Goodness of fit tests for Rayleigh distribution based on Phi-divergence
In this paper, we develop some goodness of fit tests for Rayleigh distribution based on Phi-divergence. Using Monte Carlo simulation, we compare the power of the proposed tests with some traditional goodness of fit tests including Kolmogorov-Smirnov, Anderson-Darling and Cramer von-Mises tests. The...
- Autores:
 - 
                   Mahdizadeh, Mahdi           
Zamanzade, Ehsan
 
- Tipo de recurso:
 - Article of journal
 
- Fecha de publicación:
 - 2017
 
- Institución:
 - Universidad Nacional de Colombia
 
- Repositorio:
 - Universidad Nacional de Colombia
 
- Idioma:
 -           spa          
 - OAI Identifier:
 - oai:repositorio.unal.edu.co:unal/66499
 - Acceso en línea:
 -           https://repositorio.unal.edu.co/handle/unal/66499
          
http://bdigital.unal.edu.co/67527/
 - Palabra clave:
 -           51 Matemáticas / Mathematics          
31 Colecciones de estadística general / Statistics
Rayleigh distribution
Goodness of fit test
Phi-divegence
Monte Carlo simulation.
distribución Rayleigh
Divergencia Phi
Pruebas de bondad de ajuste
Simulaciones Monte Carlo
 - Rights
 - openAccess
 - License
 - Atribución-NoComercial 4.0 Internacional
 
| Summary: | In this paper, we develop some goodness of fit tests for Rayleigh distribution based on Phi-divergence. Using Monte Carlo simulation, we compare the power of the proposed tests with some traditional goodness of fit tests including Kolmogorov-Smirnov, Anderson-Darling and Cramer von-Mises tests. The results indicate that the proposed tests perform well as compared with their competing tests in the literature. Finally, the proposed procedures are illustrated via a real data set. | 
|---|
