publica en Colombia,” in Calidad del aire una prioridad de politica publica en Colombia, 2018, p. 69, [Online]. Available: https://www.dnp.gov.co/Portals/0/archivos/documentos/Subdireccion/Conpes/3582.pdf.Secretaria Distrital de Ambiente, “INFORME MENSUAL DE LA RED DE MONITOREO DE CALIDAD DEL AIRE DE BOGOTÁ-RMCAB ENERO 2022,” 2022Corporación Autónoma Regional de Cundinamarca, “BOLETÍN MENSUAL DE CALIDAD DEL AIRE CAR,” Bogotá, 2022. Accessed: Jul. 10, 2022R. Duvall et al., Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Sites, Non-Regulatory Supplemental and Informational Monitoring Applications. EPA, 2021R. Williams et al., “Peer Review and Supporting Literature Review of Air Sensor Technology Performance Targets,” no. September, p. 33, 2018, [Online]. Available: https://www.epa.gov/sites/production/files/2018-10/documents/peer_review_and_supporting_literature_review_of_air_sensor_technology_performance_targets.pdfCorporación Autónoma Regional de Cundinamarca, “Histórico de series hidrometeorológicas | CAR,” 2018DJI, “Matrice 600 Pro - User Manual,” 2022.Matrice 600 Pro, “Matrice 600 Pro - Product Information - DJI,” 2021. https://www.dji.com/matrice600/info#downloadsW. S. Cleveland, E. Grosse, and W. M. Shyu, “Local Regression Models,” in Statistical Models in S, 1st Editio., T. J. H. John M. Chambers, Ed. New York: Routledge, 1992“Numerical Differentiation Introduction in R.” https://rstudio-pubs-static.s3.amazonaws.com/295650_406b32cdd2d34ca3a150bbe95010d665.htmlUS EPA, “List of designated reference and equivalent methods. United State Environmental Protection Agency, available at: http://www.epa.gov/ttn/amtic/files/ambient/criteria/reference-equivalent-methods-list.pdf,” 2014L. Wang, M. Xu, Q. Hou, Z. Wang, Y. Lan, and S. Wang, “Numerical verification on influence of multi-feature parameters to the downwash airflow field and operation effect of a six-rotor agricultural UAV in flight,” Comput. Electron. Agric., vol. 190, p. 106425, Nov. 2021, doi: 10.1016/j.compag.2021.106425Q. Guo et al., “CFD simulation and experimental verification of the spatial and temporal distributions of the downwash airflow of a quad-rotor agricultural UAV in hover,” Comput. Electron. Agric., vol. 172, May 2020, doi: 10.1016/j.compag.2020.105343P. P. Neumann and M. Bartholmai, “Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit,” Sensors Actuators, A Phys., vol. 235, pp. 300–310, Nov. 2015, doi: 10.1016/j.sna.2015.09.036L. N. C. Sikkel, G. C. H. E. De Croon, C. De Wagter, and Q. P. Chu, “A novel online model-based wind estimation approach for quadrotor micro air vehicles using low cost MEMS IMUs,” in IEEE International Conference on Intelligent Robots and Systems, Nov. 2016, vol. 2016-Novem, pp. 2141–2146, doi: 10.1109/IROS.2016.7759336Y. Qu, Z. Xing, Y. Zhang, and Z. Yu, “Real-time wind vector estimation for a micro UAV,” in 2017 International Conference on Unmanned Aircraft Systems, ICUAS 2017, Jul. 2017, pp. 1716–1721, doi: 10.1109/ICUAS.2017.7991356M. Simma, H. Mjøen, and T. Boström, “Measuring wind speed using the internal stabilization system of a quadrotor drone,” Drones, vol. 4, no. 2. Multidisciplinary Digital Publishing Institute, pp. 1–10, Jun. 16, 2020, doi: 10.3390/drones4020023EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82110/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1030598762.2022.pdf1030598762.2022.pdfTesis de Maestría en Ingeniería - Ingeniería Ambientalapplication/pdf4655446https://repositorio.unal.edu.co/bitstream/unal/82110/2/1030598762.2022.pdf1d60cace542500d61595a618297b111cMD52THUMBNAIL1030598762.2022.pdf.jpg1030598762.2022.pdf.jpgGenerated Thumbnailimage/jpeg4597https://repositorio.unal.edu.co/bitstream/unal/82110/3/1030598762.2022.pdf.jpg21b2b416a7e4bfbf1aa1e25ce19afbd3MD53unal/82110oai:repositorio.unal.edu.co:unal/821102024-08-09 23:21:46.964Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=